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Section 4

Abstract

Emotion is a critical component of human communication, and enabling synthetic speech to ex-
press emotion effectively remains a major challenge in modern text-to-speech (TTS) systems. This
study investigates three modeling strategies within the FastSpeech2 framework: pitch and duration
control, scratch training, and fine-tuning to assess their impact on the naturalness and emotional
expressiveness of synthesized speech.

To evaluate these methods, three emotional categories (Sad, Angry, Happy) were synthesized us-
ing each modeling approach and assessed through a subjective listening test. The participantsants
rated the naturalness of each sample on a five-point MOS scale and selected the most emotionally
expressive version among the alternatives.

The results show that the fine-tuned model significantly outperforms the others, achieving the highest
naturalness score (MOS = 4.47) and an emotion recognition accuracy of 72%. In contrast, the
pitch-controlled and scratch-trained models scored lower and were not consistently perceived as
emotionally expressive.

These findings demonstrate that fine-tuning with expressive data is the most effective and resource-
efficient approach to building emotionally rich synthetic voices. The full demo and audio samples
are publicly available at https://burgundy07.github.io/emotion-demo/

Keywords: Emotional speech synthesis, FastSpeech?2, fine-tuning, MOS evaluation, prosody control
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1 Introduction

Text-to-speech (TTS) synthesis, which converts written text into spoken language, has become a
fundamental component of modern artificial intelligence systems.With advancements in deep neural
architectures (especially sequence-to-sequence models), modern TTS systems have achieved signif-
icant improvements in naturalness and intelligibility. Prominent architectures,such as Tacotron and
FastSpeech2 are capable of producing high-quality, human-like speech at scale (Ren et al., 2019;
Wang et al., 2017). However, most conventional systems still generate speech with a neutral tone,
lacking the emotional richness required for truly engaging and contextually appropriate human-
computer interaction.

Emotional expressiveness in speech synthesis is essential for applications in socially interactive
domains such as digital assistants, mental health tools, and storytelling systems.In these contexts,
conveying empathy and intent through vocal tone enhances user trust and improves communica-
tion quality.While intelligibility and fluency are necessary, they alone are not sufficient.Achieving
emotionally expressive speech requires variation in prosodic features such as pitch (Fp), duration,
rhythm, and energy, which are challenging to model using standard TTS pipelines.

Recent research in emotional TTS focuses on two key challenges: achieving accurate emotional
expression and enabling controllable emotional variation.Accuracy refers to whether the intended
emotion (e.g., happiness, sadness, anger) is clearly perceived by listeners.Controllability, on the
other hand, allows systems to vary emotional intensity, such as expressing mild sadness versus in-
tense grief.For example, when synthesizing the sentence “I went out to see my friends today,” an
emotional TTS system could deliver it joyfully or sadly, depending on context, and even modulate
how strong the emotion sounds.

Two promising strategies have emerged to meet these challenges.First, prosody-based control adjusts
acoustic parameters like pitch and duration at inference time to simulate specific emotions.This
approach is interpretable and supports fine-grained manual control over prosody, making it suitable
for dynamic emotional rendering (Lee & Kim, [2019). Second, embedding-based methods use low-
dimensional emotion vectors extracted from reference speech to condition the synthesis model. These
methods typically produce smoother prosody and more natural emotion expression, though they
often sacrifice transparency and user control (Cornille, Wang, & Bekker, 2022).

However, existing research often evaluates these strategies in isolation, using different architectures,
datasets, and evaluation protocols, making direct comparison difficult. To address this, the present
study systematically compares pitch-based control, supervised emotion modeling (from scratch),
and fine-tuning within the same FastSpeech2 framework, using consistent datasets and subjective
and objective evaluation metrics.

Specifically, this research investigates how pitch and duration scaling, supervised emotion training,
and transfer learning affect emotional clarity, naturalness, and efficiency across three emotional
targets: happy, angry, and sad. The Emotional Speech Dataset (ESD) is used for emotional reference
and training, while LJSpeech serves as the neutral baseline. The goal is to determine which method
offers the best balance of interpretability, expressiveness, and training efficiency for emotional TTS
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synthesis.

This paper is organized as follows. Section |1.1|introduces the research questions and hypotheses.
Section [2| reviews relevant literature on emotional text-to-speech synthesis. Section [3| outlines the
proposed methodology and implementation details. Section [ describes the experimental setup.
Section [5] presents and analyzes the evaluation results. Section [6] discusses key insights and their
broader implications. Finally, Section [/| concludes the paper and suggests potential directions for
future work.

1.1 Research Questions and Hypotheses

In light of prior work on emotional speech synthesis and the limitations of prosody control methods,
this study addresses the following overarching research question:

Can pitch-based prosody control and supervised emotion modeling (via from-scratch
training and fine-tuning) enhance the emotional expressiveness of FastSpeech2-generated
speech, and how do these methods differ in terms of naturalness, emotional clarity, and
training efficiency?

This central question is decomposed into the following sub-questions:

* How does pitch and duration scaling compare to supervised emotion modeling (from-scratch
or fine-tuning) in generating emotionally expressive speech?

* Which method—pitch-based control, from-scratch modeling, or fine-tuning—produces speech
with more natural and emotionally fluent prosody?than pitch-based prosody manipulation?

* In terms of emotional clarity and data/resource usage, does fine-tuning a pre-trained Fast-
Speech2 model offer advantages over training emotion-specific models from scratch?

Based on these questions, the following hypotheses are proposed:

* H1: Both pitch-based prosody control and supervised emotion modeling (either via from-
scratch training or fine-tuning) can enhance emotional expressiveness in synthesized speech.

» H2: Pitch scaling is expected to offer more transparent and interpretable control over emo-
tional tone, while supervised emotion modeling is expected to produce more consistent and
perceptually convincing emotional prosody.

