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Abstract

This thesis introduces the first systematic investigation of correlation between earnings call acoustic
features and companies’ subsequent credit rating outcomes by S&P Global, Moody’s, and Fitch. It
develops an innovative framework that bridges speech technology and corporate financial commu-
nication analysis using NLP and machine learning approaches.

While prior research has established relationships between speech sentiments and securities ana-
lysts’ ratings, no studies have examined correlations with international credit ratings - a critical gap
given credit ratings’ role in global debt capital markets. This study addresses this intersection using
the public Earnings-21 dataset, analyzing earnings calls of 44 US-listed companies, including 24
who received subsequent rating actions (21 affirmations, 2 downgrades, 1 upgrade).

The dataset selection required extensive navigation of international legal frameworks, including
GDPR compliance for cross-border speech data. Initial attempts to collect proprietary data were
systematically explored under fair use doctrine. As explicit consent from data sources was required,
the study chose to use publicly available datasets. This regulatory analysis process demonstrates
proficiency in compliance requirements essential for research at the intersection of technology and
regulated industries.

Recognizing the data scarcity in this emerging field, the study employs percentile ranking, bootstrap
confidence intervals, and MAD-based effect estimation, approaches particularly suitable for small
and imbalanced sample. The study further uses the finance-domain NLP model FinBERT as a text
sentiment validator. This innovative multimodal validation framework addresses the fundamental
ambiguity that physiological arousal can stem from either financial optimism or distress.

Acoustic features, particularly fundamental frequency, pause frequency, and jitter, are extracted and
normalized using duration-weighted aggregation to address multi-speaker heterogeneity. The vali-
dation framework successfully identifies convergent patterns (aligned acoustic-semantic stress) and
divergent patterns (acoustic arousal with positive/neutral sentiment), providing interpretable insights
despite limited sample size. The single upgrade case exhibits high acoustic variability coupled with
notably negative semantic tone, suggesting complex relationships between speech sentiments and
financial outcomes.

The study provides an empirical method for integrating multimodal acoustic semantic analysis with
financial outcome indicators, while openly acknowledging the limitations imposed by small sample
and data imbalance. Future research is recommended to use larger datasets and multimodal fusion
mechanisms. The findings highlight this as foundational work toward operational voice analytics for
corporate disclosure analysis in credit assessments.

Key innovations: novel application domain (earnings call speech-credit rating correlation), multi-
modal validation framework without fusion, small-sample robust statistical methodology.

Key words:
earnings calls, speech sentiments, credit ratings, FinBERT, multimodality, speech technology
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1 Introduction

1.1 Background and Motivation

Speech sentiment analysis with earnings call audio has been used to support financial qualitative
analysis relating to stock price movements and financial fraud detection (Sawhney et al.|(2020);Q. Lu,
Du, Yang, Xu, and Zhao| (2025)). However, limited research has addressed the correlation between
speech sentiment and mid-long-term financial indicators such as credit ratings.

The scientific motivation for this research is to correlate earnings call acoustic features with interna-
tional credit ratings issued by S&P Global, Moody’s, and Fitch. Recent research revealed positive
correlations between earnings call speech emotion labels (positive or negative during statement,
questioning or answering sections) and securities analysts-issued ratings (Chen, Han, and Zhou
(2023)). Deep learning architecture combining speech emotion recognition with FinBERT-based
sentiment analysis suggested managerial emotion is highly predictive for financial distress, bench-
marking Altman’s Z-score. International credit ratings have not been used as a financial outcome
indicator, despite their position as an international debt capital market benchmark.

The social motivation is to involve speech sentiment as an additional qualitative signal for investors
and analysts, complementing existing financial metrics (Rai, Rai, Pakkala, and Thejaswi|(2024)). So
far, speech sentiment - securities ratings correlation has benefit investors and buy-side analysts, such
as investment managers. This study correlates speech sentiment with credit ratings to assist sell-side
arrangers and debt issuers in bond pricing. On a broader scale, auditors may consider executives’
speech as a risk and fraudulent indicator (Hobson, Mayew, Peecher, and Venkatachalam| (2017)).
Regulators may monitor corporate behavior and reinforce accountable corporate communications
and financial disclosure (Sauter and Jungblut| (2023))).

1.2 Problem Statement and Study Approach

1.2.1 Research gap: lack of research examining speech sentiment against international credit
ratings

Few research have studied the correlation between vocal sentiment in earnings calls and international
credit ratings issued by S&P Global, Moody’s, and Fitch, despite having explored the relationship
with other mid-long-term financial indicators such as securities analysts’ ratings. Chen et al.[ (2023))
linked speech sentiment labels to analyst-issued ratings from WIND database and Chinese rating
scales. Hajek and Munk] (2023) used spectral features to predict financial distress using Altman’s
Z-score as the ground truth, neither examined correlation with standardized credit ratings, nor used
FinBERT sentiment as a semantic validator rather than a direct feature fuser to interpret acoustic
signals.

1.2.2 Study approach: descriptive exploration with multimodal validation

The study adopts a descriptive exploration approach due to severe data constraints: the open source
dataset of feasible scale (see Section 2.3 and Appendix A) with 24 rated companies and highly
imbalanced rating actions (21 affirmations, 2 downgrades, 1 upgrade). Direct predictive multimodal
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fusion or survival analysis is precluded by extremely small event rates in minority classes. Instead,
call-level acoustic features are extracted and normalized, descriptive statistics and percentiles are
computed, and FinBERT-based sentiment score is employed to interpret the direction of acoustic
stress markers. This approach prioritizes replicability and seek to establish a baseline for future
research when larger datasets become available.

1.3 Research Questions and Hypotheses
1.3.1 Primary research question

How do earnings call acoustic features, specifically fundamental frequency (represented by FO coef-
ficient of variation and FO standard deviation), pause frequency, and jitter, correlate with subsequent
credit rating actions (affirmation/upgrade/downgrade) issued by S&P Global, Moody’s, and Fitch?

1.3.2 Secondary research question

How do FinBERT-derived sentiment scores help validate the acoustic feature’s indication of stress
or optimism reflected by the subsequent credit rating actions?

1.3.3 Hypotheses

Due to the small data size and thus the exploratory nature of the study, the following descriptive
hypotheses are proposed:

H1: Earnings call speech preceding credit rating downgrades will exhibit higher pitch variability
(measured by FO coefficient of variation and standard deviation), increased pause frequency, and
increased jitter (voice instability) compared to the affirmation baseline, consistent with psychophys-
10logical stress responses reported in the literature.

Expected observation: Downgrade cases will rank above the 80th percentile of the affirmation dis-
tribution on FO variability, pause frequency, and jitter metrics.

H2: Calls preceding upgrades will show higher overall acoustic feature variation and positive
FinBERT-based sentiment classification, reflecting optimism or confidence.

Expected observation: Upgrade cases will display both high acoustic variability and high positive
sentiment scores, indicating a positive convergent pattern.

H3: There will be observable convergent or divergent patterns between acoustic features and Fin-
BERT sentiment scores:

High acoustic arousal couple with high negative sentiment before downgrades; high acoustic arousal
accompanies high positive sentiment before upgrades.

Expected observation: Case study analysis will identify these patterns descriptively, using percentile
ranks and qualitative alignment plots.
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All hypotheses are evaluated using percentile ranking, bootstrapped confidence intervals, and effect
size estimation relative to the affirmation baseline. Group-level stratification is not attempted due to
small sample size. Findings are direct phenomenal observations.

1.4 Thesis Structure Overview

The remainder of thesis consists of six chapters: literature review surveys the existing research (Sec-
tion [2)), methodology details descriptive exploration with FinBERT validation (Section [3)), technical
implementation describes system architecture (Section [)), results present baseline characterization
and case studies (Section E]), discussion interprets findings (Section @, and conclusion summarizes
contributions and future directions.
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2 Literature Review

2.1 Search Strategy and Selection Criteria

The literature review employs a 2-step search strategy to comprehensively identify relevant literature
at the intersection of speech sentiment and financial indicators, especially credit ratings.

Step 1: Use Google Scholar to overcome discipline limitations of venues to collect maximum pub-
lications covering both speech technology and finance.

