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Abstract
In today’s multilingual and digital world, speaker recognition is becoming increasingly important in
real-world applications such as virtual conferencing, transcription services, and customer support.
Despite significant progress in Mandarin automatic speech recognition, speaker recognition in real-
world Mandarin conference speech is still imperfect due to challenges such as pitch interference,
overlapping segments, and environmental noise. To further improve Mandarin speaker recognition
performance, this study focuses on exploring the transfer ability of wav2vec2.0 to speaker recogni-
tion tasks in multi-person conference settings. To evaluate this, I used the AISHELL-4 corpus, which
contains Mandarin conference speech with realistic acoustic variations. Specifically, my study an-
swers the following questions: How effectively can a pre-trained Mandarin ASR wav2vec2 model
be adapted for speaker recognition in real-world Mandarin conference speech? What are the effects
of task and domain transfer mechanisms on its performance? This study freezes the wav2vec 2.0
encoder, adds a lightweight linear classifier on top of it, and designs two control groups: a global
classification baseline model and a session-level transfer learning model. The results show that al-
though the baseline model achieved a Top-1 accuracy of 50.3% on the entire speaker label space,
the session-level model performed significantly better than the baseline model, with an average ac-
curacy improvement of more than 20% and a maximum accuracy improvement of 36% compared to
the baseline model, highlighting the superiority of the session-level model. These findings suggest
that even with a small amount of fine-tuning, pre-trained ASR models can capture speaker recogni-
tion features and generalize well to noisy domains. This study provides evidence that this transfer
learning strategy is effective for speaker perception systems in real-world Mandarin environments,
and future directions include adaptive fine-tuning, cross-lingual generalization, and integration with
speaker classification for broader applications.
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1 Introduction
In today’s increasingly multilingual and digitally mediated world, spoken-communication systems
are expected to do more than transcribe words: they must also recognize who is speaking, under
what acoustic conditions, and within which conversational role or social context. Recent surveys
on meeting-analysis technology report that accurate, real-time speaker attribution has become a pre-
requisite for virtual conferencing, customer analytics, and automatic minute-taking, because without
reliable identity tags transcripts lose accountability and downstream dialogue modelling fails to track
speaker intent (Anguera et al., 2012). As voice-driven interaction spreads across virtual classrooms,
customer-support hotlines, and media-accessibility services (Jha et al., 2024), the demand for sys-
tems that can simultaneously interpret speech content and distinguish between multiple speakers
continues to rise. In such settings, speaker identification is no longer a secondary convenience but a
core capability required to deliver coherent, auditable and personalised user experiences.

This need is especially pronounced in real-world, high-stakes communicative settings such as
business meetings, academic panel discussions, and hybrid workplace collaborations. In these con-
texts, clear attribution of spoken content to individual speakers is crucial for maintaining accurate
records, enabling speaker-specific responses, managing access control, and ensuring transparency
and traceability of dialogue. Errors in speaker identification can lead to misunderstandings, mis-
attribution of ideas, or loss of critical contextual information (Anguera et al., 2012). Furthermore,
these environments often involve dynamic and unpredictable speech patterns, with participants in-
terrupting, talking over each other, or speaking in informal, disfluent ways that diverge from scripted
speech.

Mandarin Chinese, as the official language of China, is widely spoken across educational, gov-
ernmental, and commercial domains. While previous research in speaker recognition has often fo-
cused on English or multilingual datasets (Vaessen & Van Leeuwen, 2022), there is a growing need
to support high-accuracy speaker recognition in Mandarin-speaking scenarios, particularly in struc-
tured and spontaneous meetings. Although Mandarin is not under-resourced in the traditional sense,
its unique tonal nature introduces a distinct set of modeling challenges (Tao, Tan, Yeung, Chen, &
Lee, 2024). Tones are lexically contrastive, meaning that pitch variations signal different meanings;
thus, the acoustic features used for speaker differentiation are partially entangled with linguistic
content. This interaction increases the complexity of learning robust speaker embeddings in tonal
environments (Lei, Scheffer, Ferrer, & McLaren, 2014).

Conference-style meetings, irrespective of language, are characterized by spontaneous speech,
rapid floor exchanges, interruptions, filled pauses, and a wide range of individual speaking styles(Anguera
et al., 2012). Mandarin-only meetings add an extra layer of complexity because tonal contours fluc-
tuate continuously while speakers interact, increasing acoustic variability even within a single turn
(Tao et al., 2024). Empirical analyses of the AISHELL-4 corpus show that more than one-fifth of
Mandarin meeting segments contain two or more simultaneous speakers, while average utterance
length is below three seconds and background noise levels vary with room layout and microphone
placement (Fu et al., 2021). These factors—short, overlapping segments, tonal modulation and het-
erogeneous capture conditions—make Mandarin conference recordings a demanding test bed for
speaker identification. A robust SID system therefore needs to separate speaker-specific cues from
lexical-tone patterns and remain resilient to the degradations caused by overlap, reverberation and
device mismatch.

Speaker identification (SID) is the task of assigning a speaker label to a given speech segment
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from a set of known speakers. It is fundamental to downstream applications such as speaker-
attributed transcription, speaker-specific dialogue summarization, and long-form audio retrieval (Tiru-
mala & Shahamiri, 2016). Historically, SID models progressed from Gaussian Mixture Models
(GMMs) and i-vectors (Dehak, Kenny, Dehak, Dumouchel, & Ouellet, 2010) to x-vectors (Sny-
der, Garcia-Romero, Sell, Povey, & Khudanpur, 2018) trained with deep neural networks. While
effective in clean and controlled environments, these supervised methods often require extensive
annotated training data and manual feature engineering, limiting their scalability.

Self-supervised learning (SSL) offers a compelling alternative. Self-supervised learning models
like wav2vec 2.0 learn contextualized speech representations from massive amounts of unlabeled
audio using pretext tasks such as contrastive prediction or masked reconstruction (Baevski, Zhou,
Mohamed, & Auli, 2020). These models have demonstrated strong performance across diverse
speech tasks, including ASR, emotion recognition, and speaker verification. Wav2vec 2.0, specif-
ically, consists of a convolutional encoder followed by a Transformer network that captures tem-
poral dependencies. The representations extracted from wav2vec 2.0 have been shown to preserve
speaker-discriminative information, even when trained without explicit speaker supervision (Yang et
al., 2021).

This study builds on the wav2vec2-large-xlsr-53-chinese-zh-cn model, a Chinese pre-trained
variant of wav2vec 2.0 model. I evaluate its utility for speaker identification in Mandarin conference
speech using the AISHELL-4 corpus—a large-scale Mandarin meeting dataset with spontaneous
speech, speaker overlaps, and realistic background conditions. Importantly, I adopt a lightweight
setup that freezes the wav2vec 2.0 encoder and trains only a simple classifier on top of pooled hid-
den states (Vaessen & Van Leeuwen, 2022). This enables testing whether speaker-related features
learned during pretraining are sufficient for distinguishing speakers in Mandarin meeting data with-
out any encoder fine-tuning.

By doing so, this thesis contributes to several strands of research: (1) it explores the transferabil-
ity of self-supervised models from speech recognition to speaker identification; (2) it investigates
speaker identification under tonal language conditions using Mandarin-only data; and (3) it offers
insights into cost-effective, low-resource adaptation strategies for real-world meeting applications.
The remainder of this thesis is structured as follows: Section 1.1 introduces the research questions
and hypotheses. Section 2 reviews related work in speaker recognition and transfer learning. Section
3 details the dataset, model architecture, and experimental design. Section 4 presents and analyzes
the results, followed by a discussion in Section 5. Section 6 concludes the study and outlines future
research directions.

1.1 Research Questions and Hypotheses
In light of the preceding discussion, the central research question of this study can be formulated as
follows:

How effectively can a Mandarin ASR-pretrained wav2vec 2.0 model be adapted
to perform speaker identification in real-world Mandarin conference speech, and
what are the impacts of task and domain transfer mechanisms on its performance?

This main question can be broken down into the following sub-questions:

• How accurately can a frozen ASR-pretrained wav2vec 2.0 model classify speaker identities
based solely on its learned representations?
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• How does the performance of a wav2vec 2.0-based speaker identification system vary un-
der domain mismatch between training (clean ASR data) and evaluation (noisy, spontaneous
conference data)?

Based on prior findings that ASR-pretrained wav2vec 2.0 models retain substantial speaker-
relevant information in their learned representations (Vaessen & Van Leeuwen, 2022), the study
hypothesizes that:

A wav2vec 2.0 encoder pretrained on Mandarin ASR and kept frozen during fine-tuning can still
produce embeddings that are sufficiently speaker-discriminative to enable competitive classification
performance. When combined with a lightweight classifier head, the system is expected to achieve
robust accuracy on noisy, multi-speaker, and overlapping Mandarin conference recordings—despite
the domain mismatch between training and evaluation conditions.
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2 Literature Review
This section is dedicated to providing a comprehensive review of the existing research pertaining to
speaker identification, with a specific focus on Mandarin Chinese in real-world meeting scenarios.
The emphasis of this thesis is on the transfer learning approach from automatic speech recognition
to SID using a pre-trained wav2vec 2.0 model. This approach leverages the ability of wav2vec 2.0
to learn robust and transferable representations from large amounts of unlabeled speech data, en-
abling effective downstream performance on tasks like speaker identification with limited annotated
resources. By conducting a thorough and critical analysis of the literature in this field, this review
aims to offer valuable insights into the methods and effectiveness of applying transfer learning strate-
gies for Mandarin speaker identification in noisy and overlapping conference speech environments.