* H3: Fine-tuning is expected to achieve emotional clarity comparable to or better than from-
scratch models, with reduced training time and data requirements, indicating greater efficiency.
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2 Literature Review

Speech synthesis has advanced significantly in recent years, especially with the emergence of neural
models such as Tacotron and FastSpeech.Among these developments, emotional speech synthesis,
which generates speech with expressive emotions such as happiness, sadness, and anger, has become
a critical area of research due to its applications in human-computer interaction, virtual assistants,
and affective computing.

To support this literature review, relevant papers were collected through targeted searches on Google
Scholar, IEEE Xplore, ACL Anthology, and arXiv, focusing on works from 2000 to 2024. Key-
words included “emotional speech synthesis,” “prosody control,” “emotion embeddings,” “Fast-
Speech2,’and “phoneme alignment.”Studies were included if they focused on neural TTS methods
for emotional speech, presented original methods or evaluations, and reported subjective or objective
results.Papers unrelated to emotion synthesis, lacking experiments, or presented as informal content

were excluded.

This section reviews prior research in five key areas that underpin the emotional speech synthe-
sis strategies explored in this study: (1) general approaches to emotional TTS, (2) prosody-based
emotion control via pitch and duration modification, (3) emotion-specific training from scratch, (4)
fine-tuning techniques for low-resource emotion transfer, and (5) methods for data alignment. These
five themes directly inform the three experimental strategies compared in this work, namely prosody
scaling, full model training, and fine-tuning, providing both conceptual foundations and practical
benchmarks.

2.1 Background on Emotional TTS

Emotional text-to-speech (TTS) aims to synthesize speech that not only delivers linguistic content
but also conveys the speaker’s emotional state. This task differs from traditional TTS systems, which
prioritize intelligibility and fluency, by requiring models to simulate affective prosody and expressive
vocal features such as pitch contours, speaking rate, energy, and timbre. Emotional TTS has growing
importance in human-computer interaction, conversational agents, and affective computing, where
natural and emotionally appropriate responses improve user engagement and trust.

Early research on emotional speech synthesis was dominated by rule-based methods that applied
manually crafted prosodic changes to neutral speech. For example, |Schroder (2001) classified early
approaches into rule-based, statistical, and transformation-based paradigms, noting that rule-based
methods relied on linguistic heuristics (e.g., raising pitch and speeding tempo to express happiness)
but were limited in scalability and naturalness. Statistical parametric speech synthesis (e.g., HMM-
based TTS) introduced more data-driven modeling of prosodic features but often suffered from over-
smoothing and lacked expressive variability (Burkhardt & Campbell, [2015).

A major shift occurred with the advent of deep learning and end-to-end architectures. Unlike mod-
ular pipelines, these architectures—such as Tacotron and FastSpeech—replaced hand-crafted mod-
ules with neural networks that learn alignment, duration, and acoustic features jointly. These mod-
els significantly improved synthesis quality, enabling more natural and data-driven expression of
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emotional prosody. Kalita and Deb (2017)demonstrated that deep learning models outperform tra-
ditional methods in both naturalness and emotional clarity across languages and speakers. However,
they also highlighted persistent limitations in speaker generalization and data efficiency, especially
in multilingual or low-resource contexts.

Recent studies have increasingly highlighted the multidimensional nature of emotional expression.
Traditional categorical approaches rely on discrete emotion labels , while dimensional models de-
scribe emotions along continuous axes such as valence and arousal. These models shape how emo-
tional speech is represented and synthesized, influencing the choice of acoustic features and condi-
tioning variables.

In addition, some studies emphasize the importance of subtle acoustic cues beyond pitch and du-
ration. For instance, [Hoult| (2004) argues that emotional expression is closely related to spectral
features such as formant movement, breathiness, and voice quality—elements that are often difficult
to capture using conventional loss functions or coarse acoustic representations. This highlights the
need for perceptually informed training objectives and more comprehensive models of expressive
speech.

Taken together, emotional TTS systems have progressed from inflexible rule-based approaches to
neural models capable of generating more natural and emotionally rich speech. Despite these ad-
vancements, key challenges remain, including limited data efficiency, difficulty in emotion control,
and poor generalization across speakers and languages. To address these issues, this study explores
three strategies—pitch-duration scaling, supervised emotion-specific training, and fine-tuning based
on pre-trained models—within the FastSpeech2 framework, aiming to improve emotional expres-
siveness, controllability, and training efficiency.

2.2 Prosody Control Techniques

Prosody (which encompasses features such as pitch (F0O), duration, and energy) is fundamental to
expressing emotion in human speech. In emotional text-to-speech (TTS) systems, prosody control
offers an interpretable and lightweight alternative to embedding-based or end-to-end methods, es-
pecially in low-resource emotional settings. Unlike deep emotion modeling approaches, prosody
manipulation allows explicit modification of acoustic cues directly associated with affective states,
such as raising pitch for excitement or lengthening duration for sadness.

A seminal model in this domain is FastPitch, which integrates a pitch predictor module into the
synthesis pipeline, enabling direct FO control during inference (Lancucki, 2021). This architecture
allows pitch contours to be globally adjusted without retraining the model. While this method is sim-
ple and does not require labeled emotional data, overly uniform adjustments may lack the nuanced
dynamics found in natural emotional speech

Earlier rule-based approaches also explored pitch—duration coupling.Kim, soo Hahn, Yoo, and Bae
(2008) proposed a method that controls pitch in the time domain and modifies duration in the fre-
quency domain using PSOLA-based synthesis. They reported that the proposed algorithm obtained
a higher MOS score for naturalness, achieving an average rating of 3.38. These findings suggest that
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even rule-based, signal-level techniques can enhance perceptual expressiveness without requiring
model retraining.

At a more granular level, [Fahad, Singh, Gupta, Deepak, and Abhinav| (2019)introduced a vowel-
specific modification approach that dynamically adjusts FO, energy, and duration, rather than apply-
ing fixed global scaling. Their method showed up to a 13% improvement in subjective emotionality
ratings, particularly for high-arousal emotions such as anger and fear.