Search string:

(“speech” OR “speech sentiment” OR “speech emotion” OR “speech technology” OR
“vocal feature” OR “acoustic feature” OR “prosody” OR “SER” OR “audio analysis”
OR *“voice stress” OR “paralinguistics™)

AND

(“finance” OR “financial” OR “invest*” OR “credit rating” OR “credit risk” OR “stock”
OR “market” OR “economic” OR “performance” OR “earnings call” OR “conference
call” OR “corporate disclosure” OR “capital structure” OR “fraud detection” OR “dis-
tress prediction” OR “banking” OR “risk forecasting”)

AND

(“IEEE Transactions on Audio, Speech, and Language Processing” OR “Speech Com-
munication” OR “Computer Speech and Language” OR “Interspeech” OR “ACL” OR
“ICASSP” OR “ASRU” OR “SLT Workshop” OR “Journal of Finance” OR “Journal of
Financial Economics” OR “Review of Financial Studies” OR “Management Science”
OR “Financial Management” OR “Decision Support Systems” OR “Journal of Banking
and Finance” OR “Journal of Corporate Finance” OR “Review of Finance” OR “Ac-
counting Research” OR “European Accounting Review” OR “SSRN” OR “EMNLP”
OR “AAAI”)

AND

(site:ieee.org OR site:aclweb.org OR site:signalprocessingsociety.org OR site:nips.cc
OR site:icml.cc OR site:jmlr.org OR site:cv-foundation.org OR site:afajof.org

OR site:sciencedirect.com OR site:academic.oup.com OR site:onlinelibrary.wiley.com
OR site:informs.org OR site:springer.com OR site:ssrn.com OR site:aaai.org

OR site:acm.org OR site:cambridge.org OR site:taylorandfrancis.com

OR site:emerald.com OR site:nature.com OR site:annualreviews.org)

Rank the results by relevance and citation volume. No timeline limitation is imposed at this step.
OpenAl API is adopted for summarizing selected articles while critical reviewing is performed on
the summaries.

Inclusion Criteria: Peer-reviewed articles.
Exclusion Criteria: Non-peer-reviewed studies.

Step 2: Review literature on on acoustic and text financial sentiments and credit rating.
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Search string:

(“speech sentiment” OR “‘speech emotion” OR “‘acoustic feature” OR “voice stress” OR
“SER” OR “audio analysis” OR “paralinguistics™)

AND

(“credit rating” OR “credit risk” OR “earnings call” OR “conference call” OR “financial
distress” OR “fraud detection” OR “stock” OR “market” OR “banking” OR “corporate
disclosure™)

AND

(“IEEE Transactions on Audio, Speech, and Language Processing” OR “Speech Com-
munication” OR “Interspeech” OR “ACL” OR “ICASSP” OR “Journal of Finance” OR
“Journal of Financial Economics” OR “Review of Financial Studies” OR “Management
Science” OR “Journal of Banking and Finance” OR “SSRN”)

AND

(site:ieee.org OR site:aclweb.org OR site:sciencedirect.com OR site:onlinelibrary.wiley.com
OR site:ssrn.com OR site:informs.org OR site:springer.com)

Inclusion Criteria: First-rank venues; published in the last three years.
Exclusion Criteria: Non-first tier venues; non-replicable method; no statistical result disclosure; in
case of no code disclosure, no mathematical formula disclosure.

2.2 Acoustic Features and Benchmark in Earnings Calls

Hobson, Mayew, and Venkatachalam| (2012)) initiated that vocal dissonance can detect financial mis-
reporting. They (Mayew and Venkatachalam|(2012)) further expanded this into managerial affective
states, stating that positive or negative emotions during earnings calls correlated with future earnings.
Baik, Kim, Kim, and Yoon| (2024) analyzed 28,515 earnings calls with wav2vec 2.0 and identified
key acoustic indicators as FO shifts, pause patterns, jitter and shimmer, harmonics-to-noise ratios,
and speech tempo. M. Miao, Wang, L1, Jiang, and Yang| (2024) found speech rate, pitch, and emo-
tionally arousal correlate with crowdfunding success.

Fundamental frequency (FO) has been consistently identified as a main stress indicator (Giddens,
Barron, Byrd-Craven, Clark, and Winter|(2013)). Rising FO is interpreted as stress, as research (Bros
(2023); Kappen et al.|(2022); Kappen, Vanhollebeke, Van Der Donckt, Van Hoecke, and Vanderhas-
selt (2024))) show enduring FO volatility during stress-inducing tasks, highlighting its prominence
in physiological stress response (Béinziger and Scherer (2005)). In earnings calls, FO standard de-
viation (FO_stv) is found significantly correlated with positive emotions, but not negative emotions
(Gobl and Chasaide| (2003); Johnstone and Scherer| (2000); Mayew and Venkatachalam (2012)). If
to predict post-earnings call stock volatility, omitting pitch or standard deviation of pitch raise mean
squared error by 0.7% and 0.65%, respectively (Qin and Yang (2019)). Greater FO fluctuation in
management’s voice during IPO roadshows indicates positive emotions, and in turn higher first-day
stock return (Zhang, L1, He, and Liang (2024)).
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Pause frequency increases or lengthens as stress heighten (Trouvain and Grice| (1999)). Studies
showed higher cognitive load increases spoken hesitation and leads to less fluent speech (Shriberg
(2001)).

Jitter (vocal frequency variation) has also been found to be a stress-induced anxiety indicator with
high validity (Fuller, Hori1, and Conner| (1992); Schuller et al. (2014)). Research showed that jitter
and shimmer improve emotion classification accuracy when added to baseline spectral and energy
features (Eyben, Wollmer, and Schuller (2010); X. Li et al.| (2007); Vlasenko, Schuller, Wendemuth,
and Rigoll (2007))). In finance, Jitter local is extracted in vocal cue stock prediction research (Qin
and Yang (2019)).

Earnings calls involve multiple executives and analysts and contain both prepared speech and Q&A
sessions. Both sessions are speech sentiment informative (Hynes, Garvey, and O’Brien|(n.d.)). An-
alyzing sentiments at the call level has proven effective for predicting stock performance (Cao et al.
(2024)).

2.3 Earnings Call Datasets: Availability and Structure

Earnings call datasets vary drastically on scales. SPGISpeech (O’Neill et al.| (2021)) released by
S&P Global in 2021 is the largest opensource dataset so far, with 5,000 hours of recordings span-
ning 2007-2020, followed by the MAEC (Multimodal Aligned Earnings Conference Call|J. Li, Yang,
Smyth, and Dong| (2020)) dataset covering 3,443 calls spanning 2015 to 2018 totaling 921 hours of
recordings. For academic purposes, Earnings-21 (Del Rio et al.|(2021)) is often analyzed for its mul-
timodality (audio and text), meta data (company names, sectors, speakers) availability, all recordings
in 2020, and size of 39 hours. While the larger datasets are challenging to annotate and validate for
this study especially without credit rating metadata, Earnings-21’s small scale disabled multimodal
fusion. Middle-sized datasets often remain proprietary (see Appendix A).

Institutional research is dominated by commercial datasets such as FactSet, Refinitiv (LSEG), and
S&P Capital 1Q. LSEG processes approximately 7,000 companies while Capital 1Q covers around
8,000 public companies. These commercial sources provide rich metadata together with structured
financial metrics, although subscription ranges $12,000 to $25,000 annually.

2.4 Progress of Finance-domain NLP Models

Benchmarks studies have consistently shown domain-specific models such as FinBERT and
BloombergGPT outperform generic models (Shah et al.| (2022); Wu et al. (2023))), The landmark,
Loughran and McDonald| (2011)) financial dictionary, revealed 75% of misclassified financial words
in Harvard’s general sentiment lexicon. FinBERT emerged in 2023 and excel in sentiment analysis
with 88.2% sentiment classification accuracy on financial texts, albeit not necessarily optimal for
other financial NLP tasks, such as entity recognition, relationship extraction, and numerical reason-
ing (Alissa and Alzoubi| (2022); [Kirtac and Germano (2024))).

Controversies revolve around dataset quality vs. quantity (Dang and Verma (2025); R. Verma
(2024)), lack of disclosure on confidence intervals, and using inappropriate metrics on sequential
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data (Wasserstein, Schirm, and Lazar (2019)). Among the essential accuracy drivers are annota-
tion quality (Grosman et al.| (2020)), class balance (H. Lu, Enwerhemuepha, and Rakovski (2022);
Tomanek and Hahn| (2009)), and proper validation protocol (Cejas, Azeem, Abualhaija, and Briand
(2023)). Architecture choice shows moderate but consistent benefits (Lipenkova (2022)). For exam-
ple, RoBERTa-base models outperform BERT (Astuti and Alamsyah! (2024)) by 3-7% on financial
text (J. Miao, Lin, Luo, and Liu|(2024)), but RoBERTa-large only gains 2-4% accuracy compared to
the base model (Liao and Shi (2022)).

Domain-specific pretraining provides significant empirical benefits for accuracy gain (15-17% |Araci
(2019)) . Financial PhraseBank (Malo, Sinha, Korhonen, and Wallenius|(2014)) dataset for instance
provides 4,840 sentences annotated from investor’s perspective rather than general sentiments. This
study focuses on SEC-listed companies’ earnings calls, and the model choice relies on the pretrain
dataset. FinBERT which was pretrained with corporate annual and quarterly filings from SEC’s
EDGAR website, over 476k financial analysts’ reports issued for S&P firms, and 136k earnings call
conference scripts (Huang, Wang, and Yang (2023))) emerged as the most suited model for this study.