To those ends, the section is structured as follows. To begin, I delineate the keywords used during
the literature search and describe the inclusion or exclusion criteria used in selecting the literature.
After that, I offer a succinct overview of the key findings and contributions of the selected papers.

I have grouped the keywords according to the topic they are related to. The topics are high-
lighted in bold, after which the keywords for that topic are mentioned. Thus, the topics and their
corresponding keywords are:

• Speaker identification: speaker recognition, speaker classification, speaker identification,
deep speaker embeddings;

• Self-supervised learning: wav2vec 2.0, self-supervised speech model, self-supervised learn-
ing in speech, speech representation learning;

• Mandarin speech: Mandarin speaker recognition, tonal language speaker identification, Man-
darin meeting speech, AISHELL-4 dataset.

• Transfer learning: speech recognition to speaker identification transfer, encoder freezing,
representation adaptation;

In order to ensure that the selected articles are highly consistent with the research topic, this
review adopts a narrative screening strategy rather than a strict systematic review. First, the literature
from 2010 to 2024 was searched in Google Scholar using keywords such as “speaker identification,
self-supervised learning, wav2vec 2.0, Mandarin meeting speech, transfer learning”, and a total
of about 387,880 records were obtained. After a preliminary reading of the titles and abstracts,
papers on tasks such as speech synthesis, speech enhancement, and emotion recognition that were
not related to speaker identification were deleted, and some studies focusing on speaker modeling or
self-supervised representation learning were retained. Subsequently, early works based on GMM-
UBM and i-vector that lacked self-supervision or transfer learning elements were further excluded,
and a list of 35 core articles was finally formed.

The above screening process is not intended to form an “exclusion count” in the statistical sense
of the systematic review, but to ensure that the included studies can directly support the discussion
of self-supervised transfer and Mandarin meeting scenarios in this article. Through this hierarchical
screening, this review is able to focus on the latest progress of wav2vec 2.0 in speaker recognition,
laying a literature foundation for subsequent method design and experimental comparison.

The final inclusion rules therefore required that studies (i) focus on speaker identification or
speech recognition for under-resourced languages, specifically Mandarin, (ii) employ transfer-learning
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techniques within the speaker identification or speech recognition pipeline (studies that used transfer
learning solely for TTS, enhancement, or unrelated downstream tasks were excluded), and (iii) make
explicit use of wav2vec 2.0 or a comparable self-supervised speech model. Publications not meeting
all three conditions, or appearing in languages other than English, were excluded.

Following this, I provide an overview of the key findings from the selected papers, organized by
the aforementioned topics. Each subsection (2.1–2.4) delves into specific aspects such as the effec-
tiveness of transfer learning techniques, the challenges of applying wav2vec 2.0 to Mandarin speaker
identification, and the use of realistic datasets like AISHELL-4 dataset in evaluating performance.
This structured approach offers a comprehensive understanding of the current state and future direc-
tions of speaker identification research for Mandarin and other under-resourced languages.

The literature review is organized into different subsections based on the general topics they
cover. Subsection 2.1 discusses the literature regarding traditional speaker identification methods.
Subsection 2.2 addresses the rise of deep learning approaches such as x-vectors. Subsection 2.3
presents an overview of self-supervised techniques, especially wav2vec 2.0, and subsection 2.4 fo-
cuses on Mandarin speaker identification in the AISHELL-4 dataset context.

2.1 Speaker Recognition: Progress and Challenges
Speaker recognition has gone through a long way from the statistical era of Gaussian-mixture uni-
versal background models (Reynolds, Quatieri, & Dunn, 2000) and i-vector factor analysis (Dehak
et al., 2010) to today’s deep neural architectures that offer real-time inference and sub-percent er-
ror rates on clean benchmarks. A decisive turning point came with the x-vector framework, where
a time-delay neural network encodes frame-level features and a statistics-pooling layer aggregates
them into a fixed-length utterance embedding (Snyder et al., 2018). Subsequent residual variants
such as Res2Net-SE and ECAPA-TDNN introduced multi-scale convolutions and channel attention,
driving equal-error rates on VoxCeleb1 down to the one-percent range (Desplanques, Thienpondt, &
Demuynck, 2020) (Zhao et al., 2024). Most recently, multi-branch designs like 3D-Speaker further
compact the network while improving discrimination in open-set trials (Y. Chen et al., 2025).

An equally significant shift is the move toward self-supervised pre-training. Encoders such as
wav2vec 2.0 (Baevski et al., 2020), HuBERT (Hsu et al., 2021) and WavLM (S. Chen et al., 2022) are
first exposed to thousands of hours of unlabelled audio via a masked-prediction objective, learning
representations that jointly encode short-term phonetic detail and longer-term speaker cues. When
these encoders are frozen and paired with a shallow classifier, they already match or surpass fully
supervised baselines on VoxCeleb and SITW; fine-tuning only the top Transformer blocks narrows
the gap to state of the art, as summarised in the SUPERB benchmark (Yang et al., 2021). This
evidence confirms that large-scale acoustic pre-training captures speaker-stable information even
though it was optimised for word recognition.

Despite these advances, several long-standing obstacles still impede robust deployment. The first
one is the utterance duration. Conversational segments often last fewer than three seconds, a regime
where embedding variance grows rapidly and error rates can double (Kinnunen & Li, 2010). The
second one is the channel mismatch. The differences in microphone frequency response, codec, or
far-field capture shift embedding distributions and inflate within-speaker variability (Garcia-Romero,
McCree, Shum, Brummer, & Vaquero, 2014). Then, background noise and room reverberation fur-
ther smear spectral detail, while multi-talker overlap violates the single-speaker assumption that
most front-ends rely on (Anguera et al., 2012). Furthermore, cross-language transfer adds another
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layer of complexity that phonotactic and prosodic differences can distort the statistics learned on En-
glish corpora, particularly for tonal languages where fundamental-frequency contours carry lexical
content (Tao et al., 2024).

Current research mitigates these issues through domain transfer learning. Fine-tuning from clean
to noisy data, synthetic augmentation with additive noise and speed perturbation, and contrastive
learning on overlapped speech have each shown promise. Parameter-efficient adapters such as LoRA
allow a small subset of weights to specialise to new microphones or languages while the bulk of the
encoder remains frozen (Joseph & Baby, 2024). However, most published evaluations still focus on
English broadcast speech (Vaessen & Van Leeuwen, 2022); how well these strategies generalise to
Mandarin meetings, where tonal interference, high overlap rate and heterogeneous devices coexist,
remains an open question that motivates the present study.

2.2 Transfer Learning for Speaker Recognition
Transfer learning has become a central approach in modern speech processing tasks, including
speaker recognition. It refers to the use of knowledge learned in one domain or task to improve per-
formance on a different but related task (Weiss, Khoshgoftaar, & Wang, 2016). This is particularly
valuable in scenarios with limited labeled data, such as speaker identification in Mandarin confer-
ence speech. In these low-resource or high-variability environments, direct training from scratch
is often infeasible, making transfer learning a practical and efficient alternative (Sherly, Pillai, &
Manohar, 2024).

The past decade has seen transfer learning become an important strategy for speaker recognition
systems, largely because high-quality speaker labels are costly to obtain and performance drops
sharply when the recording environment differs from the training domain (Garcia-Romero et al.,
2014). The transfer techniques now have three main types. The first one is task transfer. The
encoders originally trained for automatic speech recognition or masked-prediction objectives are
reused for speaker identification with only a small classification or similarity head appended (Cai
& Li, 2024). For example, The frozen wav2vec 2.0 and HuBERT encoders could achieve sub-
3% equal-error rates on VoxCeleb when they are paired with linear back-ends. This demonstrats
that large self-supervised models capture speaker-stable cues despite being optimised for phonetic
content (Y. Wang, Boumadane, & Heba, 2021). Selectively fine-tuning only the top Transformer
layers or injecting lightweight adaptation modules such as LoRA further closes the gap to fully
trained baselines while adding a small number of extra parameters (Joseph & Baby, 2024).

The second one is domain adaptation, which mitigates channel, language and acoustic mis-
matches between training and deployment (Farahani, Voghoei, Rasheed, & Arabnia, 2021). Early
work relied on unsupervised PLDA mean-shift and whitening transforms (Garcia-Romero et al.,
2014), but now deep models adopt more sophisticated methods such as multi-style training with ad-
ditive noise and speed perturbation (Ko, Peddinti, Povey, & Khudanpur, 2015), adversarial feature
normalisation that minimises microphone identity in the embedding space (Bhattacharya, Monteiro,
Alam, & Kenny, 2019), and teacher-student distillation that transfers knowledge from near-field to
far-field systems (Zhang, Wang, Lee, Xie, & Li, 2021). These approaches reduce equal-error rates
effectively when moving from one domain to another, underscoring the importance of domain fine-
tuning.