Linguistic studies have shown that prosodic variation strongly correlates with emotional expres-
sion/Koike, Suzuki, and Saito| (1998)) , in a study on synthesized Japanese speech, found that joy and
anger were characterized by higher pitch and shorter durations, whereas sorrow was associated with
lower pitch and elongated syllables . These results support the intuition behind current pitch-scaling
strategies in emotional speech synthesis.

From an implementation standpoint, phoneme-level control has been shown to be more effective than
coarser, utterance-level prosody manipulation. |Bulut et al. (2005)) demonstrated that synchronizing
prosodic modifications such as pitch and energy with phoneme boundaries, along with applying
spectral envelope shaping, significantly enhanced emotional expressiveness and improved listener
ratings.

Prosody modification plays a crucial role in expressive speech synthesis and voice conversion. Con-
ventional methods, such as TD-PSOLA and fixed-factor epoch-based approaches, typically apply
uniform scaling of pitch and duration across the entire utterance, limiting their ability to reflect the
dynamic prosodic patterns characteristic of emotional speech. To overcome this limitation,Govind
and Prasanna (2012) introduced a dynamic prosody modification method using zero-frequency fil-
tered signals (ZFFS), which enables precise prosodic control at the level of individual epochs. This
approach supports fine-grained, time-varying adjustments of pitch, duration, and excitation strength,
providing greater flexibility and naturalness compared to traditional techniques.They demonstrated
that this dynamic approach significantly outperformed fixed-factor methods in emotion conversion
tasks, as supported by subjective evaluations: The subjective evaluations performed for the emotion
conversion indicate the effectiveness of the dynamic prosody modification over the fixed prosody
modification for emotion conversion.

In conclusion, prosody-based control offers a transparent and practical approach for emotional TTS.
When applied at fine-grained units like phonemes or syllables, it not only enables better expressive-
ness in low-resource settings but also serves as a benchmark for evaluating more advanced emotion
synthesis systems.

2.3 Emotion Modeling Approaches

Recent developments in emotional speech synthesis have moved beyond prosody-based adjustments,
embracing data-driven techniques that condition generation on learned emotion representations.
These emotion embeddings, typically extracted from reference audio, aim to capture holistic affec-
tive characteristics, such as pitch, rhythm, and energy, enabling models to produce speech that aligns
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more closely with emotional intent. A widely used approach is Global Style Tokens (GST), initially
designed for Tacotron, and later adapted into non-autoregressive frameworks like FastSpeech2.

Diatlova and Shutov (2023) extended the FastSpeech2 model by incorporating trainable emotion em-
beddings and a Conditional Cross-Attention (CCA) mechanism into both the encoder and decoder.
This architecture enables token-level reweighting based on emotional context, allowing finer control
over expressive variation in synthesized speech.The proposed model outperforms an existing imple-
mentation of FastSpeech2 extended for Emotional Speech Synthesis, regarding MOS and emotion
recognition accuracy, without bringing inference speed latency

Fine-tuning, rather than training models from scratch, has proven especially valuable in low-resource
emotional TTS. Kolekar, Richter, Bappi, and Kim! (2024) demonstrated demonstrated that incor-
porating pitch, energy, and duration as emotion-related features into the variance adaptor of Fast-
Speech?2 leads to high MOS performance (up to 4.09), especially when applied to multi-speaker and
fine-tuned setups. Their method highlights the potential of fine-tuning pretrained models for scalable
and expressive speech generation. This is echoed by [noue, Zhou, Wang, and Li| (2024), who intro-
duced a hierarchical emotion distribution module in FastSpeech?2 that allows fine-grained emotional
control at the phoneme level, offering both high accuracy and interpretability in emotional TTS.

Nithin and Prakash| (2022)) conducted a direct comparison between Tacotron 2 and FastSpeech 2,
both fine-tuned on emotional speech from the ESD corpus after pretraining on LISpeech. Their re-
sults showed that, while Tacotron 2 achieved higher classification accuracy (90%) using the ScSer
emotion recognition model, FastSpeech 2 converged faster and exhibited greater robustness to over-
fitting—especially in scenarios with limited training data per emotion. These findings support the
use of transfer learning for emotional TTS, particularly when only a few hundred samples are avail-
able for each target category.

Together, these studies reinforce the effectiveness of embedding-based conditioning and fine-tuning
as powerful, scalable approaches for generating expressive emotional speech. While less inter-
pretable than rule-based prosody manipulation, these methods offer higher perceptual naturalness
and are more robust under varying linguistic contexts.

2.4 Dataset and Alignment Techniques

High-quality data preprocessing and alignment are essential for the success of emotional text-to-
speech (TTS) systems, especially in duration-sensitive architectures such as FastSpeech2. Unlike
prosody control methods, which modify acoustic parameters at inference time, preprocessing aims
to optimize input representations and maintain timing accuracy before model training.

One of the most foundational components of this stage is forced alignment, which ensures accurate
mapping between audio signals and phoneme sequences. Tools like the Montreal Forced Aligner
(MFA) are frequently employed to generate phoneme-level durations that guide TTS models dur-
ing training. He, Sun, Zhu, and Zhao (2022) emphasized that alignment accuracy directly impacts
synthesis quality, particularly when modeling emotional nuances that depend on subtle timing dif-
ferences.
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Emotion-specific data filtering is another essential preprocessing step. For instance, Cen, Dong, and
Chan| (201 1)) proposed emotion-aware data refinement by detecting and retaining only emotionally
consistent utterances through automatic emotion recognition. This reduces noise in training corpora
and ensures that models learn from expressive, emotionally salient examples.

Phoneme-level annotation is essential for alignment and training in emotional speech synthesis.
As noted [Tits, Haddad, and Dutoit| (2019), The phonetic annotations are not time-aligned with our
data yet, but methods can be used such as forced alignment systems. This suggests that phonetic
annotations, even if not aligned, can still be used to support consistent training and potentially enable
cross-corpus synthesis scenarios.

In terms of dataset construction, Thi, Thang Ta, Le, and Hai Do| (2023) introduced an automated
pipeline that combines pretrained models with publicly available corpora. Their method automates
multiple stages in the construction of emotional speech datasets, significantly reducing manual effort
and improving scalability, particularly in low-resource emotional categories and languages.