2.5 Validator Module in Multimodal Analysis of Financial Speech

While there is not one architectural consistently outperform others in financial speech multimodal
fusion, both cross-modal credibility assessment where one modal serves as validator, and direct fu-
sion with integrated fusion learning have seen progress. |Kaikaus, Hobson, and Brunner| (2022} used
bidirectional LSTM to validate text sentiment with acoustic features. The validation approach offers
high interpretability for regulatory compliance, clear construction validity, and the ability to identify
specific inconsistencies between modals (Hennig, Firk, and Wollff] (2025))).

On the other hand, the direct fusion combines acoustic and semantic features at the feature level.
Mathur, Goyal, et al.| (2022)’s DocFin architecture achieved 5-12% accuracy gain in stock price
movement prediction by integrating tabular financial data with multimodal earnings call data.

The distinction between the two approaches is compared by Throckmorton, Mayew, Venkatacha-
lam, and Collins (2015]) who found fusion more accurate for fraud prediction, but only with robust
feature selection approaches. The controversy deepened by skepticism over LVA being used for val-
idation, raising concern over detectability of genuine emotion states (Maniar, Rathod, Kumar, and
Jain| (2022))).

The field continues to progress towards large language model integration with acoustic analysis,
providing more sophisticated semantic information, real-time processing (Baik, Kim, Kim, and Yoon
(2023)) capacities for live earnings calls to enable market applications (Doran, Peterson, and Price
(2012); Froot, Kang, Ozik, and Sadka| (2017)), as well as standardized evaluation protocols (J. L1 et
al.|(2020)).

2.6 Credit Rating as Financial Outcome Indicator

Empirical use of credit ratings as dependent variables traces to Kisgen (2006) who established that
companies systematically adjust their capital structure decisions near rating changes.
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Sangiorgl and Spatt| (2017) further demonstrated that regulatory reliance on credit ratings create
mechanical relationship towards firms’ cost of capital. However, conducting research on credit rat-
ings involve various methodological considerations. The interpretation of rating categories varies
by agencies, leading to potential inconsistency in empirical research (Charlin and Cifuentes| (2017));
Matthies| (2013))). Sample selection requires controlling issuers, industries, and time periods fac-
tors as ratings are influenced by sectoral risks (Lopatta, Tchikov, and Korner] (2013)). Statistical
method is another critical consideration. While traditional methods such as logistic regressions have
been widely used to model the relationship between credit ratings and various predictors (Zhao et al.
(2015)), recent research has adopted multilayer perceptron and classification and regression trees to
improve the accuracy of credit rating prediction (Overes and Van Der Wel| (2023))).

Consultation papers have discussed that positive credit-related sentiments in earnings calls predict
favorable rating actions and lower credit default swap spreads. There has been limited research
discussing acoustic feature correlation with credit ratings. Research typically conducts binary clas-
sification of credit ratings (investment vs. speculative grade) (Brown, Chen, and Kim|(2015)), ordi-
nal models capturing notch changes (Berteloot et al.|(2013)), and continuous proxies such as credit
spreads (Hirk, Hornik, and Vanal (2019)).

Implementing credit rating research requires navigating complex data access issues. Limited database
is accessible for academic use (e.g., WRDS’s Compustat, CRSP, etc.). Sorting from the agency web-
site pose selection and survivorship bias, requesting researchers to use survivorship bias-free samples
and consider Heckman-type selection (Toomet and Henningsen| (2008)) corrections for non-random
rating coverage.

The integration of textual analysis with credit ratings involves topic modelling through Latent Dirich-
let Allocation (Loughran and Mcdonald| (2020)) to identify risk factors in disclosure, word embed-
ding to capture contextual meaning (Hlongwane, Ramaboa, and Mongwe (2024))), and graph neural
network constructing corporate similarity networks from SEC filings (Das, Huang, Adeshina, Yang,
and Bachega (2023))). [Slapnik and Loncarski| (2023)) identified the qualitative judgement of rating
committee in sovereign ratings by extending traditional regression with new measures obtained from
textual sentiment analysis.

For speech sentiment analysis, researchers must control for disclosure characteristics such as report
length, readability indices, and frequency of forward-looking statements. Using credit ratings (Part-
noy| (2017)) for financial communication research requires acknowledgement of agency bias and
temporal inconsistencies.


ttps://www.mckinleycapital.com/getting-sentimental-conference-call-sentiment-stock-returns/
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3 Methodology

3.1 Rationale for Correlation Exploration in the Face of Statistical Constrains

While addressing the gap of limited precedent in using credit ratings as financial outcome indicator,
this study must situate itself in severe data constrains. Current opensource earnings call datasets
have polarized scales (see Appendix A). Choosing certain calls from SPGISpeech (5,000 hours) or
MAEC (921 hours), even if annotated the absent credit ratings and controlled the segment distribu-
tion, confounding issues persist as the calls span 2007 to 2020, suggesting speech sentiments are
potentially swayed by macroeconomic environment (e.g., 2008 financial crisis and 2020 covid-19).
Earnings-21 was used as its scale (44 calls) enabled fine-grained credit rating annotation from three
agencies and validation, and all calls were from 2020, controlling macroeconomic factor.

However, this data limitation prevented the study from conducting direct acoustic feature vs. credit
rating correlation analysis, as only 24 companies in the datasets were rated by S&P Global, Moody’s,
and Fitch with disparate rating action grouping (21 affirmation, 2 downgrade, 1 upgrade). Excluding
the credit ratings from the study scope would remove the ground truth indicator with the marginal
benefit of 20 more calls, compared to 848 calls in|Chen et al.|(2023)’s research and 1278 calls in Ha-
jek and Munk! (2023))’s. Although time gap between earnings call dates and subsequent rating action
dates could potentially enable survival analysis, the only 2 or 1 event in the minority classes disabled
this approach. The time gap ranging 14-606 days compounded this issue, rendering cross-validation
meaningless.

Inconsistent availability of speaker roles restricted speaker-specific analysis, as annotation from pub-
lic sources remained arbitrary and sometimes impossible (certain calls did not disclose speaker
names). Sectorial stratification faced similar statistical power issues. The total 44 companies are
segmented into 9 industry sectors (3 to 6 companies per sector), reducing statistical efficiency and
complicating interpretation, despite successful Interspeech precedents operate on small datasets such
as low-resource languages (J. Wang, Zhu, Fan, Chu, and Alwan|(2021)); Zhong et al.| (2022)).

Refraining from multimodal fusion with 24 hours of rated companies’ audio, the study adopted Fin-
BERT as a directional validator to acoustic stress indications, addressing the fundamental ambiguity
that physiological arousal can steam from financial optimism or distress. Without semantic context,
elevated acoustic features remain uninterpretable.

The study eventually took on a descriptive exploration approach, extracted the selected acoustic fea-
tures at the call-level, normalized features within each company, computed descriptive statistics and
percentiles, applied FInBERT for sentiment validation, correlated acoustic and semantic features,
and performed case study profiling for non-affirmation rating cases. It prioritized transparent dis-
closure of limitations and replicable approach, while sought to leave an empirical record of acoustic
feature - credit rating correlation exploration as a reference for future research supported by larger
data. These methodological decisions align with current best practices for small-sample, exploratory
research in computational paralinguistics and financial analytics.
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3.1.1 Post-positivist framework for small-sample research

As an exploratory analysis of the communication climate within an organization, call-level aggre-
gation is justified (Patterson et al.| (2005)). Deterministic claims are precluded given credit rating’s
structured, multi-factor evaluations that integrate financial metrics, regulatory frameworks, and qual-
itative judgments. This strategy is supported by recent work in missing data theory (Graham and
Graham| (2012)), which shows that when ground truth labels are intrinsically noisy, direct acoustic-
outcome correlations offer more interpretable baselines than multimodal fusion.

3.2 Dataset Description and Preparation
3.2.1 Earnings-21 dataset characteristics

The Earnings-21 dataset contains 44 public earnings calls from 44 distinct companies recorded
throughout 2020. The sampling rates range from 11,025 Hz to 44,100 Hz. The total duration is
39 hours and 15 minutes, and each recording ranges from 17 minutes to 1 hour and 34 minutes.
There are 2 to 20 speakers on each recording. The dataset includes a variety of speaker profiles,
including professional roles (e.g., C-suite members, financial analysts, operators, etc.), speech styles
(e.g., verbally spontaneous with disfluencies, natural conversation style, technical jargon-rich, etc.),
and metadata that records the names of the speakers and the companies. The dataset, which covers
nine industry sectors - Basic Materials, Conglomerates, Consumer Goods, Financial, Healthcare,
Industrial Goods, Services, Technology, and Utilities-offers a thorough depiction of corporate com-
munication in major sectors. To determine the time gap with the subsequent rating action dates, call
dates were added with reference to the dataset source, Seeking Alpha.
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Figure 1: Earnings-21 dataset characteristics
No Covid-19 related macroeconomic controls (e.g., ’stable/deteriorating” sectors in 2020) are imple-

mented since both speech features and credit ratings reflect contemporaneous company performance
and inherently reflect the impact of Covid-19. Also, any cross-company comparison within each
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sector accounted for the shared macroeconomic context, making additional Covid-specific adjust-
ments unnecessary.