A third and increasingly popular one is parameter-efficient adaptation (He, Li, Zhang, Yang, &
Wang, 2023), motivated by the desire to keep lowinference costs while still allowing every domain



Section 2 LITERATURE REVIEW 15

to do specialisation, which seeks to preserve the frozen encoder’s speed while allowing minimal
task-specific weight updates. One practical approach is the adapter bottleneck: a pair of small linear
layers inserted between frozen Transformer blocks. The studies of T. Wang, Chen, Chen, Yu, and
Zhu (2023) shows that inserting adapters into a HuBERT Transformer encoder and pre-training
them on a mix of raw, noisy, overlapped, and noisy overlapped speech reduces the word error rate
by 40% relative to the multi-label pre-trained model without adapters on ASR, while achieving
comparable performance on speech separation and enhancement tasks with only a marginal increase
in parameters (3.1% to 17.2%)The study confirms that parameter-efficient fine-tuning can bridge a
notable portion of the domain gap while keeping computational and memory footprints suitable for
real-time deployment.

Taken together, these advances show that transfer learning—whether across tasks, domains or
parameter subsets—offers a pragmatic path to high-accuracy, low-latency speaker recognition in
scenarios where labelled data, compute budget or recording conditions deviate from laboratory stan-
dards. They also provide the methodological scaffolding for the present work, which evaluates how
a Mandarin ASR-pretrained wav2vec 2.0 encoder transfers to multi-speaker conference speech.

2.2.1 Task Transfer: From Speech Recognition to Speaker Identification

The most direct form of transfer learning in speaker recognition is reusing an encoder that was orig-
inally trained for automatic speech recognition. During self-supervised pre-training, models such
as wav2vec 2.0, HuBERT and WavLM consume thousands of hours of unlabelled speech and learn
frame-level features that encode both phonetic detail and speaker information (Yang et al., 2021).
Once the encoder has converged, the specific output layers of ASR are discarded, a pooling operation
aggregates frame embeddings into a single utterance vector, and a shallow classification or metric
head is trained to map that vector to a speaker identity. Baevski et al. (2020) introduce wav2vec 2.0
and show that a frozen encoder combined with simple mean pooling can be fine-tuned for speaker
identification with only a shallow classification head. Hsu et al. (2021) report similar findings for
HuBERT, demonstrating that its frame-level features carry speaker-stable information even though
the model is optimised for masked unit prediction. S. Chen et al. (2022) extend the approach with
WavLM, confirming that discarding the ASR-specific projection layers, pooling hidden states into an
utterance vector, and attaching a lightweight soft-max yields competitive speaker recognition perfor-
mance on VoxCeleb and CN-Celeb benchmarks. Empirical evidence from SUPERB demonstrates
that a frozen wav2vec 2.0 Base encoder combined with mean pooling achieves 75.18% identifica-
tion accuracy on the VoxCeleb1 dataset, with performance approaching that of more complex setups
(Yang et al., 2021).

The key adaptation step is time-scale conversion. ASR focus on 20- to 30-millisecond windows,
whereas speaker recognition requires information that remains consistent across hundreds of mil-
liseconds. Simple mean or statistics pooling suppresses phoneme-level variation while preserving
long-term traits such as habitual pitch range, average formant spacing, and spectral-envelope shape.
The importance of converting short-frame ASR features into utterance-level speaker embeddings
was highlighted by (Snyder et al., 2018), who showed that statistics pooling (mean and variance)
over 20–30 ms frame representations markedly improves speaker-discriminative power compared
with frame-based scoring. Subsequent work by (Desplanques et al., 2020) in ECAPA-TDNN and by
(Okabe, Koshinaka, & Shinoda, 2018) in attentive pooling confirmed that averaging or attentively
weighting hidden states suppresses phoneme-level variability while retaining long-term cues such
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as habitual pitch range, average formant spacing and spectral-envelope shape—properties that are
relatively stable over several hundred milliseconds.

2.2.2 Domain Transfer: Channel, Acoustic, and Language Mismatch

Once the deployment data deviates from the conditions during pre-training or fine-tuning, the perfor-
mance of trained encoders will generally degrade. First, channel variations (microphone frequency
response, distance between speaker and microphone, or differences in codecs) can amplify intra-
speaker spread; Garcia-Romero et al. (2014) showed that a simple phone or broadband mismatch
can significantly increase the equal error rate of NIST SRE. In addition, the diversity of languages
and accents also has an impact: Tao et al. (2024) showed that differences in F0 contours of Mandarin
lexical tones can lead to pitch shifting problems in speech synthesis.

Domain transfer strategies address these gaps. For example, multi-level transfer learning from
near-field to far-field in a teacher-student (T/S) framework is used to transfer the knowledge of a
teacher model trained on near-field data to a student model trained on far-field data to address the
domain mismatch between enrollment and test utterances in far-field speaker verification (Zhang et
al., 2021).

Taken together, task transfer supplies a speaker-aware foundation, while domain transfer fine-
tunes the embedding space to cope with microphone, noise, and language shifts. The collaboration
of the two explains much of the recent progress in deploying speaker recognition beyond controlled
laboratory conditions.

2.3 Mandarin Speaker Recognition in Conference Scenarios
The core goal of speaker identification is to accurately identify the individual to whom the current
speech segment belongs from multiple candidate speakers. Traditionally, speaker recognition is
usually trained and evaluated on controlled, clear, single-speaker speech data. However, in recent
years, researchers have gradually turned their attention to more challenging real-world application
scenarios, especially conference speech environments with multiple speakers, language diversity,
and device inconsistency (Fu et al., 2021). In the context of Mandarin, this task faces a series of
unique and complex challenges.

First, the language characteristics of Mandarin itself bring inherent difficulties to speaker iden-
tification. Unlike non-tonal languages (such as English), Mandarin is a language that relies heavily
on pitch contours to convey lexical meaning. Every syllable in Mandarin carries a tone, and differ-
ent tones can fundamentally change the meaning of a speech segment (Peng et al., 2018). Studies
have shown that these tone changes are not only related to semantic expression, but are also of-
ten manifested as measurable frequency changes, which may come from both word meaning and
individual characteristics of the speaker (such as physiological structure, vocalization habits, etc.)
(Anguera et al., 2012). During the modeling process, this ”functional overlap” will cause speaker
features to mix with language content features, making it difficult for the system to clearly distin-
guish which changes belong to the speaker itself and which are the result of language expression,
thereby increasing the difficulty of model discrimination.

These challenges are further exacerbated when the Mandarin speaker recognition task is embed-
ded in a real conference speech environment. Conference speech is highly realistic and complex,
which is specifically manifested in four aspects: First, the speech content is often spontaneously
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generated, and compared with standard reading corpus or dubbing corpus, it lacks stable intonation,
syntactic structure and speech flow control; second, there are many participants with different lan-
guage backgrounds, expression styles and speaking habits; third, the conference process is full of
natural interactions, such as frequent turn-taking, interruptions, responses, interjections, short pauses
and topic jumping; fourth, the audio collection process is affected by environmental acoustic condi-
tions, differences in microphone equipment, speaking distance and background noise, resulting in a
significant decrease in recording quality and acoustic consistency (Fu et al., 2021).

In addition, the speech features in Mandarin conference speech are usually highly variable. For
example, speakers may express their opinions using code switching (such as a mixture of Mandarin
and English or dialects), unstructured grammar (such as omitting subjects and misusing conjunc-
tions), semantic hesitation (such as ”that, that is, um”), and non-fluent expressions (such as pauses,
repetitions, and interjections) (Fu et al., 2021). Although these real language behaviors are widely
accepted in actual communication, they are a source of disturbance for systems based on acous-
tic consistency modeling, which will significantly reduce the stability and distinguishability of the
speaker’s representation (Anguera et al., 2012).

From the perspective of system input, there are significant differences in equipment and environ-
ment between different meetings. For example, some meetings use high-fidelity recording equip-
ment, while others rely on built-in microphones in laptops or voice acquisition modules on online
meeting platforms. The frequency response range, gain settings, and pickup directions of differ-
ent microphones may have a significant impact on the speaker’s voice characteristics (Araki, Ono,
Kinoshita, & Delcroix, 2017). Coupled with the background noise in the conference room (such
as page turning, whispering, keyboard sounds) and the volume fluctuations caused by the speaker’s
movement, these factors together constitute a highly heterogeneous input environment with low
signal quality, which puts higher requirements on the generalization and robustness of the speaker
identification system.

A common problem is that the number of speakers in Mandarin conferences is usually large,
often ranging from a few to dozens of people. Large-scale multi-speaker recognition tasks require
higher model representation capabilities. The system not only needs to establish sufficient differ-
entiation between multiple speakers, but also must tolerate the internal variation of each speaker in
terms of speech rate, intonation, and prosodic features (Fu et al., 2021). In addition, due to the frag-
mented characteristics of conference speech, the duration of each speaker’s speech data may be very
limited, and some speakers may even speak for less than ten seconds. This ”short speech modeling”
problem (short utterance problem) will significantly limit the stability and recognition ability of the
embedding vector, and is a difficulty in current speaker recognition research (Kinnunen & Li, 2010).