In conclusion, preprocessing steps such as alignment, phoneme normalization, and emotion-based
data filtering are essential for building reliable and expressive emotional TTS systems. While these
processes do not directly affect prosodic output, they lay the groundwork for accurate learning and
robust generalization in emotional speech synthesis.

2.5 Summary and Challenges

Recent advances in emotional speech synthesis include prosody-controllable models and emotion
embedding methods. However, these approaches have rarely been evaluated together in a unified
experimental setting.

Fancuckil (2021) proposed FastPitch and similar models that add pitch predictors to allow real-time
changes in Fp during speech generation. This can improve emotional expression but, if not tuned
well, may cause unnatural prosody. They warned that overly aggressive pitch control may reduce
naturalness. Later models like PiCo-VITS demonstrate that using full pitch contours improves nat-
uralness, especially for high-arousal emotions like anger, as shown by 'Wong and Chung| (2024)). In
a similar vein, |Inoue et al.| (2024) proposed hierarchical pitch control mechanisms that operate at
multiple linguistic levels, allowing for fine-grained prosodic variation.

Furthermore, advanced models such as MSEmoTTS enable multi-scale emotional transfer by com-
bining sentence-level and word-level style conditioning. As stated by [Le1, Yang, Wang, and Xie
(2022), the proposed model is a unified and flexible model that allows us to synthesize emotional
speech in different ways, including emotion transfer from reference audio, prediction from input text,
and manual specification, thus offering broader expressive capabilities than GST-based systems.

Diatlova and Shutov| (2023) extended FastSpeech2 with trainable emotion embeddings and a Condi-
tional Cross-Attention mechanism, enabling token-level emotion reweighting. Their model outper-
formed baselines in MOS and classification accuracy, though evaluation reliability was limited by
dataset subjectivity.
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Despite recent advancements, achieving expressiveness in TTS remains a significant challenge.
First, data dependency remains a significant limitation for embedding-based systems because these
models often require high-quality emotional reference signals, which are difficult to obtain in low-
resource or multilingual settings. Second, prosodic generalization continues to be a challenge for
pitch-controlled methods, especially when dealing with linguistically diverse inputs that contain
varying syntactic structures and prosodic patterns. Finally, the absence of standardized evaluation
benchmarks makes it challenging to perform direct and systematic comparisons across emotional
TTS systems with respect to emotional fidelity, naturalness, and controllability.

This study addresses these gaps by systematically evaluating pitch-control, scratch training, and fine-
tuning-based emotional synthesis methods under a unified framework.A long-term research goal is
to develop systems that integrate controllability, naturalness, and emotional expressiveness while
maintaining generalization across speakers, languages, and domains.
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3 Methodology

In this chapter, I describe the experimental setup employed for evaluating the emotional expres-
siveness of speech from FastSpeech2-based models. This entails the description of the model ar-
chitecture, selection of the data and preprocessing, alignment methods, and methods for modeling
emotions, as well as relevant ethical concerns.

3.1 FastSpeech2 Architecture

FastSpeech?2 is a non-autoregressive text-to-speech (TTS) model that improves training efficiency
and output quality compared to autoregressive architectures. It is composed of three primary mod-
ules: an encoder, a variance adaptor, and a decoder.

The encoder transforms phoneme sequences into hidden representations through stacked feed-forward
Transformer blocks, incorporating multi-head self-attention and one-dimensional convolutional lay-

ers. These representations are passed to the variance adaptor, which integrates prosodic features—namely
duration, pitch, and energy—into the sequence. The adaptor comprises three predictors: a duration
predictor, a pitch predictor for fundamental frequency (FO), and an energy predictor for intensity
variation. Each predictor includes two one-dimensional convolutional layers followed by ReLLU ac-
tivation, layer normalization, dropout, and a linear projection. Supervision is provided using ground-
truth annotations of pitch, duration, and energy during training.

The decoder reconstructs mel-spectrograms from the prosody-enhanced representations in parallel.

A neural vocoder such as HiFi-GAN is subsequently used to convert the mel-spectrograms into
waveform audio [Ren et al.[(2022).

Y S | 1 . E N
Mel-spectrogram Waveform|: A - i ) :
T | Decoder | Linear Layer I ConvlD
B t e Energy
Positional + C  1x1
E‘I}'l\‘J:\Id'll:l:\.:_‘ Energy Predictor [ it ] 1 — ]
Lo Pitch ;
[ Variance Adaptor ] € [ Conv1D + RelLU ] [ Gated Activation Ex N
4 Pitch Predictor ¥ =
Encoder : y
[ '“‘ = ] @ e [ LN + Dropout ] [ Dilated Conv1D
Positional 5 f .............. t .............. i
Encoding
‘ Duration Predictor [CUH\-‘]D + ReLU ] [Transpescd Cun\'lD]
[ Phoneme Embedding ] [ ) [ ! | 7 ) J
¥ I
Phoneme
(a) FastSpeech 2 (b) Variance adaptor (c) Variance predictor (d) Waveform decoder

Figure 1: Core components of FastSpeech2. The model takes phoneme sequences as input and
processes them through an encoder and variance adaptor that injects prosodic features (pitch, energy,
duration). The output mel-spectrogram is converted to waveform using a vocoder.



Section3 METHODOLOGY 18

3.2 Datasets

Two publicly available speech corpora were employed in this study:

* LJSpeech: A dataset consisting of 13,100 English utterances recorded by a single female
speaker. This corpus was used for training the base FastSpeech2 model, representing neutral
speech conditions.

* Emotional Speech Dataset (ESD): A multilingual corpus containing five emotion categories:
Neutral, Happy, Sad, Angry, and Surprise. The English subset was selected for this study, and
a single speaker (spk_0015) was used to ensure consistency. Approximately 350 utterances
were sampled per emotion for Happy, Sad, and Angry Zhou, Chong, Wang, and Zeng| (2022).