Professional roles are not provided in the dataset. Number of speakers per call was considered in
the case study. To comply with privacy-preserving research practices and GDPR Article 4(1) re-
quirements for protecting identifiable natural persons even in publicly available contexts, individual
speaker names were pseudonymized, while company names remained unchanged as they represent
public legal entities outside the GDPR’s natural person scope.

3.2.2 Credit ratings: consensus-based classification

Financial scientific literature consistently uses consensus or average ratings across agencies to reduce
measurement error or agency-specific biases (Lehmann and Tillich/(2014)). Studies demonstrate that
composite ratings provide more stable and predictive measures than single-agency ratings. Corpo-
rate finance research treats rating disagreements as measurement uncertainty rather than conflicting
truths, supporting composite classification approaches (Norden and Roscovan| (2014)).

24 companies received first-time or surveillance public ratings by at least one of S&P Global,
Moody’s and Fitch after the earning calls. The rest 20 companies were never rated, privately rated,
or withdrew their ratings after the calls. For companies rated by more than one agency, upgrades
and downgrades are prioritized over affirmations, as such rating actions are more likely to reflect
significant changes in company merits or risks, thus more helpful in identifying portions of the earn-
ings call that are more closely correlated with rating movements and more valuable for analyzing
sentiment changes. The ratings show primarily coverage disagreements (unrated vs. rated) rather
than directional disagreements (upgrade vs. downgrade), suggesting coverage limitations rather than
fundamental analytical differences.

For consistent actions by more than one agency, the nearest subsequent rating action is selected to
align with the timing of the earnings call sentiments most closely, reflecting a time gap between 14
to 606 days. The time gap is consistent with S&P Global’s observation that significant differences in
the text sentiment of the rating reports associate with a higher likelihood of rating movements within
the following 24 months of the rating reports publication. The variability in the time gap reflects
various surveillance schedules across rating agencies and sectors, according to their respective rat-
ing criteria and disclosure according to Paragraph (a)(1)(ii)(K) of SEC Rule 17g-7.


https://www.spglobal.com/market-intelligence/en/news-insights/research/revolutionising-credit-surveillance-part-one
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Figure 2: Earnings call and rating action time gap

For companies whose senior unsecured ratings coexisted with equity unit ratings (e.g., Spire Inc.
received ‘BBB’ on its equity units from S&P Global, two notches below the ‘A-’ issuer rating 9

months after the earnings call), the senior unsecured rating was considered due to its tighter linkage

to the company’s overall credit quality and its priority in the capital structure.

Sectors are considered when comparing the volatility of acoustic features of speeches within each
sector. However, further stratification by rating subcategory (e.g., investment grade, speculative

grade, etc.) within each sector is not performed due to the small sample size.
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Credit Rating Distribution by Sector
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Figure 3: Credit rating distribution by sector

The study uses consensus affirmations (n=21) as baseline distribution for acoustic feature charac-
terization, while analyze consensus downgrades (n=2) and upgrades (n=1) as case studies with per-
centile ranking against consensus baseline.

Limitations are acknowledged including various rating methodologies across agencies, unrated com-
panies may differ systematically from rated companies in ways that affect earnings call communica-
tion patterns, as well as the timing differences between earnings calls and subsequent rating actions
across agencies.

3.3 Acoustic Feature Extraction Framework
3.3.1 Acoustic feature selection

The selection of acoustic features for earnings call sentiment analysis is based on literature prece-
dents (M. Miao et al.| (2024); Throckmorton et al.| (2015))) and psychophysiological stress response
theory (Forbes and Pekala (1993)). Fundamental frequency variability (f0_cv) (2022)) is a key
stress indicator given its physiological basis in autonomic nervous system activation. Regardless of
semantic content, pitch dynamics can be measured when financial stress activates the sympathetic
nervous system (Van Puyvelde, Neyt, Mcglone, and Pattyn| (2018)).
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The study initially extracted 70 distinct features including 18 for FO, 7 for voice quality (e.g., jitter,
shimmer, hnr), 6 temporal features (e.g., speech rate, pause frequency, pause duration, speaking time
ratio), 39 spectral features, as well as mean and standard deviation for MFCCs. However, based on
Raudys and Jain/ (1990)’s statistical learning framework for small samples , maximum 8 features are
supported by the n=24 dataset for reasonable linear discrimination analysis. As preliminary experi-
ment showed that FO coefficient of variation (fO_cv), FO standard deviation (f0_std), pause frequency,
and jitter local showed more conclusive results, this study focuses on these four features.

In stress detection tasks across various domains, recent meta-analyses (Mousikou, Strycharczuk, and
Rastle|(2024)) show that f0 variability performs better than static fO measures, with effect sizes (Co-
hen’s d = 0.72-0.89) greater than those of other acoustic parameters. Speech rate and pause patterns
are complementary temporal features that capture the cognitive load aspects of stress and show how
executive function is disrupted during uncertain financial times (O’Neill et al. (2021))). Measure-
ments of jitter offer indicators of voice quality that are sensitive to minute tremors in the patterns of
vocal fold vibration under stress (Mahon and Lachman|(2022)). By addressing the known drawbacks
of unimodal approaches (Skrlj (2024))), this feature selection produces a multidimensional acoustic
profile that captures both autonomic arousal and cognitive load dimensions of financial communica-
tion stress while preserving measurement reliability under a variety of recording conditions.

3.3.2 Call-level aggregation methodology

Initially, the study explored within-speaker acoustic feature movement in the time domain by seg-
menting each speaker’s speech according to credit rating-relevancy by manually aligning transcript
sentences with rating press releases based on credit rating domain knowledge. This approach was
abandoned due to irreproducibility and subjectivity. Finance-domain models (e.g., FinBERT) are
effective at sentiment or risk tagging, not capable of mapping speech tokens with rating rationale.
Iterative, human-in-the-loop annotation in the credit rating context remains underexplored and be-
yond this study’s scope.

The decision to employ call-level acoustic aggregation was informed by the practical constraints of
multi-speaker financial discourse as well as recent developments in organizational communication
theory (De Benedicto, Sugahara, Silva Filho, and Sousa (2018))). The emergence of collective com-
munication patterns at organizational levels that surpass individual variation results in quantifiable
communication climate signatures (P. Vermal (2013))).

Recent computational paralinguistics research (Haider, De La Fuente, and Luz| (2019)) shows that
even with speaker heterogeneity, conversation-level acoustic features can successfully capture group-
level phenomena. Thus, this methodology utilized distributional robustness measures. Modern miss-
ing data theory (Graham and Graham (2012)) supports this strategy, showing that systematic aggre-
gation yields more insightful measurements than discarding data with incomplete metadata. Several
distributional parameters were extracted.

The limitations include loss of speaker-specific information and risks of obscuring intra-call tempo-
ral patterns that may be crucial for stress detection. Thus, the methodology present organizational-
level patterns as findings rather than definitive conclusions.
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3.3.3 Duration-weighted acoustic profiling

A theoretically supported method for reducing speaker heterogeneity in multi-participant financial
discourse is duration-weighted acoustic feature extraction (J1, Hou, Jin, and Li (2013)). This ap-
proach is based on frameworks for information asymmetry in financial communication (Ivanitsky
and Tatyannikov| (2018)). Executive speakers, such as CEOs and CFOs, typically comprise 60-80%
of the content of earnings calls and offer disproportionately valuable information about the com-
pany’s financial health. The importance sampling principles of statistical theory are mathematically
implemented by duration weighting (Tokdar and Kass|(2010)).

Recent studies that commonly use duration-weighted acoustic features in multi-speaker settings sup-
port the approach empirically (Hogg, Evers, Moore, and Naylor (2021))). By minimizing the impact
of short, non-executive contributions (analyst questions, operator announcements) that introduce
noise rather than signal regarding organizational stress states, duration weighting applies optimal
filter to the feature statistics.

3.4 FinBERT Sentiment Analysis Pipeline
3.4.1 Necessity of FInBERT sentiment as directional indicator

Involving FinBERT sentiments as directional indicators in this study was motivated by the statis-
tical constrains faced by a unimodal acoustic feature vs. credit rating correlation approach. The
total of only 24 samples with an extreme 21:2:1 class imbalance violates the proportional hazards
assumption (Ng'andu| (1997)) of survival analysis (Machin, Cheung, and Parmar (2006))), which
treats minimum 10-15 events per covariate as a rule of thumb for stable models. The method lacks
enough statistical power for trustworthy inference because there are only two or one events in the
minority classes while current survival analysis guidelines suggest 200+ events to detect moderate
effect sizes. These problems are exacerbated by the 14-606 day temporal gaps, and cross-validation
is useless with such small samples. Statistical significance cannot be attained for realistic effect size
detection without 8-10 times larger than the available data.