In summary, speaker recognition in Mandarin conference scenarios faces many challenges: the
tonal interference of the language itself, the uncertainty of spontaneous speech, the uncontrollable
quality of recordings, and the large number of speakers. These problems not only weaken the ef-
fectiveness of traditional supervision methods, but also expose the limitations of current modeling
strategies in complex real-world environments. Because of this, Mandarin conference speech recog-
nition provides a valuable testing platform for evaluating the robustness, transferability, and scala-
bility of the new generation of speaker recognition models. Especially in the framework of transfer
learning, this scenario has important research and application significance for testing whether the
model can successfully generalize to complex, high-noise, and tone-sensitive speech environments
without relying on large-scale labeled data.
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2.4 Wav2vec 2.0 Model
The wav2vec 2.0 model was originally proposed by the Facebook AI research team and is mainly
used for automatic speech recognition tasks. However, its performance in various paralinguistic
tasks, including language recognition, emotion recognition, voice activity detection, and speaker
identification, is also very promising. It adopts an innovative hierarchical structure and consists of
two main parts: one is the front-end convolutional feature encoder (CNN Feature Encoder), which
is used to encode the original audio signal into a local time-frequency representation; the other is
the back-end Transformer context network (Context Network), which is used to learn to capture
higher-level, context-dependent speech representations. Its training goal is mask prediction, that
is, randomly masking a part of the frame in the input sequence and then predicting its true rep-
resentation. This design encourages the model to learn long-term dependencies using contextual
information to obtain robust, semantically relevant representations (Baevski et al., 2020).

With the continuous development of self-supervised learning methods, the application of models
such as wav2vec 2.0 in speech representation learning has become an important breakthrough in the
field of speech processing in recent years (Baevski et al., 2020). The main advantage of this type of
model is that it can be pre-trained on a large scale of unlabeled audio corpus without a large amount
of labeled data to obtain speech representations that are widely applicable to downstream tasks.

Unlike traditional acoustic modeling systems, wav2vec 2.0 achieves end-to-end raw waveform
modeling capabilities. It abandons the reliance on hand-crafted features (such as MFCC or PLP) and
instead directly learns multi-level acoustic representations from raw audio signals through convolu-
tion and Transformer networks. This capability not only improves the adaptability and generalization
of the system, but also makes it possible to build a unified speech understanding model (Baevski et
al., 2020). In this context, researchers began to explore the feasibility of migrating self-supervised
pre-trained models such as wav2vec 2.0 to speaker recognition tasks, especially in real-world scenar-
ios where data is scarce and speech is complex, such as Mandarin conference speech environments.

This paradigm shift from feature engineering to representation learning not only lowers the
threshold of prior knowledge that the system relies on, but also greatly broadens the application
boundaries of pre-trained models in the field of speech. On the SUPERB benchmark, a frozen
wav2vec2-base encoder plus a single linear layer obtains near-state-of-the-art scores not only on au-
tomatic speech recognition but also on speaker identification, speaker diarisation and language iden-
tification (Yang et al., 2021). On the VoxCeleb1 dataset, the fine-tuned HuBERT-large-960h model
achieved an equal error rate of 2.36% on the speaker verification task (Y. Wang et al., 2021). These
results suggest that self-supervised encoders implicitly disentangle phonetic and speaker factors in
their internal space, thus providing a strong starting point for low-resource or rapid-deployment
speaker identification systems.

2.4.1 Adaptation of wav2vec 2.0 to Speaker Identification

Although wav2vec 2.0 was originally developed for automatic speech recognition, subsequent stud-
ies have found that it also exhibits strong transferability in speaker identification tasks. Specifically,
researchers often add simple downstream structures (such as mean pooling + linear classifier) on
the basis of freezing the wav2vec 2.0 encoder parameters to achieve speaker identity discrimina-
tion. This lightweight fine-tuning strategy has achieved excellent results in the speaker identification
subtask of SUPERB, showing strong universal embedding capabilities (Yang et al., 2021).
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Further research has explored combining the output embedding of wav2vec 2.0 with traditional
backend systems (such as PLDA and Cosine Distance) to improve its performance in speaker ver-
ification tasks. Some scholars have also tried to incorporate contrastive learning objectives (such
as SimCLR or triplet loss) into the fine-tuning process to enhance the discriminability of the em-
bedding space. In addition to achieving high performance under controlled conditions, wav2vec 2.0
also shows remarkable robustness in noisy, low-quality real-world environments. Zhu et al. (2022)
verified its noise immunity on multiple noisy speech test sets, further confirming its applicability in
practical scenarios such as conference speech.

The representation learned by wav2vec2.0 is considered to contain rich acoustic, prosodic and
individual voice features, and has shown the ability to preserve speaker characteristics in multiple
tasks. This makes the model very suitable as a universal encoder for building domain-robust speaker
recognition systems, especially when the target task labels are insufficient, and its zero fine-tuning
ability is particularly outstanding.
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3 Methodology
In this section, I present the methodology used to address the research question and validate the
hypothesis in a structured manner. Subsection 3.1 describes the dataset used for training and eval-
uation. Subsection 3.2 and 3.3 focus on the model architecture employed in this study. Then, in
subsection 3.4, I detail the evaluation metric and its justification. Finally, subsection 3.5 outlines the
ethical considerations.

3.1 Dataset
The main dataset used in this study is AISHELL-4, an open Mandarin corpus for real-world confer-
ence speech processing tasks released by Fu et al. (2021). This corpus is designed for multi-speaker,
multi-channel, and noisy speech technology research, especially for speaker identification, speaker
diarization, and automatic speech recognition. The reason why this study chose AISHELL-4 dataset
is based on its modeling capabilities and task diversity support for real conference environments,
especially its ability to accurately simulate speech technology application scenarios under actual
deployment conditions.

AISHELL-4 dataset contains a total of 211 hours of recording data from 118 independent meet-
ings. The number of participants in each meeting ranged from 4 to 8 speakers, covering a variety
of communication forms from formal speeches to free discussions, from planned speeches to nat-
ural interruptions. This diversity of language interaction not only increases the breadth of model
training, but also greatly improves the robustness of evaluating speaker recognition models under
dynamic turns. It is particularly noteworthy that the dataset is designed to deliberately retain com-
mon phenomena in natural language interaction, such as speech overlap, interruption, disfluency,
and ambient noise, providing a challenging experimental platform for this study.

In terms of recording settings, AISHELL-4 dataset uses an 8-channel microphone array with a
circular arrangement of microphones to simulate the spatial pickup structure in a real conference
room. This multi-channel recording method has a stronger sound field capture capability than a
single-channel device, and can record distance changes, echoes, and reverberation effects caused
by changes in the speaker’s position. These spatial characteristics are key factors in modeling the
speaker-device interaction mode and provide important verification conditions for the actual adapt-
ability of the speaker recognition system.

The speakers used in the dataset come from multiple regions of China and are all native Mandarin
speakers, but their ages, genders, occupations, and expression styles are diverse. This demographic
diversity helps to enhance the model’s generalization ability to different sound features, thereby
alleviating the gender bias or age bias problems that speaker recognition systems may encounter in
real-world applications. In addition, the corpus provides a complete metadata index file, including
the audio path of each speech segment, the conference it belongs to, the speaker number, the start and
end time of the speech segment, the channel number, etc., allowing researchers to flexibly construct
training sets, validation sets, and test sets.

In summary, AISHELL-4 dataset is a high-quality conference speech dataset with language rep-
resentativeness, task adaptability, and structural complexity. It can provide sufficient training re-
sources and evaluation dimensions for this study, ensuring the systematic verification of wav2vec2.0
model’s transfer learning capabilities under real conference conditions.
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3.2 Model Architecture - wav2vec 2.0
The model architecture used in this study is based on wav2vec 2.0, an advanced self-supervised
speech modeling framework proposed by Facebook AI Research in 2020. The core goal of wav2vec
2.0 is to solve the problem of traditional ASR systems’ dependence on a large amount of manually
annotated data, build high-quality speech representations using unlabeled speech data, and migrate
them to a variety of downstream tasks, such as automatic speech recognition, speaker recognition,
and speech emotion recognition. This model successfully introduced the concept of end-to-end
learning into the field of speech representation modeling and achieved performance that exceeds
traditional supervised methods.

As shown in Figure 1, the wav2vec 2.0 architecture mainly includes the following three key
components:

• Feature Encoder

• Quantization Module

• Context Network

The front end of wav2vec 2.0 is a feature encoder consisting of multiple 1D temporal convolu-
tional layers, which is responsible for extracting preliminary low-level acoustic features from the raw
waveform input X ∈ RT . The encoder’s task is to identify local patterns and short-term dependen-
cies in the audio, such as syllable boundaries, formant changes, and other basic building blocks in
speech signals. After convolution, the raw waveform is converted to a latent representation z∈ RT ′×d

, where T ′ is the number of frames after downsampling and d is the feature dimension.
In the pre-training phase, in order to design self-supervised learning tasks, the model uses a

vector quantization module. This module discretizes a portion of the frames in z into a limited
number of codebook entries. Specifically, it uses the Gumbel-Softmax method to select the best
matching codebook vector from multiple embedding vectors, and these quantized vectors are used as
the training targets of the model. The learning task of the model is to identify the correct codebook
from several negative samples through the context vector, and then optimize the contrastive loss
function.

The context network is a stack of self-attention layers based on the Transformer architecture.
It takes the latent sequence z as input and outputs a higher-level contextualized representation c,
capturing long-range dependencies across time. The contrastive loss is applied by masking parts of
the input and training the model to identify the correct latent prediction from a pool of negatives,
improving the robustness of learned representations under varying acoustic conditions.