All audio samples were downsampled to 16 kHz, converted to mono, and normalized using peak nor-
malization. Transcripts were processed through a grapheme-to-phoneme (G2P) converter to obtain
phoneme sequences compatible with FastSpeech2.

3.3 Alignment and Duration Extraction

Accurate phoneme-to-frame alignment is essential for effective training of the duration predictor.
The Montreal Forced Aligner (MFA) was used to generate phoneme-level alignments, producing
Praat-compatible TextGrid files containing phoneme boundary annotations.(McAulitfe, Socolof, Mi-
huc, Wagner, & Sonderegger, 2017).

Durations were extracted from these alignments and converted into frame-level units. These dura-
tions were subsequently used as training targets for the duration predictor, enabling accurate model-
ing of temporal prosody and speech rhythm.

3.4 Emotion Modeling Strategies

Three modeling strategies were explored to investigate their influence on emotional expressiveness
in synthesized speech:

* Pitch and Duration Control: Emotional expressiveness is simulated during inference by
scaling pitch and duration values using predefined multipliers. This strategy is interpretable
and model-agnostic but does not rely on data-driven adaptation.

* Emotion-Specific Training: Separate FastSpeech2 models are trained from scratch on emotion-
labeled subsets of the ESD corpus. Each model is optimized for a specific emotion category,
allowing direct learning of emotion-specific prosodic patterns.

* Fine-Tuning: A FastSpeech2 model pretrained on neutral speech is fine-tuned on emotion-
labeled data using lower learning rates. This transfer learning approach adapts the model to
emotional prosody while retaining the base model’s generalization ability.

These strategies were chosen to evaluate trade-offs in interpretability, emotional fidelity, and data
efficiency.
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3.5 [Ethical Considerations

All datasets used in this study are publicly available and licensed for academic research purposes.
None of the audio recordings contain personally identifiable information.

Participants involved in the subjective evaluation process provided informed consent. All proce-
dures related to data collection, storage, and usage adhered to institutional ethical standards and data
protection policies to ensure participant privacy and confidentiality.
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4 Experimental Setup

This study aims to explore effective methods for emotional text-to-speech (TTS) synthesis based
on the FastSpeech2 model. Specifically, it is hypothesized that different emotional modeling strate-
gies can significantly enhance the emotional expressiveness and naturalness of synthesized speech.
This section details the experimental settings used to validate these hypotheses, including training
configurations and evaluation protocols.

4.1 Training Configuration

Three experimental setups were designed to compare alternative strategies for emotional speech
synthesis using FastSpeech?2.

E1: Pitch-Controlled Inference

In this setting, a base FastSpeech2 model pretrained on the LISpeech corpus serves as the synthe-
sis backbone. Emotional prosody is simulated during inference by manually adjusting pitch and
duration values according to emotion-specific scaling factors:

* Happy: pitch x 1.3, duration x 0.8
 Sad: pitch x 0.8, duration x 1.2

* Angry: pitch x 1.2, duration x 0.9

E2: Emotion-Specific Training from Scratch

Separate FastSpeech2 models are trained from scratch for each target emotion (Happy, Sad, Angry)
using subsets of the Emotional Speech Dataset (ESD). Each model is trained for 100,000 steps until
convergence using randomly initialized weights.

E3: Fine-Tuning on Emotional Data

A base FastSpeech2 model pretrained on LJSpeech is fine-tuned on each emotional subset of the
ESD for 16,000 steps using a reduced learning rate. This approach enables the transfer of neutral
prosody to expressive targets using limited labeled data.

All training procedures were conducted using the official FastSpeech?2 repository.

4.1.1 Data Preparation

To ensure consistency across all experiments, a fixed set of manually curated emotional prompts
is used. The dataset is divided into 80% training, 10% development, and 10% test subsets. For
each emotion, ten prompts are selected (30 in total), designed to be emotionally expressive while
remaining lexically neutral. Representative examples include:



Section4 EXPERIMENTAL SETUP 22

“I can’t believe this is really happening to me.” (happy),
“Why did this happen to me?” (sad),
“I told you this would happen, but you never listen!” (angry).

These sentences are used uniformly across conditions to control for lexical variation and focus eval-
uation on prosodic and emotional differences.

4.2 Evaluation Protocol

Emotional speech synthesis is evaluated using both subjective and objective measures to ensure a
comprehensive assessment of naturalness and emotional expressiveness.

Subjective Evaluation: Mean Opinion Score (MOS)

A MOS test was conducted to evaluate naturalness and emotion clarity. For each emotion (Happy,
Sad, Angry), three sentences were selected, resulting in nine groups. Each group contained three
synthesized samples, one from each method (E1, E2, and E3), all using identical text content.
Participants were instructed to:

* Rate the naturalness of each sample on a five-point scale (1 = very unnatural, 5 = very natural)

* Select the sample that best conveyed the intended emotion

A total of 30 participants were recruited for the evaluation. All participants provided informed
consent.

The evaluation was administered online using the Qualtrics platform. Each page presented a matrix
of three audio samples (A, B, C) in randomized order, followed by Likert-scale naturalness ratings
and a forced-choice question for emotion recognition.

Objective Evaluation

To supplement subjective analysis, acoustic prosodic features were extracted using the openSMILE
toolkit. The following metrics were computed:

* Duration Distribution: measures consistency in utterance length across methods
* Mean FO (Pitch): assesses alignment of synthesized pitch with emotional trends

* FO Variance: reflects pitch dynamic range, indicative of emotional intensity

The extracted metrics are visualized using box plots, comparing synthesized outputs to the original
ESD recordings and to the neutral FastSpeech2 baseline.

Through this evaluation protocol, the study aims to identify the most effective method for emotional
TTS in terms of interpretability, naturalness, and data efficiency.
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5 Results

This section presents the results of all experiments, including analyses of acoustic features (mean
pitch, pitch variance, and utterance duration) and subjective evaluation results (naturalness and emo-
tion recognition accuracy).