Using FinBERT as a directional validator rather than a fused feature extractor is supported by Cross-
Modal Consistency Framework, which was introduced in 2024 research (Liang, Zadeh, and Morency
(2024)) and offered mathematical support for validation-based techniques where consistency losses
enforce cross-modal alignment without the need for direct fusion. The information bottleneck prin-
ciple (Tishby and Zaslavsky| (2015)) implies that validation techniques can successfully regulate
information flow, avoiding the information dilution typical of direct fusion. Auxiliary Task Learning
Frameworks (Kumar (2024)) demonstrated how pre-trained models serve as validators through aux-
iliary losses that enforce cross-modal consistency. By using coordinated representations rather than
joint fusion, this method ensures alignment while preserving modality-specific information.

Sentiment analysis models have demonstrated successful validation patterns. In financial NLP, Fin-
BERT has been applied as an auxiliary supervisor rather than a direct predictor (e.g., in quantitative
finance models, FinBERT’s sentiment scores correct biases in structured-data predictions (Shobayo,
Adeyemi-Longe, Popoola, and Ogunleye (2024))). Studies (Du, Xing, Mao, and Cambria (2024))
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use FInBERT as a validation mechanism for public confidence indicators in systemic risk prediction.

3.4.2 Domain-specific language model rationale

FinBERT (Huang et al. (2023)) demonstrates superior performance on sentiment classification tasks
especially on financial terminology, risk assessment language, and earnings call-specific expressions
compared to general models. Trained on SEC filings and financial documentation, FinBERT pro-
vides better comprehension of compliance-driven language patterns typical in earnings calls, and
thus its sentiment classification shows better alignment with financial analyst assessments than gen-
eral sentiment models.

3.4.3 Sentiment classification and validation

The study uses FinBERT sentiment classification to provide linguistic support for interpreting acous-
tic stress markers. Financial distress typically corresponds with negative semantic content, whereas
positive events might display divergent patterns. Given that stress and excitement can produce
similar acoustic arousal but different semantic valence, the methodology generates a validation
matrix wherein: (1) stress appears as acoustic-semantic negativity convergence, (2) optimism ex-
hibits acoustic correlations, and (3) acoustic features and FinBERT-derived sentiment polarity (neg-
ative/neutral/positive) are baselined.

3.4.4 Acoustic-semantic convergence threshold in multimodal validation

The study adopts multimodal validation without fusion. The study made the following assumptions,
although Cohen| (2023))’s benchmarks were r = 0.10 (small), r = 0.30 (medium), and r = 0.50 (large)
effect sizes. Pearson’s r > 0.6 indicates strong correlation, as ECB institutional research (Andersson,
Neves, and Nunes| (2023))) accepts 0.5-0.6 as meaningful earnings call evidence. 0.3 <r < 0.6 is
considered moderate, as voice stress research reports correlation between psychological measures
and acoustic features ranging from 0.3 to 0.7 (Van Puyvelde et al. (2018))). Finally, » < 0.3 is
classified as weak correlation.

3.5 Statistical Analysis Approach
3.5.1 Percentile ranking methodology

The percentile ranking method (Bornmann, Leydesdortf, and Mutz (2013)) was selected for its ro-
bustness in non-parametric analysis of non-normal acoustic features and idiosyncratic credit rating
actions in this small sample, in line with contemporary statistical practices.

Non-parametric percentile ranking evaluates individual cases based on their empirical position rela-
tive to a baseline distribution of affirmations (e.g., n=21). For a given feature (e.g., FO variability),
the percentile rank of a downgrade case d is computed using the standard definition:

L+05xE
PercentileRank(d) = +TX % 100
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where:

d = value to rank (e.g., for a downgrade case)
L = number of baseline values less than d
E = number of baseline values equal to d

N = total number of baseline cases

This rank reflects how extreme d is within the baseline - e.g., a value of 95% indicates that d is
greater than 95% of affirmation cases, accounting for ties. This empirical approach makes no distri-
butional assumptions (e.g., normality), making it suited for small-sample settings, where parametric
assumptions may fail, and for skewed or multimodal distributions, where mean/SD-based thresholds
mislead (Cumming (2014)).

3.5.2 Bootstrap confidence intervals

This study also integrates bootstrap resampling technique (Efron and Tibshirani (1994))), which of-
fers better small-sample validity and interpretability compared to parametric alternatives. Using
the affirmation distribution (n=21), 10,000 replacement samples were generated, recalculating per-
centile ranks each time. The 95% confidence intervals were computed using the 2.5th and 97.5th
percentiles of the resulting bootstrap distribution, which yielded accurate error bounds without the
need for normalcy assumptions. For example, an observed 98th percentile in jitter variability was
reported as 98% (95% CI: 93-100%), offering reliable inference in small-sample speech analysis
contexts (Schuller and Batliner| (2013))).

3.5.3 Effect size estimation without inference

The magnitudes of the effects were assessed using two valid metrics: (1) standardized differences
(the case deviation from the median, scaled by median absolute deviation (MAD)) and (2) dis-
tributional overlap (the proportion of affirmations that exceeded the case value).This approach is
consistent with current statistical paradigms that place more emphasis on estimation than on testing
the null hypothesis (Wasserstein et al. (2019)). Empirical overlap and MAD-based scaling was used
to ensure robustness against outliers and small-sample bias in accordance with computational par-
alinguistics guidelines (Eyben et al. (2015)). These metrics enable reproducible benchmarking for
future research involving sparse or unbalanced data.

3.6 Ethical Considerations and Data Privacy
3.6.1 Data ethics and privacy

The Earnings-21 dataset is publicly available. The names of the speakers were pseudonymized. Un-
derstanding executive speech patterns prior to credit rating changes can benefit investors, financial
analysts, and the overall economy. By employing thorough statistical validation and responsible dis-
semination to guarantee that results are consistent with moral and societal norms, this study lowers
the ethical risks related to the potential misuse of speech data.
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3.6.2 FAIR principle and implementation

This study adheres to the FAIR principles by ensuring that all data used are findable, accessible
through Github, interoperable via standardized formats and reusable through reproducibility proto-
cols.

3.6.3 Open science practices

This thesis aligns with the principles and infrastructure of the Open Science Framework by adopting
transparent, reproducible, and collaborative research practices.

3.6.4 Bias and fairness

To ensure fairness and minimize bias, data is carefully curated to control for confounding variables
such as age and gender. Rigorous preprocessing techniques were used to reduce noise and enhance
feature extraction accuracy.

3.6.5 Environmental impact

The thesis minimizes environmental impact through efficient computational practices, including
lightweight module configurations and selective feature extraction. The overall project pipeline is
CPU sufficient, reframing from unnecessarily costing GPU resources.

3.6.6 Reproducibility and replicability

The entire project repository and demonstrator is available on |Github.


https://github.com/anit-z/earnings-call-acoustic-analysis
https://earnings-call-acoustic-analysis-qryia9evgh5zebp5eysjkg.streamlit.app/
https://github.com/anit-z/earnings-call-acoustic-analysis
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4 Technical Implementation and System Design

4.1 System Architecture Overview
4.1.1 End-to-end processing pipeline

The pipeline systematically processes earnings calls raw data into acoustic features and statistical
parameters from initial preprocessing to parallel acoustic (FO, pause frequency, jitter, etc.) and
semantic (FinBERT sentiment) feature extraction and to multimodal validation. Statistical analysis
correlates vocal and linguistic patterns with rating outcome using percentile ranking, effect sizes,
and case studies, integrating Bootstrap methods to quantify uncertainty.

4.1.2 Component integration design

Preprocessing, feature extraction, and analysis were operated in a formula structure. Acoustic and
semantic pipelines operate independently before correlation calculation. While GPU could optimize
FinBERT inference, the current implementation relies primarily on CPU processing for acoustic
analysis (librosa), statistical computations, and dashboard rendering, as CPU resources sufficiently
support the pipeline’s core functionality without requiring GPU nodes.

4.1.3 Voice technology framework implementation

The interactive dashboard is live-hosted at streamlit, enabling users to explore acoustic-semantic-
credit rating relationships with chosen parameters. Dashboard is frequently use in the financial
industry for issuer investor presentations.