Throughout the architecture, GELU (Gaussian Error Linear Unit) is used as the activation func-
tion in the Transformer blocks. It is defined as:

GELU(x) = x ·Φ(x)

where Φ(x) is the cumulative distribution function of the standard normal distribution. The
GELU function provides a smooth non-linearity that balances linear and nonlinear behavior, and has
been shown to improve convergence in deep Transformer models.

In the pre-training stage, the model masks the input frame and trains the context network to
predict the quantized vector corresponding to the masked frame from the unmasked context. This
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Figure 1: Overview of wav2vec 2.0 architecture

contrast objective strengthens the model’s perception of speaker and context changes, thus having
the potential for cross-task migration.

It is worth noting that this study did not use the quantization module or contrast loss function
when migrating to the speaker recognition task, both of which only play a role in the pre-training
stage. The downstream task only uses the context network composed of the encoder and Trans-
former as a feature extractor to extract high-level embedding representations and provide input for
the speaker recognition classifier. This approach makes the migration process lighter and the recog-
nizability of the pre-trained representation can be evaluated separately.

3.3 Large-Scale Cross-Lingual Model - XLSR-53
In order to maximize the generalization ability of multilingual pre-trained models, this study se-
lected a variant based on wav2vec2-large-xlsr-53-chinese-zh-cn for downstream speaker recognition
experiments. This model was implemented by Jonatas Grosman and hosted on the HuggingFace
platform. It is a Chinese fine-tuned version of Facebook’s original XLSR-53 (Cross-Lingual Speech
Representations) model. XLSR-53 is a key achievement of wav2vec2’s expansion into the field of
multilingual speech understanding. It is pre-trained on multi-source speech corpora in 53 languages,
and strives to capture the common acoustic structure of languages in the model.

XLSR-53 uses the same network structure as wav2vec2-large, including: 24 layers of Trans-
former encoding, 1024-dimensional hidden representation per layer, 16 attention heads, and a total
model parameter count of over 300 million. During the pre-training phase, the model receives au-
dio input from multiple language resources such as CommonVoice and Multilingual LibriSpeech,
enabling it to not only learn language-specific features such as intonation, speech rate, and voice
timbre, but also capture cross-language consistent speaker representation structures. This cross-
language modeling capability provides theoretical support for dealing with complex accents, speech
rates, and style differences in Mandarin conferences in this study.

Since jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn has been fine-tuned in Chinese ASR
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tasks, its acoustic representation is more adaptable to Chinese intonation patterns and prosodic
changes. With the help of this model, this study attempts to verify its transfer ability in speaker
recognition tasks, especially in Mandarin conference speech environments with complex background
noise, frequent speech overlap, and diverse speech styles. In this study, the encoder weights are com-
pletely frozen during training to retain pre-training knowledge. The advantages of this strategy are
low resource consumption, high training stability, and strong experimental reproducibility, and it is
particularly suitable for fast migration scenarios in low-resource target domains. At the same time,
this method can also be used to evaluate the speaker discrimination ability implicit in the pre-trained
model to determine whether its representation is identifiable, stable and robust.

A lightweight linear classifier is used on top of the frozen encoder. The frame-level hidden
states extracted from wav2vec 2.0 are aggregated by mean pooling to obtain a fixed-length utterance
embedding. The embedding is passed through a linear layer to predict the speaker identity. This
simple architecture provides an effective way to evaluate the quality of the extracted features in
speaker recognition tasks.

3.4 Evaluation Method
In this study, the evaluation of the speaker identification (SID) system is based on Top-1 Accuracy,
a commonly used metric in classification tasks. Top-1 Accuracy measures the proportion of predic-
tions where the model’s most confident (i.e., highest probability) output corresponds exactly to the
ground-truth speaker label. Formally, given a set of N utterances, the Top-1 Accuracy is defined as:

Top-1 Accuracy =
1
N

N

∑
i=1

1(ŷi = yi)

• ŷi is the predicted speaker label for the i-th utterance,

• yi is the ground-truth speaker label,

• 1 is the indicator function that returns 1 if the prediction is correct, and 0 otherwise.

This study uses Top-1 accuracy as the core metric to quantify the model’s speaker recognition
ability under Mandarin conference speech conditions. The reason for choosing this metric instead of
more complex metrics is mainly based on three considerations. First, Top-1 accuracy is intuitive and
easy to interpret: it directly calculates whether the model’s most confident prediction is consistent
with the true label, and it also has a clear meaning for non-technical readers. Second, the conference
speech task is essentially an N-way closed-set classification problem, and each utterance must be
attributed to a unique speaker in a fixed set of candidates; in this scenario, the system only returns
one identity prediction after going online, so the Top-1 accuracy remains completely consistent with
the actual deployment requirements. Finally, this study focuses on whether the pre-trained repre-
sentation still retains speaker information after freezing the encoder. Top-1 accuracy is sufficient
to answer this targeted question, while more fine-grained metrics (such as EER or mAP) have no
additional advantages in evaluating simplicity, intuitiveness, and readability.

There are three advantages to using this metric: First, a single value can measure the overall
recognition success rate, which is convenient for intuitive comparison with baselines or other mod-
els; second, it is also effective for multi-class classification and is not affected by changes in the
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number of categories; third, it does not require threshold adjustment or curve integration, and has
the lowest computational cost in small batch and fast experiments. It should be noted that the Top-1
accuracy ignores the model’s confidence in the suboptimal candidate and cannot evaluate uncer-
tainty. In more open scenarios or scenarios that require the return of multiple candidates, Top-5
accuracy, confusion matrix analysis, and even Equal Error Rate can be introduced as a supplement;
however, in the closed set setting of this study, the Top-1 accuracy is sufficient to reflect the key
behavior of the model, so it was selected as the core metric.

3.5 Ethical Considerations
3.5.1 Data Ethics and Privacy

This study is based entirely on the public Mandarin conference speech dataset AISHELL-4, with-
out additional data collection or subject participation, and therefore does not involve recruitment,
informed consent, or ethical approval.

From a privacy perspective, AISHELL-4 dataset has been de-identified before release, retain-
ing only anonymous speaker IDs, speech boundaries and timestamps, transcripts, and microphone
channel numbers, without any information that can be used to directly identify individuals, such as
names, ID numbers, contact information, or image data, so the overall risk is low. However, the
removal of direct identifiers from the data itself does not mean that the model output is absolutely
fair. When the demographic distribution is uneven or the sample is underrepresented, the model
may still perform poorly on specific groups (such as dialect users, women, or elderly speakers),
thereby amplifying structural biases in reality. Although AISHELL-4 dataset has covered different
genders, occupations, and speech speeds during the construction phase, its coverage is still limited.
To mitigate potential unfairness, more balanced data can be introduced in subsequent studies, fair
evaluation indicators such as Equal Opportunity can be adopted, and stratified analysis of specific
groups can be performed in experimental design to clarify the source of bias. It should be noted
that all evaluations in this study use objective indicators, such as Top-1 accuracy, and do not rely on
subjective scoring, thus avoiding personal bias in the evaluation process.

All codes are hosted in a public GitHub repository(See the project on GitHub) and can be opened
on demand, and the AISHELL-4 conference dataset is also available for free, thus ensuring the
reproducibility of the results and transparency of external review.

3.5.2 Potential Abuse and Responsibility Limits

In addition to academic and commercial purposes, speaker recognition technology may also be de-
ployed in highly sensitive scenarios such as security monitoring or law enforcement. In these scenar-
ios, if there is a lack of proper supervision and authorization, the relevant technology may be used as
a tool for illegal monitoring, privacy infringement or social manipulation. Therefore, any actual de-
ployment should strictly comply with local data protection regulations, fully inform and obtain user
authorization before collecting and processing voice, and strictly prohibit identity tracking without
consent. The deployer should also preset risk mitigation mechanisms, such as false alarm control,
threshold adjustment or inactive recognition suppression, to prevent the model from being abused.
Only by placing the speaker recognition model within a clear ethical framework and supplemented

https://github.com/miaomiami/thesis


Section 3 METHODOLOGY 26

by necessary technical and management measures can we ensure the sustainable and responsible
development of voice artificial intelligence at the social level.
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4 Experimental Setup
In this section, I provide a detailed breakdown of the experimental setup used for speaker identifica-
tion in Mandarin conference speech using the wav2vec2-large-xlsr-53-chinese-zh-cn model (Gros-
man, 2021).

4.1 Data Splitting of Subsets
AISHELL-4 is a speech dataset containing a variety of real conference environments, each of which
contains a different number of speakers, duration, and interaction methods. In order to systematically
evaluate the recognition ability of the wav2vec 2.0 model under different speaker sets, we split each
conference session into an independent subtask, each of which corresponds to an N-type speaker
recognition problem.

The specific splitting and preprocessing steps are as follows:

• Segmentation Processing: Based on the metadata officially provided by AISHELL-4 dataset(including
voice activity detection tags and speaker annotations), each conference recording is automat-
ically divided into multiple speech segments. Each speech represents a complete speech of a
speaker, and the segment length ranges from a few seconds to more than ten seconds.

• Subtask Screening Criteria: To ensure the representativeness of the experiment and the
complexity of the recognition task, only those conference sessions with at least 3 speakers
are retained. This screening criterion ensures that each subtask has the most basic speaker
differentiation challenge while avoiding the overfitting problem of the binary classification
task.