5.1 Acoustic Feature Distribution Analysis
5.1.1 Mean F0 Distribution

Mean FO Distribution (ESD vs Synthesized Methods)
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Figure 2: Mean FO distribution across emotion categories (synthesized vs. ESD).

To evaluate emotional expressiveness, the mean fundamental frequency (FO) was analyzed across
three target emotional categories: happy, angry, and sad.Synthesized speech from four methods
(baseline, pitch and duration control, scratch training, and fine-tuning) was compared against natural
emotional speech from the ESD corpus. Neutral speech is included only as a reference and is not
discussed further.

For high-arousal emotions such as happy and angry, the fine-tuning method most accurately repli-
cated the elevated FO contours observed in the ESD reference, indicating strong emotional alignment.
The scratch training method also captured increased pitch, but to a lesser extent. In contrast, the pitch
and duration control method consistently produced lower-than-expected FO values, failing to convey
the intended emotional intensity.

In the sad category, the pitch and duration control method effectively reduced FO, closely aligning
with the naturally depressed pitch profile of sad speech. However, both the scratch-trained and fine-
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tuned models exhibited higher FO than the reference, indicating less accurate emotional expression
for low-arousal speech.

In summary, the fine-tuning method proved most effective in modeling emotion-specific pitch vari-
ation for high-arousal categories, while the pitch and duration control method performed better for
low-arousal (sad) speech, albeit with limited expressiveness overall.

5.1.2 FO0 Variance Distribution

FO Variance Distribution (ESD vs Synthesized Methods)
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Figure 3: FO variance distribution across emotion categories (synthesized vs. ESD).

Based on the FO variance distributions shown in Figure 3, the fine-tuning method demonstrated the
most consistent alignment with natural emotional prosody across all target emotions. For high-
arousal categories such as happy and angry, the fine-tuned model approached the high variance
levels observed in the ESD reference, indicating successful modeling of expressive pitch contours.
In contrast, the pitch and duration control method yielded insufficient variance in these categories,
resulting in notably flatter prosodic patterns.

In the sad condition, all methods appropriately exhibited reduced FO variance in line with the ESD
samples. However, the pitch and duration control method again produced the flattest profiles, sug-
gesting limited prosodic variation even in low-arousal speech.

Overall, the fine-tuning method best captured dynamic pitch variability consistent with emotional
intensity, while manual control lacked flexibility across emotional states.
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5.1.3 Duration Distribution

Duration Distribution (ESD vs Synthesized Methods)
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Figure 4: Utterance duration distribution across emotion categories (synthesized vs. ESD).

Utterance duration reflects speech pacing and is often modulated by emotional state. Typically, sad
speech is characterized by slower and longer utterances, whereas happy and angry speech tend to be
faster and shorter in duration.

As shown in Figure 4, for the sad category, the fine-tuning and scratch training methods closely
approximated the longer utterance durations observed in the ESD reference, effectively modeling
the slower pacing typical of low-arousal emotions. The pitch and duration control method also
captured this general trend but demonstrated a more limited range of variation.

In happy and angry categories, the pitch and duration control method produced the shortest ut-
terances among the synthesized methods, closely aligning with the ESD reference durations for
high-arousal speech. However, both the fine-tuned and scratch-trained models generated noticeably
longer utterances than expected, suggesting a reduced ability to compress speech rhythmically for
excited emotions.

In summary, the fine-tuning method best captured slow, low-arousal pacing as seen in sad speech,
while the pitch and duration control method was more effective at simulating the rapid timing asso-
ciated with happy and angry emotions—though often at the expense of expressive range.
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5.2 Subjective Evaluation: Naturalness and Emotion Recognition
5.2.1 Perceived Naturalness: Mean Opinion Score (MOS) Test

Figure [5| presents the average Mean Opinion Scores (MOS) grouped by synthesis method and emo-
tion category. The fine-tuning method consistently achieved the highest naturalness ratings across
all emotions, with an overall average MOS of 4.47, followed by scratch training (3.76) and pitch-
duration control (3.57).
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Figure 5: Average MOS Scores by Emotion and Method.

A one-way ANOVA revealed a significant main effect of synthesis method on perceived naturalness
(F =34.15, p < 0.001). Post-hoc comparisons using Tukey HSD tests (Table 1) further confirmed
that the fine-tuning method significantly outperformed both the scratch training method (p < 0.001)
and the pitch-duration control method (p < 0.001). However, the difference between scratch training
and pitch-duration control was not statistically significant (p = 0.2296).

Table 1: Tukey HSD test results for synthesis methods. Statistically significant differences (p <
0.05) are highlighted.

Group 1 Group 2 Mean Diff  p-adj Lower  Upper Significant

Pitch-Duration Control Fine-Tuning 0.8974 0.0000 0.6278 1.1670 Yes
Pitch-Duration Control =~ Scratch Training 0.1880 0.2296 -0.0816 0.4576 No
Fine-Tuning Scratch Training -0.7094 0.0000 -0.9790 -0.4398 Yes
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Closer inspection of the emotional categories shows that the naturalness advantage of fine-tuning
was especially prominent in the “happy” and “angry” conditions. These emotions typically de-
mand more complex prosodic variation, such as wider pitch range, stronger intensity modulation,
and faster speech rate, which fine-tuning methods appear better equipped to handle. In contrast, the
difference among methods for “sad” speech was smaller, possibly due to the slower and more mono-
tonic prosodic patterns associated with sadness, which are easier to approximate even with simpler
methods.

In terms of perceptual experience, listeners may have found the fine-tuning methods smoother and
more human-like, with better pitch transitions and rhythm consistency. Scratch-trained speech, while
trained directly on emotional data, may have lacked sufficient exposure or variation, leading to occa-
sional artifacts or reduced natural flow. Pitch-duration control, although interpretable and rule-based,
tends to apply uniform prosodic changes that fail to capture the subtle temporal nuances and tonal
variation needed for high-quality emotional synthesis.

The MOS difference of 0.89 between fine-tuning and pitch-duration control is particularly notable,
representing nearly a full point on a five-point scale. This magnitude of difference reflects a substan-
tial perceptual gain and supports the effectiveness of the fine-tuning method in modeling expressive,
emotionally rich speech.