4.2 Acoustic Processing Implementation
4.2.1 Audio preprocessing

Wiener filter was chosen for noise reduction given the teleconference recordings with quasi-stationary
(e.g., consistent hum, mild office background) background noise and variable speaker-microphone
distance, to minimize the mean square error between the estimated and true speech signals (Xia and
Bao (2014))). To maintain robust processing across sampling rates and balance time/frequency reso-
lution, the frame size was set at 25 ms, and 50% frame overlap was selected for smooth transition and
to minimize artifacts. Hann window reduces spectral leakage. Noise estimation was performed adap-
tively using both initial silence (first 0.5 seconds) and ongoing voice activity detection. The noise
spectrum was computed using Welch’s method. A spectral subtraction method computed magnitude
spectrum of each frame and subtracted estimated noise spectrum scaled by an oversubtraction factor
(ov = 2.0) and enforced a gain floor of -20 dB. The reconstruction combined cleaned audio using
the inverse short-time Fourier transform (ISTFT) with overlap-add. The processed audio was peak-
normalized to the range [-0.95, 0.95] to ensure consistent amplitude levels and prevent downstream

clipping.


https://earnings-call-acoustic-analysis-qryia9evgh5zebp5eysjkg.streamlit.app/
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Further, for reproducibility and generalizability, all audios were resampled to 16 kHz, converted to
mono channel, and trimmed leading and trailing silence (with 0.1s margin) based on energy thresh-
old.

4.2.2 Feature extraction configuration

Acoustic features (FO_cv, FO_std, pause frequency, jitter_local) were extracted using Praat (via parsel-
mouth), librosa, and OpenSMILE, following standard scientific definitions as implemented in these
tools. No custom algorithms or nonstandard formulas were used for better interpretation.

4.2.3 Feature extraction automation

Extraction automation uses parselmouth (Praat) for FO tracking (75-500Hz range), jitter/shimmer
calculation, librosa for temporal and spectral feature extraction, with optional parallel processing of
audio segments via Python’s multiprocessing module.

4.2.4 Quality control and validation procedures

Quality control is performed via energy thresholding and speech fraction calculation. Automated
outlier detection is performed via interquartile range (IQR). The script checks that extracted values
fall within physiologically plausible ranges for adult speech, flagging or excluding files with extreme
outliers or implausible values (e.g., FO > 600 Hz for adult speech), and cross validate the features
extracted by different tools (e.g., Praat vs. openSMILE).

4.3 FinBERT Integration and Sentiment Processing
4.3.1 Transcript preprocessing and segmentation

To ensure reproducibility and semantic precision in sentiment analysis, this study uses token-level
transcript files from the nlp_references directory of the Earnings-21 dataset. Each file (e.g.,
earnings2l/transcripts/nlp_references/4320211.nlp) provides structured annotations per
token, including word identity, speaker ID, timestamps, punctuation, case, semantic tags, and WER-
related tags. This format enables precise temporal alignment with acoustic features and supports
multimodal validation.

For semantic enrichment, the .nlp files are aligned with corresponding .norm. json and .wer_tag.
json files (from transcripts/normalizations/ and transcripts/wer_tags/, respectively).
The .norm. json files provide multiple probabilistic verbalizations (e.g., “twenty twenty” or “two
thousand twenty” for “2020”) alongside semantic classes (e.g., YEAR, MONEY), enabling normaliza-
tion of spoken-language variations into the formal style expected by FInBERT. The .wer_tag. json
files are used to ensure proper token alignment between .nlp and .norm. json, mitigating index
mismatches and preserving token integrity.

To preserve transcription coherence and temporal consistency, entity-based filtering is not applied to
avoid excluding untagged but semantically informative operational language. Instead, the full tran-
script is reconstructed token-by-token: if a token has a valid normalized verbalization (as indicated
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in .wer_tag.json and .norm. json), it is used; otherwise, the original token from .nlp is retained.
This approach ensures that all tokens are included in the final transcript, maintaining both fidelity to
the original speech and compatibility with downstream NLP models. For example, “Fiscal 2020 is
rendered as “Fiscal twenty twenty”, while introductory phrases such as “Good morning ladies and
gentlemen” are accurately preserved, ensuring context-aware sentiment classification and consistent
preprocessing for replicable analysis.

4.3.2 Sentiment score generation and calibration

Sentiment scores were generated with a maximum sequence length of 512 tokens and a sliding win-
dow with 50-token overlap to ensure full transcript coverage. For each chunk, softmax probability
was computed for negative, positive, and neutral sentiments. Distribution statistics (mean, standard
deviation, percentile, and entropy) were calculated.

4.4 Interactive Dashboard Development

The demonstrator for the study is an interactive dashboard which enables users to visually explore
the relationship between acoustic stress indicators and the rating actions.

4.5 Statistical Analysis Automation
4.5.1 Bootstrap methodology implementation

Nonparametric bootstrap resampling with 10,000 iterations and a fixed random seed (42) was em-
ployed to generate percentile-based confidence intervals for effect size and tie-aware percentile rank
estimates. Confidence intervals are computed using NumPy’s np.percentile () function.

4.5.2 Percentile ranking algorithms

Percentile ranks are calculated using the standard definition, accounting for ties. The script iterates
over pre-selected acoustic and semantic features, computing summary statistics (mean, median, std,
MAD) for both group and baseline distributions. Rank and effect size outputs are stored in structured
dictionaries, enabling downstream reporting and visualization.

4.5.3 Robustness and reproducibility

The entire pipeline utilizes fixed random seeds to ensure reproducibility of bootstrap and statistical
procedures. Vectorized, library-based algorithms (NumPy, SciPy, pandas) were used to calculate
effect size, confidence intervals, and summary statistics. Output files, tables, and visualizations are
systematically versioned and saved to support transparent and fully replicable approach. The full
codebase is available on Github.


https://earnings-call-acoustic-analysis-qryia9evgh5zebp5eysjkg.streamlit.app/
https://github.com/anit-z/earnings-call-acoustic-analysis
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5 Results and Analysis

5.1 Baseline Distribution Characterization
5.1.1 Affirmation cases acoustic baseline establishment

21 affirmed cases’ FO coefficient of variation (FO_cv), FO standard deviation (FO_std), pause fre-
quency, and jitter local directly extracted by Praat parselmouth and librosa without custom calcula-
tion established the acoustic baseline.

Feature Unit Extracted Baseline |Baseline Std| Baseline Baseline
by module Mean Median MAD
FO_cv (unitless, Librosa, 0.485 0.404 0.500 0.500
normalized | Parselmouth
[0,1])
FO_std (unitless, Librosa, 0.470 0.380 0.500 0.468
normalized | Parselmouth
[0,1])
Pause 1/sec Librosa 0.513 0.388 0.530 0.455
Frequency
Jitter Local % Parselmouth 0.448 0.408 0.414 0.414

Table 1: Acoustic features and baseline statistics

The following algorithm are from Praat parselmouth and librosa without custom calculation:

YV, (fi—mean(F))?
FO_cv = std(Fo) = \/ N

~ mean(Fp) N
N

where f; are the pitch (FO) values for each time frame in the call.

where f; are the pitch values.

Proportion of time paused:

Total time spent in pauses

Pa Frequency =
use frequency Total call duration
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Number of pauses per minute/second:

Number of detected pauses

P F =
ause trequency Total call duration

) Average absolute difference between consecutive pitch periods
Jitter|oca =

Average pitch period

FO_cv measures the variation of FO standard deviation against the mean FO. Without FO_cv bench-
mark in earnings calls so far,[Mayew and Venkatachalam/ (2012) implied that higher FO_cv associate
with positive emotions but does not predict negative emotions. Here, the baseline means of 0.485
indicates that, on average, the pitch variability is about 49% of the mean pitch value in affirmed
(baseline) calls. The median (0.500) is close to the mean, suggesting a balanced distribution. The
substantial standard deviation (0.404) and median absolute deviation (0.500) show moderate spread:
some calls are more monotone, others more expressive, but there is no evidence of extreme pitch
variability, consistent with controlled professional speech.

FO_std represents the absolute variability of pitch and is normalized to [0,1]. Refer to the literature,
Mayew and Venkatachalam (2012) found the regression coefficient for FO_std is positive and highly
significant (p < 0.01) for positive emotions. Here, the mean of 0.470 and a median of 0.500 indicate
moderate pitch fluctuation is consistent across affirmation calls. The standard deviation (0.380) and
MAD (0.468) suggest some calls have higher or lower pitch fluctuation, but the overall profile reflect
a stable tone without signs of excessive arousal or monotony.

Pause frequency reflects the proportion of time spent in silence or the normalized number of pauses
during the call. A mean and median just above 0.5 suggest that, on average, half the time is spent
speaking and half in short pauses, or that pauses occur at a regular, moderate rate. The moderate
spread (std and MAD) indicates variability among calls but no tendency toward either excessive hes-
itancy or continuous speech.