• Speaker Reindexing: Since the speaker IDs in each meeting are not continuous in the dataset,
to adapt to the standard classification output format of model training, we renumber the
speaker labels in each subtask to integer labels from 0 to N-1, where N is the number of
speakers in the meeting.

• Training and Validation Split: In each subtask, we split all speech segments into training
and validation sets, with a ratio of 90% training and 10% validation. The splitting uses ran-
dom sampling to ensure that each speaker appears at least once in both subsets to prevent
verification failures due to speaker disappearance.

4.2 Model Configuration
The model configuration is designed to leverage the robust speech representations from the wav2vec
2.0 architecture for Mandarin speaker identification under realistic conference conditions.

• Architecture: The model is based on the Wav2Vec 2.0 architecture, utilizing the ”jonatasgro
-sman/wav2vec2-large-xlsr-53-chinese-zh-cn ” model hosted on HuggingFace. This
variant inherits from the multilingual XLSR-53 model and includes 24 Transformer blocks
with a hidden size of 1024 and 16 attention heads. GELU activation, layer normalization, and
dropout techniques are applied to improve generalization.



Section 4 EXPERIMENTAL SETUP 29

• Pre-trained Weights: The encoder is initialized with weights from the pre-trained wav2vec2-
large-xlsr-53-chinese-zh-cn model. All encoder parameters are frozen during fine-tuning to
retain the general-purpose speech representations learned from ASR pretraining. Only the
classification head is trained for each subtask.

• Hyperparameters: The model uses the AdamW optimizer with a learning rate of 3× 10−5

. Training is performed with a batch size of 4 (adjustable to 2 or 1 based on GPU memory
constraints). A maximum of 40 training epochs is allowed per subtask. All computations are
performed in single-precision (float32).

4.3 Training Setup
This section introduces the training strategies and implementation details of two types of models in
this study: one is a baseline model built based on a global speaker set, and the other is a transfer
learning model trained independently for each conference subtask. The two model training schemes
are differentiated in terms of task definition, parameter update range, data organization structure, etc.,
with the aim of evaluating the performance of wav2vec 2.0 representation in speaker recognition
tasks under different transfer strategies. In addition, the overall training process is structured to
ensure that the model of each subtask can be automatically initialized, trained, verified, and saved,
thereby supporting large-scale experimental operations and reproducing experimental environments.

4.3.1 Baseline Model

As a control condition to measure the effect of transfer learning, this study first built a global classifi-
cation model as a baseline system. This system is also built on the wav2vec2-large-xlsr-53-chinese-
zh-cn model, and the encoder parameters are kept frozen, and the linear classifier is trained only on
its output features. However, unlike the subtask classification method, this model does not divide the
meeting into multiple subtasks, but models all speakers appearing in the entire AISHELL-4 dataset
as a unified label space.

Although this training scheme can provide a unified speaker discrimination model, due to the
large number of categories that the model needs to handle and the non-overlapping speakers in
different meetings, this method is susceptible to category imbalance, label offset, and cross-session
speaker variation when facing specific meeting subtasks, and has high learning difficulty and poor
generalization.

4.3.2 Transfer Learning Model

The core model of this study is a session-level subtask model built using a transfer learning strategy.
This method still uses the same wav2vec 2.0 pre-training architecture and freezing strategy as the
baseline model, but the task design method is completely different: each conference session is re-
garded as an independent subtask, and closed N-class classification training is performed on the set
of speakers involved in the session.

This session-level transfer learning method can minimize problems such as label confusion and
speaker imbalance, while using context constraints to improve the model’s discrimination ability in
the current conference environment.
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4.3.3 Training Procedure

1. Data Loading: The AISHELL-4 corpus is used, where each meeting segment is pre-split into
shorter utterances. The dataset is structured as a CSV file with ’path’ and ’label’ fields, each
row corresponding to an utterance and its speaker identity. Each meeting session is treated
as an individual subtask. Speaker labels are reindexed from 0 to N − 1 within each subtask.
Segments with fewer than three speakers are excluded.

2. Subtask Looping: For each meeting session, a new model instance is created with a reinitial-
ized classifier head. The model is trained from scratch for that segment using the assigned
speaker labels. Training and validation sets are split 90% to 10%.

3. Optimization: The learning rate is warmed up during the first few hundred steps to ensure
stable convergence. No gradient accumulation is used due to memory efficiency constraints.
Since only the classifier is trained, convergence is typically achieved within a small number of
epochs.

4. Validation: Validation accuracy (Top-1 Accuracy) is computed at the end of each epoch. The
best model checkpoint based on validation accuracy is saved for each meeting subtask. This
training regime ensures that performance is robustly evaluated for speaker identification within
each real-world conference scenario.

To ensure efficiency and reproducibility, the training process is automated to iterate over all
eligible meeting segments. Logs include per-epoch training loss, validation loss, and top-1 accuracy.

4.3.4 Evaluation Method

In order to comprehensively evaluate the speaker recognition performance of the transfer learning
model in the Mandarin conference scenario, this study uses the Top-1 classification accuracy as the
main performance evaluation indicator during the training process. This indicator is calculated at
the end of each epoch and is used to measure the recognition ability of the model on the validation
set. Since each subtask is modeled as a closed set N-way classification problem, that is, the speaker
set is a known and unchanging fixed set, the accuracy rate is well representative and interpretable as
an evaluation indicator. The Top-1 accuracy rate measures whether the highest confidence category
output by the model in each prediction is consistent with the true speaker label. This indicator is also
of practical significance in actual deployment. For example, in a conference transcription system,
the system usually outputs only one candidate speaker as a label, so accurately predicting the top
candidate is a direct reflection of the system’s availability.

During the training process, the validation set of each subtask is evaluated for inference after each
round of training, and the output Top-1 accuracy rate is recorded and compared with the historical
best performance.

4.4 Hardware and Software Environment
In order to support the training and evaluation of large-scale subtasks, this study conducted experi-
mental deployment on a high-performance computing cluster to ensure high throughput and stability
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in processes such as data loading, model training, and logging. All experiments were completed on
the Habrok high-performance computing platform at the University of Groningen in the Netherlands.

In terms of hardware environment, all training runs on the Habrok research cluster, which pro-
vides multi-node GPU computing resources and high-speed parallel file systems to cope with fre-
quent small file reading for large-scale speech tasks. The experiments were performed on NVIDIA
A100-20GB and V100-20GB nodes, respectively. Both types of cards support high-bandwidth video
memory and mixed-precision tensor operations, effectively shortening the training time. At the data
level, speech segments, labels, and logs are all placed in the cluster file system to ensure the I/O
throughput of the model when loading multiple processes.

In terms of software environment, the experimental script is written based on Python 3.9. The
core deep learning framework uses PyTorch 1.13.1; pre-trained model loading and fine-tuning are
completed through HuggingFace Transformers 4.26.1; audio reading and writing and feature conver-
sion rely on torchaudio 0.13.1; data flow management and batch construction rely on datasets 2.10.1;
the training process is encapsulated in PyTorch Lightning, which simplifies multi-GPU scheduling,
logging and early stopping callbacks.

To ensure the reproducibility of repeated experiments across nodes, all dependencies are man-
aged uniformly in the Conda virtual environment. An independent environment is activated before
each session subtask is started to eliminate library version conflicts.

In summary, this study has established a stable, efficient and repeatable experimental running
environment at the hardware and software levels, providing a solid foundation for model training,
evaluation and logging, and also providing a clear technical reference for other researchers to con-
duct reproducible experiments on similar tasks in the future.





Section 5 RESULTS 33

5 Results
This chapter presents the experimental results of the baseline model and the transfer learning model
on the AISHELL-4 Mandarin conference speech dataset. According to the Figure 2 to Figure 4
, it focuses on reporting the three indicators of training loss, validation loss, and Top-1 accuracy
to illustrate the changing trend of the model during the training process. Firstly, it presents the
overall results of the global baseline, and then it presents the detailed values and curves of some
representative conference subtasks are given.

Figure 2: Comparison of Validation Loss and Top-1 Validation Accuracy for Baseline Model

5.1 Analysis of Figure2
Figure 2 shows the validation loss and validation accuracy trends of the baseline model within 40
epochs. The validation loss dropped rapidly from the initial value of about 3.4 to about 2.3 in the 6th
epoch; then the decline slowed down and entered a stable range around the 15th epoch, fluctuating
slightly between 1.9–2.2 and not rising again, indicating that the model did not overfit. At the same
time, the validation accuracy continued to rise from the initial 0.13, breaking through 0.30 in the
6th epoch, stabilizing to about 0.50 in the 15th epoch, and has remained in the range of 0.49–0.52
since then. The loss curve continued to decline while the accuracy rose synchronously. Both curves
entered the plateau at the same time in the 15th epoch, indicating that the model has fully learned
the features that can be used to distinguish speakers.