5.2.2 Emotion Recognition Accuracy

Figure[6]illustrates the results of the emotion recognition task. The fine-tuning method achieved the
highest recognition accuracy (72.65%), far outperforming both the scratch training method (18.80%)
and the pitch-duration control method (8.55%).

These findings underscore the fine-tuning method’s superiority in capturing and reproducing salient
emotional cues that are perceptible to listeners. Its ability to learn complex prosodic and spectral
patterns from emotional reference data allows for more distinguishable emotional categories. While
the scratch method occasionally produced expressive outputs, its lack of precise control limited
emotional clarity. The rule-based pitch-duration control method, despite its simplicity, performed
the worst, suggesting significant limitations in conveying fine-grained emotional nuance.

The high recognition accuracy achieved by the fine-tuning approach further validates its effective-
ness not only in perceived naturalness, but also in generating emotionally distinctive speech that
aligns with listener perception.

5.2.3 Correlation Between Naturalness and Emotion Recognition

To investigate the relationship between perceived naturalness and emotional clarity, Pearson corre-
lation coefficients were computed between MOS scores and emotion recognition accuracy for each
synthesis method:

* Pitch-duration control: » = 0.996, p = 0.0559
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Emotion Recognition Accuracy by Method
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Figure 6: Emotion Recognition Accuracy by Method.

e Scratch training: r = —0.278, p = 0.8208

* Fine-tuning: r = 0.973, p = 0.1491

Although none of the correlations reached conventional statistical significance (p > .05), both the
fine-tuning and pitch-duration control methods exhibited strong positive correlations, suggesting
that more natural-sounding speech tends to be perceived as more emotionally expressive. The near-
perfect correlation observed for the pitch-duration control method (r = .996) indicates a meaningful
trend, likely limited by small sample size. In contrast, the negative correlation for the scratch training
method suggests inconsistency in conveying both naturalness and emotional clarity simultaneously.

These findings support the broader hypothesis that, in expressive speech synthesis, perceived natural-
ness and emotional clarity are positively related. The consistent high performance of the fine-tuning
method on both dimensions reinforces its advantage in emotional TTS synthesis.
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6 Discussion

This section discusses the experimental findings in relation to the research hypotheses, while also
addressing limitations and practical implications.

6.1 Validation of the First Hypothesis

HI posited that both pitch-duration control and supervised emotional modeling (via from-scratch
training or fine-tuning) can enhance the emotional expressiveness of synthesized speech. This hy-
pothesis is supported by both subjective and objective evaluation results.

In terms of subjective evaluation, Mean Opinion Score (MOS) ratings showed that all three synthesis
strategies were able to produce emotionally expressive speech. The fine-tuned model achieved the
highest naturalness score (M = 4.47), followed by the from-scratch model (M = 3.76), and the
pitch-duration controlled model (M = 3.57). A one-way ANOVA revealed a significant main effect
of synthesis method on perceived naturalness, F(2,N) = 34.15, p < .001. Post hoc Tukey HSD tests
confirmed that the fine-tuned model significantly outperformed both the from-scratch and pitch-
controlled models (p < .001).

Objective evaluation using emotion recognition accuracy further supports this conclusion. The fine-
tuned model achieved 72.65% accuracy, compared to 18.80% for the from-scratch model and 8.55%
for the pitch-controlled model. These results confirm that all three methods can generate speech with
perceivable emotional features, though with clear differences in effectiveness.

To summarize, the findings support H1: pitch-duration control, from-scratch emotional modeling,
and fine-tuning all enhance emotional expressiveness in synthetic speech to varying degrees, with
fine-tuning yielding the most consistent improvements across both subjective and objective mea-
sures.

6.2 Validation of the Second Hypothesis

H2 hypothesized that pitch-duration control would offer greater interpretability in prosodic adjust-
ment, whereas supervised models would generate smoother and more natural prosody. The experi-
mental results support this trade-off.

Pitch-duration control enabled manual manipulation of prosodic features such as pitch and duration.
For example, higher pitch and shorter durations were assigned to high-arousal emotions like anger,
while low pitch and extended durations were used for sadness. However, these modifications lacked
nuanced variation and produced flat, less expressive prosody, reflected in lower naturalness scores
and emotion recognition rates.

In contrast, supervised methods—particularly fine-tuning—yielded smoother pitch contours and
more natural pacing, which more accurately captured the intended emotional states. The from-
scratch model showed moderate expressiveness but lacked the prosodic subtlety achieved through
fine-tuning.



Section 6 DISCUSSION 32

These findings validate that while pitch control offers direct interpretability, supervised model-
ing—especially fine-tuning—produces higher-quality, emotionally richer speech patterns.

6.3 Validation of the Third Hypothesis

H3 proposed that fine-tuning would match or exceed the performance of from-scratch training in
emotional clarity, while offering better training efficiency. The results strongly support this hypoth-
esis.

* MOS: 4.47 (fine-tuned) vs. 3.76 (scratch)
* Emotion recognition: 72.65% vs. 18.80%

* Training efficiency: 16k steps vs. 100k steps

These results demonstrate the efficiency of fine-tuning with pre-trained acoustic features. Fine-
tuning not only reduces the amount of required data and training steps but also yields superior results
in both subjective and objective measures of emotional expressiveness.

This makes fine-tuning particularly well-suited for scenarios where emotional data is limited or
computational resources are constrained. In summary, fine-tuning offers a scalable and effective
solution for emotional speech synthesis, combining performance gains with practical efficiency

6.4 Limitations

Despite promising findings, several limitations merit consideration. First, the ESD data set included
only 350 utterances per emotion, potentially limiting the generalizability of the results. Second, the
study focused on only three emotions: happy, sad, and angry. Expanding to include a broader emo-
tional palette (e.g., fear, surprise, disgust) would provide a more comprehensive evaluation. Third,
the fine-tuning approach depends on a pre-trained neutral model, which may inherit biases from
the original dataset. Fourth, the subjective evaluation involved only 30 participants. A larger and
more diverse rater pool would improve the reliability and generalizability of MOS and recognition
outcomes.