Jitter local measures the voice’s micro-instability caused by irregular pitch periods. The Praat docu-
mentation indicates that the 1.040% threshold for pathology detection set by the Multi-Dimensional
Voice Program (MDVP) may be exaggerated because of noise influence. Literature rarely specified
benchmark for professional speech anxiety. Here, stable, healthy voices are indicated by a mean
of 0.448% and a median of 0.414%. Most calls exhibit minimal jitter, which is consistent with a
professional population, while a moderate spread suggests some diversity.
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5.1.2 Upgrade/downgrade cases variation analysis

Comparing the two downgrade cases (4346923 and 4384683) and the one upgrade case (4368670)
to the baseline, the upgrade case is more expressive and variable in all acoustic features, suggesting
positive, confident, or enthusiastic communication. In contrast, the downgrade cases exhibit flatter
pitch, less vocal instability, and either frequent or infrequent pausing, which may indicate negative

emotion, stress, or caution.
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Figure 4: Upgrade/downgrade cases variation analysis
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5.1.3 Pairwise acoustic feature correlations

Pairwise acoustic feature correlations are calculated within the baseline group alongside univariate
summaries. The results showed moderate to strong associations between some features. For exam-
ple, speakers who show more stress in their speech also tend to speak less fluently, with more pauses
or hesitations.

Acoustic-Acoustic Correlations
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Figure 5: Pairwise acoustic feature correlations

5.1.4 Sector-specific variation analysis

A preliminary sectoral analysis was conducted to look for systematic differences in acoustic baseline
distributions, despite the small sample size (3-6 companies) per sector. The results demonstrate that
within-sector variability outweighs sectoral effects, suggesting that this sample is appropriate for
global baseline characterization. This finding should be interpreted with caution as sector-specific
baselines may be supported by larger or more diverse datasets.
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5.2 Non-Affirmation Case Studies
5.2.1 Individual downgrade case acoustic profiling

The descriptive investigation of rare non-affirmation cases, specifically downgrades and upgrades,
forms the basis of this study. The analysis uses a percentile-based case study methodology instead of
any group-level inference because n=1 for upgrades and n=2 for downgrades. For all key features,
each non-affirmation case is ranked against the affirmation baseline, and bootstrapped confidence
intervals and percentile ranks are calculated.

For example, case 4384683 (downgrade) shows a profile with FO_cv at the 38.1st percentile, FO_std
in the 90.5th percentile, and negative sentiment in the 81.0th percentile in relation to affirmations.
By looking at each feature in the overall distribution of percentile ranking, this acoustic profile does
not sound particularly stressed, but the semantics were more negative than the baseline.

Case Study: 4384683 (Downgrade)
Percentile Ranks vs. Baseline
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Figure 6: Downgrade case study |
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For 4346923 (downgrade), the FO_cv is at the 38th percentile, and FO_std is exceptionally low at
the 12th percentile. However, the pause is more frequent (90th percentile) than the baseline. The
semantics are slightly more negative at 57th percentile, but the sentiment variability is extremely
high at 95th percentile, suggesting the languages emotions swing between positive and negative.
This suggests an overall ambiguous profile, not obviously stressed, but also not entirely calm or
negative, and the frequent hesitation indicates uncertainty.

Case Study: 4346923 (Downgrade)

Percentile Ranks vs. Baseline
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Figure 7: Downgrade case study II



Section 5 RESULTS AND ANALYSIS

35

5.2.2 Upgrade case distinctive patterns

For 4368670, the only upgrade case, result is strictly illustrative with n=1.

The acoustic stress

markers all rank above 88th percentile and the semantics are highly negative (negative sentiment at
the 90th percentile). The sentiment variability is low at 10th percentile, and the positive sentiment is
low. The communication in this call is overall stressed and negative, although the company received
an upgrade. It reveals that tones and languages may send a vastly different signal than the financial

outcome may suggest.

Case Study: 4368670 (Upgrade)

Acoustic Features Semantic Features

FO Cv

Sentiment Negative
100%

75%

Jitter Loc# FO Std

Sentiment Variability. Sentirnent Positive

Pause Frequency

Acoustic-Semantic Alignment Position
Semantic: 90.5%ile
Acoustic: 88.1%ile

Baseline Calls
. 4368670 (upgrade)

0.8
Semantic Stress
g Quadrant Convergent Stress
306 Quadrant
=
f=4
9]
£
c
204
14
2
©®
g
z 0.2 Baseline Acoustic Stress
Quadrant Quadrant
0.0
-0.2 0.0 0.2 0.4 0.6 0.8 1.0

FO Coefficient of Variation

Figure 8: Upgrade case study
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5.3 Acoustic-Semantic Correlation Analysis
5.3.1 FinBERT sentiment validation results

The use of FinBERT sentiment as a directional validator for acoustic stress indicators rather than
as a fused or predictive feature is a key methodological attempt of this study. Bivariate correlations
between acoustic features and FinBERT-derived negative sentiment are calculated for exploratory
purposes only.

The findings show that all cross-modal correlations are weak (|r| < 0.3) and non-significant after
multiple comparisons are considered. This is consistent with the hypothesis that multi-feature stress
patterns might not appear as straightforward linear associations at the call level. Due to the small
sample, only the most obvious and one-sided patterns are discernable.
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Figure 9: Acoustic-semantic correlation heatmap
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5.3.2 Convergent and divergent pattern identification

The case studies reveal that the relationship between what the speakers said and how they said it can
match (convergent) or mismatch (divergent). Certain calls sound stressed but do not use negative
words, while others use both stressed voice and negative words.

In the following plot, the downgrade cases fall into the divergent or semantic stresses categories,

revealing stress in either voice or words, but not both. The upgrade case, on the other hand, is
stressed in both and lands in the convergent category.
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Figure 10: Acoustic-semantic alignment
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5.3.3 Acoustic-semantic-credit rating correlations

Most of the relationships are weak or moderate, without any feature with a strong link to the credit
ratings. For upgrades, certain acoustic features such as FO_cv and FO_std and pause frequency are
higher, indicating more varied speech. For downgrades, there are no significant patterns. For affir-
mations, no strong correlation is present with some weak link with pause frequency and negative
sentiments.
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Figure 11: Acoustic-semantic-credit rating correlations

5.3.4 Semantic-semantic correlations

Positive and negative semantics are inversely related, and higher sentiment variability is associated
with a greater presence of positive and neutral words in the call (see Appendix B).
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6 Discussion

6.1 Interpretation of Acoustic Pattern Findings
6.1.1 Hypothesis validation against descriptive results

The descriptive exploration nature of the acoustic features - credit rating correlation analysis pro-
vides partial support for the hypothesis:

H1 predicted that earnings calls preceding credit rating downgrades would present higher FO vari-
ability, pause frequency and jitter compared to the affirmative baseline. The two downgraded cases
(4346923 and 4384683) demonstrated heterogeneous patterns which partially denied this hypothe-
sis. 4384683 showed FO standard deviation at the 90.5th percentile with FO coefficient of variation
only at the 38.1st percentile. This suggests that elevated pitch variability is consistent with stress in-
dicators, while relative pitch variation is below the median affirmation baseline. 4346923 exhibited
even more contradictory patterns, with FO standard deviation at the 12th percentile but the pause fre-
quency at the 90th percentile, indicating stress manifested by hesitation rather than vocal instability.

H2 hypothesized that upgrade cases would show higher acoustic variability coupled with positive
sentiments. This is not supported by the single upgrade case (4368670) which demonstrated acous-
tic variability consistently above the baseline but negative semantics (90th percentile). This suggests
that acoustic arousal may not reliably distinguish between positive excitement and negative stress
without sentiment validation.

H3’s assumption of convergent or divergent acoustic - semantic patterns are partially denied by the
findings. The upgrade case exhibited high acoustic arousal coupled with negative sentiment contents
- a convergent stress pattern. The downgrade cases presented varied patterns. 4384683 showed
moderate acoustic-semantic convergence with both elevated FO variability and negative sentiment,
while 4346923 revealed primarily temporal stress markets (frequent pauses) with modest semantic
negativity.

6.1.2 Stress indicator coherence across modalities

A weak cross-modal relationship (r < 0.3) is found in the correlation analysis between acoustic
features and FinBERT-derived sentiment scores, indicating partial independence between the two
modalities. This is consistent with the psychophysiological stress theory, which shows that under
complex emotional states, intentional cognitive evaluations (represented in language use) and au-
tomatic physiological reactions (observable in vocal features) can diverge. The weak correlations
between acoustic and semantic features suggest that financial communication stress can present dif-
ferently. However, the moderate correlations between acoustic features (e.g., FO variability showing
r = 0.4-0.6) show that the acoustic domain is internally consistent.

The validation framework effectively detects divergent patterns, where high acoustic arousal co-
occurs with semantically positive or neutral content (indicating controlled anxiety or positive ex-
citement), and convergent patterns, where acoustic and semantic stress align (indicating consistent
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negative affect). In financial contexts, where physiological arousal can originate from a variety of
sources, this multimodal validation approach is useful for interpreting acoustic features.

6.1.3 Individual case study implications

The case-by-case analysis reveals unique communication signatures rather than consistent stress
patterns. Calls may exhibit vocal confidence when discussing inconvenient situations that result in
positive rating actions, according to the single upgrade case’s profile of high acoustic variability with
negative semantic content.