Although the final accuracy is only about half, considering that the task involves a large number
of speaker categories and random prediction can only obtain extremely low accuracy, this perfor-
mance is still significantly better than the random level. More importantly, the solution of completely
freezing the encoder and only fine-tuning the lightweight classification head can achieve such re-
sults, which fully proves that the wav2vec2 pre-trained representation already contains rich speaker
identification information, and also verifies the rationality of data segmentation, label mapping and
optimization parameter settings. The baseline experiment therefore provides a solid performance
reference for subsequent session-level transfer experiments and proves the feasibility of ”completely
freezing the encoder and only fine-tuning the lightweight classification head” in large-scale speaker
recognition scenarios.
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Figure 3: Training Dynamics of Two Meeting Tasks

5.2 Analysis of Figure3
After splitting the global task into session-level subtasks, the convergence speed and recognition
accuracy of the model have been visibly improved. Taking two random meetings as an example, the
first meeting (red line in the figure) converged slightly faster and reached a peak of 0.7 at the 11th
epoch, and the verification accuracy was slightly lower than 0.7 after the 11th epoch; the second
meeting (blue line) converged slightly slower, but reached a peak of 0.84 at the 17th epoch, then fell
back slightly and remained in the range of 0.79–0.82 throughout the second half.

Figure 3(a) shows the training loss and verification loss trends of the two meetings. The two
training curves dropped from 1.6–1.8 to below 0.6 in the first 3–4 epochs, and were basically close
to 0 after the 10th epoch. The verification loss also declined synchronously and quickly entered
the platform. It is worth noting that the training loss and validation loss of the two sessions always
maintained a narrow gap, and there was no phenomenon of training loss continued to decline while
validation loss rebounded, indicating that the model capacity was limited after the encoder was
frozen, and the risk of overfitting was naturally controlled.

Figure 3(b) depicts the evolution trajectory of validation accuracy with epoch. Both meetings’
curves show the typical form of rapid climb and gradual stabilization: the first meeting broke through
0.60 in the 6th epoch and tended to a platform after the 14th epoch; the second meeting rose faster,
reaching 0.64 in the 5th epoch and peaking at 0.84 between the 17th and 19th epochs. Although there
were slight fluctuations thereafter, it always remained at a high level without accuracy collapse.

5.3 Analysis of Figure4
Figure 4 shows the final Top-1 validation accuracy of the five meetings of all meetings: S02C01
leads with 0.839, followed by S05C01 with 0.790; S01C01 stabilizes at 0.708, while S03C01 and
S04C01 are 0.690 and 0.694, respectively. The overall distribution falls in the 0.69–0.84 interval,
with a mean of 0.744 and a standard deviation of 0.060, which is significantly higher than the 0.503
of the global baseline model by 24%.

The results show that limiting the recognition task to the session can effectively alleviate the
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Figure 4: Examples of Meeting Validation Accuracy

mismatch between the training and evaluation domains, allowing the model to make full use of
the relatively consistent acoustic conditions and speaker set of the same meeting, thereby greatly im-
proving the accuracy. More importantly, even in the face of background noise, overlapping speeches,
and temporary interruptions in real meetings, the frozen encoder wav2vec2 can still maintain stable
speaker differentiation capabilities, verifying the robustness of the pre-trained representation.
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6 Discussion

6.1 Validation of the Hypothesis
The results of this study verify the initial hypothesis: even under the condition of completely frozen
encoder, the wav2vec 2.0 model pre-trained on the Mandarin ASR task can still significantly im-
prove the Mandarin speaker recognition performance in real conference scenarios. The session-level
transfer model showed faster loss convergence and higher steady-state accuracy in all experimen-
tal sessions, which is an average improvement of more than 20% and a maximum accuracy im-
provement of 36% compared with the global baseline. This shows that under the conditions of
reduced task boundaries and relatively consistent acoustic environments, the model can fully utilize
the speaker information already contained in the pre-trained representation to quickly complete the
adaptation. The results once again confirm the effectiveness of ”freezing the encoder and fine-tuning
the lightweight classification head” paradigm, and also show that the self-supervised representation
still retains a high degree of speaker discrimination in complex conversation environments.

The experiment also highlights the actual advantage of the session-level strategy in terms of
training efficiency. The transfer model generally not only reaches best validation accuracy before
epochs 20, but also outperform the global baseline model by more than 20% - 30% in validation
accuracy. Since fine-tuning parameters are limited to the classification head, the memory usage
is always maintained at a low level, allowing a medium-sized single-card GPU to handle multiple
meeting tasks simultaneously. This resource-friendly feature provides a direct and feasible deploy-
ment solution for real-time application scenarios such as online meeting transcription, automatic
minutes generation, and privacy local reasoning, and reduces the technical threshold for small and
medium-sized teams to enter the field of speaker recognition.

From a theoretical perspective, this study further expands the evidence landscape of cross-task
migration of self-supervised representations. Most previous verification work focused on clean
recordings or speaker verification tasks, while this study gave positive results on noisy, overlapping,
and highly spontaneous meeting corpora; this shows that the representations learned by wav2vec 2.0
are not only robust to speech content, but also highly versatile to speaker characteristics. More im-
portantly, experiments show that even when there is a significant domain mismatch between training
and evaluation, pre-trained features can still maintain recognition accuracy, which lays a method-
ological foundation for subsequent migration research on multi-language and cross-dialect meeting
scenarios.

Overall, the finding emphasizes the feasibility and efficiency of using the freezing the encoder
and fine-tuning the lightweight classification head strategy in real applications, and provides a strong
reference for building low-resource, fast-deployment speaker recognition systems in the future. It
also provides new ideas and experimental basis for multi-domain generalization and cross-language
transfer research.

6.2 Limitations
Although the session-level experiments have achieved significant accuracy improvements, the cur-
rent approach still has several specific limitations in model design and data strategy.

Firstly, the entire training process keeps the encoder completely frozen and only fine-tunes a
single-layer linear classifier. This minimalist approach emphasizes the transferability of pre-trained
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representations, but at the same time limits the model’s further adaptation to the details of the target
domain; in scenarios with extreme speech noise or greater differences in speaking styles, the freez-
ing strategy may have difficulty capturing additional discriminative features. Subsequent work that
allows for selective unfreezing of high-level Transformer layers can release more representational
capabilities while remaining resource-friendly.

Secondly, the current system only uses mean pooling, ignoring fine-grained speaker features such
as temporal changes and stress distribution, which may cause ambiguity in speeches with highly
variable speech rates or strong emotional expressions. Replacing it with statistical pooling (mean
and standard deviation), self-attention pooling, or multi-layer feature fusion (layer aggregation) is
expected to compensate for the loss of temporal information and improve the model’s sensitivity to
differences in speaking styles.

Thirdly, the classifier structure is only a single-layer linear mapping with a very small number of
parameters and limited ability to fit complex decision boundaries. When the number of speakers in
a conversation increases or the speakers’ voice features are close to each other, a single-layer linear
model may not be able to fully separate the embedding space. In the future, we can try to combine
two-layer MLP, BatchNorm and Dropout to improve the mapping accuracy of high-dimensional
embedding to probability distribution.

Furthermore, the feature range is limited to the output of the last layer of the encoder, and the
multi-granular speaker clues carried by different levels of representation are not utilized. Studies
have shown that low- and medium-level features focus more on acoustic details, while high-level
features focus more on semantic patterns; through layer fusion or attention weighted aggregation,
timbre and pronunciation habit information can be used at the same time. In the future, under the
same freezing strategy, weighted combination of multi-layer features, or introduction of multi-head
projection to capture cross-layer complementary information, may further improve the ability to
distinguish speakers, especially in long overlapping speech segments.

Finally, the limitation at the data level is mainly reflected in the coverage of AISHELL-4 corpus.
Although this dataset contains natural conversations and overlapping speech, it is still limited to
Mandarin conferences, and the age and gender of the speakers are relatively concentrated, which
may cause the model to perform poorly in conferences with extreme gender ratios or strong dialect
accents. In the future, the external validity of the model can be further tested by supplementing multi-
conference data across industries and dialects and adding hierarchical evaluation to the experimental
design.
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7 Conclusion
This paper focuses on the core question of how effectively can a Mandarin ASR-pretrained wav2vec
2.0 model be adapted to perform speaker identification in real-world Mandarin conference speech,
and what are the impacts of task and domain transfer mechanisms on its performance. The following
conclusion section will first summarize the key findings of this study and point out the actual benefits
of the conversation-level transfer strategy in terms of accuracy and training efficiency; then refine
the main contributions and limitations of this work, and propose several targeted follow-up research
directions based on this; finally, briefly reflect on the potential impact of this study on conference
transcription, real-time collaboration, and the development of resource-constrained speech systems.

7.1 Summary of the Main Contributions
The contributions of this study can be summarized into three points, focusing on the verification of
the transferability of pre-trained representations, the robustness evaluation under domain mismatch
conditions, and the design of a deployment-oriented session-level training framework.

1. Verify the transferability of ASR pre-trained representations, especially speaker distinguisha-
bility

The primary contribution of this study is to empirically verify whether the representations of the
ASR pre-trained model are speaker separable under Mandarin conference speech conditions. By
completely freezing the encoder parameters of the wav2vec2-large-xlsr-53 model, the study effec-
tively separated the effects of pre-trained representations and downstream task fine-tuning. Exper-
imental results show that these pre-trained representations still retain rich speaker identity infor-
mation even without modifying the model backbone structure. In particular, under the conditions
of overlapping speech, informal speech, and frequent changes in speech speed, the model can still
achieve a relatively stable Top-1 recognition accuracy. This finding provides theoretical support for
further development of fast-deployable speaker recognition systems under low-resource conditions.