6.5 Summary and Implications

This study validates fine-tuning as the most effective and data-efficient strategy for synthesizing
emotionally expressive speech. Although pitch control is interpretable, it lacks the fluency and
expressiveness achieved by emotion embeddings. These insights can guide future TTS development,
particularly in applications requiring scalable, natural, and emotionally rich voice synthesis.
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7 Conclusion

This study investigated the effectiveness of different strategies to model emotional expressiveness in
FastSpeech2-based text-to-speech (TTS) synthesis. The work focused on three emotion modeling
strategies: manual pitch-duration control, training from scratch, and fine-tuning. In this section, we
summarize the core findings and outline potential future research directions.

7.1 Summary of Contributions

A unified evaluation framework was designed to enable a controlled comparison of the three mod-
eling strategies using consistent emotional categories and speaker data from the ESD corpus. The
evaluation was subjective, using MOS scores and emotion recognition accuracy, and objective, ana-
lyzing mean FO, variance FO, and duration.

Experimental results revealed that the fine-tuned model significantly outperformed other methods
in both naturalness (MOS = 4.47) and emotional clarity (72.65%). Scratch-based synthesis showed
moderate effectiveness, while the pitch-duration adjustment method lagged behind.

These findings were further validated statistically. One-way analysis of variance (ANOVA) and post
hoc Tukey HSD tests confirmed significant differences in perceived naturalness between methods. In
addition, Pearson’s correlation analyzes suggested a strong positive relationship between naturalness
and emotional recognizability, especially in fine-tuned models.

7.2 Future Work

Although the current work demonstrates the value of fine-tuning for emotional speech synthesis,
several directions remain open for future exploration.

First, expanding the range of emotion classes, such as fear, surprise, or disgust, could provide in-
sights into the generalization of the model over a broader affective spectrum. Second, cross-lingual
and multi-speaker adaptation remains underexplored; investigating the portability of emotional ex-
pressiveness across languages and speakers could enhance scalability.

Additionally, integrating multimodal inputs, such as semantic sentiment analysis, may lead to more
expressive synthesis. Finally, optimizing emotional TTS for real-time applications, for example, in
conversational agents or assistive technologies, represents a key challenge for practical deployment.

7.3 Impact and Relevance

The implications of this work extend to several real-world applications. Emotionally expressive
TTS models can enhance virtual assistants, audiobook narration, accessibility solutions, and media
content by making synthetic speech more human-like and engaging.

Importantly, the use of transfer learning in fine-tuning demonstrates that high-quality emotional
synthesis is achievable even with limited labeled data, which is crucial for low-resource scenarios.
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In conclusion, fine-tuning stands out as a data-efficient and effective approach to emotional speech
synthesis. This study not only bridges the gap between interpretability and expressiveness but also
lays a foundation for building emotionally aware speech systems that align more closely with human
communicative expectations.
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A Questionnaire Survey

A.1 Questionnaire Design

To evaluate the perceptual quality of synthesized emotional speech, a structured listening test was
conducted using an online questionnaire. The test consisted of 40 items, divided into two types of
evaluation:

* Naturalness Rating: Listeners rated the naturalness of each synthesized audio sample on a
five-point Likert scale (1 = very unnatural, 5 = very natural).

* Emotion Recognition: For each target emotion (sad, angry, happy), the participants selected
the version that most clearly conveyed the intended emotion, based on prosodic cues such as
pitch, rhythm, and duration.

Each item involved a randomized triplet of audio samples labeled A, B, or C, corresponding to
the following synthesis methods:

¢ adjust_pitch_and_duration
* scratch
* finetune

The ordering of A/B/C options was randomized across questions to mitigate positional bias.

A.2 Participant Instructions

Participants were presented with an overview of the study objectives, procedures, and informed con-
sent form at the beginning of the questionnaire. The test was implemented using the Qualtrics plat-
form and took approximately 10—15 minutes to complete. Participants were instructed to complete
the task in a quiet environment, preferably using headphones to ensure optimal listening conditions.
A screenshot of the welcome screen is shown in Figure

A.3 Question Format

Each evaluation item consisted of a set of three audio clips and two corresponding questions: a
naturalness rating and an emotion recognition task. The interface presented all three versions si-
multaneously, allowing direct comparison. A screenshot of the typical interface layout is shown in

Figure
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Figure 7: Participant welcome screen with study description and consent option.

?é% university of
l%.g / groningen

Dear Participant, Thank you for taking part in this listening test.
This study is part of a master's thesis project on emotional text-
to-speech synthesis (118). The goal is to evaluate how well
synthesized speech conveys naturalness and emotional
expressiveness.

In this questionnaire, you will hear several groups of synthesized
speech samples. Each group contains three versions of the same
sentence, synthesized using different methods.

The test takes approximately 10-15 minutes. Your feedback is
anonymous and will be used only for academic research to help
improve emotional speech synthesis systems.

Do you agree to participate in this study?

() Yes. | agree to participate.

(O Mo, | do not wish to participate.
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Figure 8: Screenshot of the perceptual evaluation interface, showing naturalness ratings and emotion

recognition selection.
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A.4 Declaration

I hereby affirm that this Master thesis was composed by myself, that the work herein is my own
except where explicitly stated otherwise in the text. This work has not been submitted for any other
degree or professional qualification except as specified, nor has it been published. Where other
people’s work has been used (from any source: printed, internet or other), this has been carefully
acknowledged and referenced. During the preparation of this thesis, I used OpenAl ChatGPT-4
for the following purposes: Summarizing background literature for preliminary review, specifically
in Section 2.4, “Emotional Speech Datasets for English Speech Synthesis Purpose: A Review”;
Assisting with formatting in-text citations and references according to the APA style. All content
was subsequently reviewed, verified, and substantially modified by me to ensure accuracy, relevance,
and alignment with academic standards.
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