The variation seen in downgrade cases suggests that different communication pathways (e.g., vocal
instability versus temporal disruption through frequent pausing) may be used to indicate impend-
ing negative rating actions. This finding limits the applicability of uniform acoustic stress profiles
by indicating that earnings calls’ stress responses to worsening business conditions differ. These
findings’ descriptive character highlights the necessity of larger sample sizes to develop trustworthy
frameworks for pattern recognition.

6.2 Methodological Contributions and Validation
6.2.1 Descriptive exploration framework effectiveness

To investigate acoustic-semantic relationships in small-sample financial datasets, this study develops
an open and reproducible methodological framework. Without depending on distributional assump-
tions that are broken in small samples, the percentile ranking method with bootstrap confidence
intervals offers reliable statistical characterization. When n=24, the 10,000-iteration bootstrap ap-
proach provides more dependable inference than parametric alternatives by effectively quantifying
uncertainty around percentile estimates. A significant gap in computational paralinguistics where
standardized small-sample protocols are still lacking is filled by the effect size estimation using me-
dian absolute deviation scaling, which yields interpretable metrics that can be used for benchmarking
in future studies.

6.2.2 Multi-agency rating consensus approach validation

Agency-specific biases that have complicated earlier research are addressed by the consensus-based
credit rating classification. The method optimizes the signal-to-noise ratio in the outcome variable by
choosing temporally proximate actions and giving rating actions (upgrades/downgrades) precedence
over affirmations. In addition to setting baseline expectations for future research, the recording of
the temporal intervals (14-606 days) between earnings calls and rating actions offers transparency
regarding potential confounding. The methodological decision to concentrate on rated versus un-
rated companies rather than agency-specific preferences is supported by the validation of consensus
ratings against individual agency decisions, which shows that coverage disagreements outweigh
directional disagreements. For upcoming research using credit ratings as outcome variables, this
methodology offers a reproducible framework.
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6.3 Voice Technology Applications and Industry Implications

The integration of acoustic and semantic analysis provides pathways though automatic voice analyt-
ics for financial institutions to enhance credit risk monitoring, while such applications must adhere to
compliance requirements on biometric data and ethical use and be designed for accurate alignment
and robust integration with existing financial IT infrastructure.

6.4 Limitations and Critical Reflections
6.4.1 Sample size and class imbalance

Sample size and the imbalanced distribution is the most significant constrain this study must face.
Given limited statistical power, descriptive case study must be interpreted as non-generalizable.
Future studies must use larger and more balanced samples to validate any observed pattern and
enable robust modelling.

6.4.2 Data coverage limitation

The calls in the dataset were all conducted in 2020. Although including 9 sectors, only 3-6 sam-
ples are available in each sector. This means the results do not cover market dynamics or different
disclosure cultures. Future research should utilize the larger datasets, such as the SPGISpeech and
MAEQC, provided credit rating annotation is validated, for generalizable results.

6.4.3 Temporal alignment between calls and ratings

The time gap between calls and subsequent rating actions ranges from 14 to 606 days, complicating
the interpretation of correlation. Ideally, selected samples should represent standardized time gap or
use modelling to control for temporal uncertainty (e.g., survival analysis if event rates allow).

6.4.4 Speaker and sector heterogeneity

Calls feature 2 to 20 speakers with various roles (e.g., C-suit executives, analysts, operators). Call-
level aggregation obscures intra-call, intra-speaker, and role-specific variations. Future work should
implement speaker-level and role-level differentiation and use larger datasets for meaningful cross-
sector comparisons.

6.4.5 Limited acoustic features and reduced multimodality

Only four acoustic features (e.g., FO_cv, FO_std, pause frequency, jitter local) are used. Full mul-
timodal fusion is avoided given the small data; FinBERT sentiment is only used as a validator.
Although justified by sample size, limiting the features and avoiding direct fusion as a methodolog-
ical choice hinders discovery of richer, potentially non-linear interactions. With larger data, future
research should incorporate more comprehensive features and use advanced multimodal learning
approaches.
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6.4.6 Statistical and methodological constraints

While descriptive statistics, percentile ranking, and bootstrap confidence intervals are used, the
methodological approach is appropriate for a case study but cannot provide evidence for causal-
ity or predictive validity. However, the study chooses reproducibility and transparency and sets a
baseline for future inferential research.

6.4.7 Potential annotation and preprocessing issues

There is potential for annotation errors in aligning transcripts and ratings. No covid-19 related
control is implemented, although justified since both speech features and credit ratings reflect con-
temporaneous company performance and inherently reflect the impact of covid-19. Future studies
should invest in more detailed and verified meta-data annotation.

6.4.8 External validity and generalizability

Findings are specified as descriptive and not meant to be generalized, as results are limited to US-
listed sector-specific companies’ 2020 earnings calls. The thesis is transparent about its scope. How-
ever, the generalizability of the findings is limited pending validation in larger samples.

6.4.9 Technological constrains

Codebase including the demonstrator is dependent on current tools and database formats, with po-
tential for future incompatibility. Although mitigated by open science practices and documentation,
future maintenance requires ongoing repository management.

6.4.10 Ethical and privacy considerations

Pseudonymization is performed, but residual risks remain as lack of granular speaker information
may limit the ability to control for all ethical risks. GDPR and ethical research conduct is complied,
but future studies should monitor evolving standards.


https://earnings-call-acoustic-analysis-qryia9evgh5zebp5eysjkg.streamlit.app/
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7 Conclusion

7.1 Empirical Method and Findings

This study demonstrates heterogeneous stress patterns across rating actions and explores the method-
ology of setting empirical baseline for acoustic features in earnings calls correlated with international
credit ratings. Using a robust percentile-based methodology, the transparent descriptive exploration
framework with bootstrap confidence intervals and FinBERT validation effectively identifies conver-
gent and divergent acoustic-semantic patterns despite the extreme data constraints (n=24), offering
reproducible methods for future research in earnings call sentiments’ credit rating correlation.

7.2 Future Research Directions

Larger, balanced datasets (200+ events) spanning several years and sectors are needed for future
research to support reliable statistical modeling and generalizability. Standardized temporal align-
ment, advanced multimodal fusion, speaker-level differentiation, comprehensive acoustic features,
and improved metadata annotation should all be used in future research. Inferential analysis would
be supported, and external validity would be strengthened by longitudinal studies conducted under
various market conditions.
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Appendices

A Earnings Call Datasets Summary

Sentiment/Emotion‘ Sectors Covered

Dataset Access Type Modality Scale NER
MAEC]. Liet al. Open source Text + Audio Large (S&P 1500) No No Broad (1,213
(2020) companies)
MDRMQin and Not released Text + Audio Medium (S&P 500) No Vocal (pitch, CEOs (S&P 500
Yang|(2019) intensity, etc.) firms)
SER and Text Not released Text + Audio Medium (Top 40 No Emotion & General sectors
Sentiment for US firms) Sentiment (S&P 1500 firms)
Financial (FinBERT, NRC)
DistressHajek and
Munk| (2023)
SPGISpeechO’Neill Open source Text + Audio Very Large (5,000 No No General
et al.|(2021) hrs)
Earnings- Open source Text + Audio 39 hrs, 44 calls Rich (entities: No 9 corporate sectors
21Del Rio et al. ORG, DATE, (e.g., Tech,
2021) TIME, etc.) Financial,
Healthcare)
Earnings- Open source Text + Audio 119 hrs, 125 files No No Global
22Del Rio et al. (excluding
(2022) company metadata)
ListenabilityCall et Not released Text + Audio 56,989 calls No ML-based General
al.|(2023)
MONOPOLYMathyf, Not released Text + Audio + Medium (6 banks) Yes No Banking
Neerkaje, et al. Video
2022)
DeepVoiceY. Yang Not released Text + Audio 6,047 calls No Vocal cues S&P 500
et al.[(2023)
AMA- Not released Text + Audio Medium Yes Fairness General
LSTMS. Wang et
al.|(2024)
NumHTMLL. Yang|| Available upon Text + Audio Medium Numbers No General
et al.|(2022) request
DocFinMathur, Not released Text + Audio + Medium Yes Bias Analysis Broad Financial
Goyal, et al.|(2022) Table
M&ASawhney et Not released Text + Audio 2016-2020 Yes No M&A
al.|(2021)

Table 2: Overview of datasets used in financial acoustic and textual analysis
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B Semantic - semantic correlation

The following semantic-semantic correlation matrix shows that when a call uses more positive
words, it usually uses fewer negative words. If the call is more neutral, there is little negative
language. When the language in the call has fixed sentiments, it is caused by more positive and
neutral words, and fewer negative words. This pattern is in line with expectations about earnings
call sentiments.

Semantic-Semantic Correlations

1.00
Sentiment Positive 0.75
0.50
Sentiment Negative 0.25
0.00

Sentiment Neutral

-0.25

Correlation Coefficient

-0.50

Sentiment Variability

-0.75

—1.00

Figure 12: Semantic - semantic correlation
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