2. Evaluating model robustness in domain transfer: from prepared spoken speech to real confer-
ence speech

The second key contribution of this study is the in-depth experimental evaluation of model trans-
fer performance under domain mismatch conditions. The pre-training data of the wav2vec 2.0 model
mainly comes from clean, structured, and standard-pronounced spoken speech, while the target do-
main of this study is highly spontaneous, interactive, and complex conference speech. By construct-
ing the AISHELL-4 conference speech data as a per-session N-way classification task, this study
simulates the speaker recognition needs under a real-world deployment condition and evaluates the
generalization ability of the model in unseen domains. The results show that even if the model has
never seen training samples under such speech conditions, it can still maintain an accuracy signif-
icantly higher than random guessing in most tasks, showing good transfer robustness. This finding
shows that the representation of wav2vec 2.0 has implicitly learned speech features that are available
across tasks and scenarios during the pre-training process.

3. Proposing a scalable session-level training framework that is close to real-world deployment
needs

This study also proposed and implemented a scalable session-level speaker recognition training
framework. This framework treats each meeting as a subtask unit, and realizes the automated train-
ing, verification, and model preservation of multiple subtasks while maintaining the consistency of
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model structure and parameters. This method not only improves experimental efficiency, but also
simulates the operation of the system in real scenarios - that is, initializing the recognition model
based on existing data before each meeting, without the need to globally train a general system. This
type of setting is particularly important for resource-constrained scenarios (such as small organi-
zations, mobile devices, and edge deployments), and provides a practical path for deployment and
application in the real world.

7.2 Future Work
Based on the proven feasibility of the transfer learning framework, subsequent research can be fur-
ther deepened along five complementary directions, which can not only improve model performance
but also broaden practical application scenarios.

First, at this stage, the system only completes conversation-level recognition by stacking a
lightweight classification head on top of the pre-trained encoder. This modification strategy may
still have performance bottlenecks in noisier, more unstable speech speed or more densely overlap-
ping scenarios. In the future, we can try to gradually unfreeze the high-level Transformer so that
the model can adapt to the target domain overlap type, microphone frequency response difference
or background noise form in a more detailed way while maintaining the general representation of
the underlying layer; we can also assign differentiated learning rates to different layers so that the
high-level converges quickly while the bottom layer remains stable, thereby balancing generaliza-
tion and specialization. In addition, by introducing parameter-efficient strategies such as LoRA or
Adapter modules, only a small amount of learnable matrices can be inserted into the encoder, which
can significantly improve task-specific performance while almost unchanged video memory usage,
which is particularly useful for mobile terminals and edge hardware with limited resources.

The second research direction is systematic cross-language evaluation. Although the wav2vec2-
large-xlsr-53 used in this study performs robustly in Mandarin conference scenarios, its pre-trained
weights contain rich multilingual information and have not yet fully tapped the potential for cross-
language transfer. In the future, languages with similar tonal systems such as Cantonese, Thai, and
Vietnamese can be selected to observe whether the model can maintain discrimination under changes
in tone contours and rhythmic patterns; at the same time, non-tonal languages such as Japanese,
Korean, or French can also be selected to test the model’s sensitivity to differences in phoneme sets
and resonance peak distributions. By comparing the loss curves and recognition accuracy rates on
different target languages, the impact of the acoustic distance between the pre-training language and
the target language on the transfer benefit can be depicted, thereby providing empirical evidence for
the deployment strategy of multilingual conference systems.

The third direction is to expand closed-set recognition to open-set and online scenarios. In real
remote collaboration platforms, participants often join or leave temporarily, and the fixed speaker
list assumption may become invalid at any time. To enable the system to have dynamic expan-
sion capabilities, an incremental clustering algorithm can be superimposed on the embedding space
to maintain the known speaker center in real time and trigger the creation of new categories for
segments outside the distance threshold; an online version of prototypical loss can also be used to
enable the model to continuously update the prototype vector during the inference phase and gradu-
ally absorb new speaker information. For complex conversations, a speaker turning point prediction
module is also required, which combines VAD, contrastive learning constraints, and speaker overlap
detection logic to stably switch output labels when multiple speakers interrupt each other. If this
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capability can be verified in an end-to-end pipeline, it will significantly improve the practicality of
the system in real-time meetings and call center environments.

The fourth direction focuses on long-term audio and context modeling. Mandarin meetings
often last from tens of minutes to several hours, and sentence-level embedding alone can easily
ignore macro clues such as emotional progression, topic jumps, and speech order. Bidirectional
LSTM or GRU can be superimposed on the backend of wav2vec 2.0 representation to associate
contextual states for each utterance; when the length of the meeting increases further, Transformer-
XL or Longformer can be used to process long sequences of more than 1000 frames, retaining cross-
segment attention while maintaining linear complexity; if it is necessary to persist the historical
speaker information, the introduction of external memory modules or key-value attention memory
can greatly improve the accuracy of cross-round tracking and avoid misjudging the speaker identity
during topic loops or speech backtracking.

Finally, the fusion of multimodal information deserves further exploration. Speech signals are
easily distorted in scenes with severe overlap, and meetings are often accompanied by video stream-
ing, shared screens, and text chat records. Face detection and lip segmentation can provide visual
confirmation when speeches overlap; with the help of real-time subtitles or notes, the semantic con-
tent can be further verified to match the speaker’s preferred vocabulary. When audio quality degrades
or network packets are lost, multimodal redundancy will effectively reduce the misrecognition rate.
In the future, a shallow alignment strategy can be adopted in the model architecture: first extract
speech, vision, and text embedding separately, and then use cross-modal attention for low-parameter
fusion; you can also try to unify the Transformer and synchronously encode multimodal tokens in the
time dimension to ensure that the inference delay meets the strict requirements of real-time meetings.
Through these improvements, it is expected that the accuracy and interpretability of speaker recog-
nition will be further improved in extreme scenarios such as unstable telecommunication quality or
heated debates among multiple speakers.

7.3 Impact & Relevance
The most direct significance of this study is that it provides an operational transfer learning path for
low-resource scenarios. Experiments show that the wav2vec 2.0 encoder based on Mandarin ASR
pre-training can still complete reliable speaker recognition in noisy, multi-speaker and highly in-
teractive conference speech without fine-tuning the backbone network. For educational institutions,
small businesses and individual developers that lack large-scale labeled corpora or have limited com-
puting conditions, the pre-trained model can serve as a general voice perception front end to quickly
support core functions such as conference attribution annotation, customer conversation quality in-
spection or voice interface optimization, significantly reducing the threshold and cost of system
implementation.

In practical applications, the session-level transfer framework proposed in this study directly
meets the needs of multi-user scenarios for speaker tracking. Online conference platforms can use
this framework to automatically complete speaker labels and subtitle attribution, multilingual voice
assistants can distinguish family members and return personalized instructions based on this, auto-
matic minutes tools can use high-confidence speaker information to improve the accuracy of opin-
ion extraction, customer service analysis systems can fine-grainedly segment customer and agent
speeches to support service quality evaluation, and barrier-free voice interaction devices can prompt
the current speaker identity for hearing-impaired users. The deployment of transfer learning solu-
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tions in these scenarios does not require retraining the entire network. It only needs to fine-tune the
classification head for the local area of the conversation before it can be put into use, providing a
replicable technical path for production-level systems.

From a methodological perspective, this study strengthens the new development paradigm of
”pre-training plus task specialization”. Compared with traditional end-to-end supervised learning,
first using large-scale unsupervised data to learn a general representation and then superimposing
a lightweight adaptation layer on it can significantly shorten the development cycle and training
resources, improve the portability of the model and reduce the difficulty of reproduction. Speaker
recognition experiments have confirmed that this paradigm is also applicable to paralinguistic tasks,
providing a feasible reference for other applications such as voice activity detection, emotion recog-
nition and even semantic segmentation, and laying a practical foundation for future research in multi-
task joint and hierarchical sharing.

More broadly, the research results have promoted the upgrade of voice systems from content
transcription to identity and context perception. As voice gradually becomes the core interface for
human-computer interaction, applications are no longer only concerned with ”what is said”, but
need to answer ”who is saying it”, ”who is saying it to” and ”in what context” in real time. The
conversation-level recognition capability demonstrated in this study shows that the lightweight solu-
tion based on pre-trained features is fully capable of meeting the needs of real-time identity percep-
tion, and provides a solid technical foundation for the seamless integration of speaker attributes and
context labels in dialogue management, intelligent assistants and multimodal interaction systems in
the future.
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Appendices

A Declaration of AI use in a master thesis
Declaration

I hereby affirm that this Master thesis was composed by myself, that the work herein is my own
except where explicitly stated otherwise in the text. This work has not been submitted for any other
degree or professional qualification except as specified, nor has it been published. Where other
people’s work has been used (from any source: printed, internet or other), this has been carefully
acknowledged and referenced. In the process of preparing this paper, I used ChatGPT 4o to complete
the following tasks: 1. In the literature research stage, I used it to sort out and summarize the
literature to speed up the efficiency of reading literature. 2. In sections 2.2.1 and 2.2.2 of the
literature review part, I used it to reorganize some complex sentences. 3. In sections 3.2 and 3.3 of
the model architectures, I used it to generate alternative explanations for the technical concepts. 4.
In the experimental part of Chapter 4, I used AI to understand the architecture of the model, create
some initial code, and use it to debug the model. 5. In Chapter 5, I used AI to generate the code of
generating the figure templates. All content was subsequently reviewed, verified, and substantially
modified by me.

Sixing Mi / June 11, 2025
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