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Abstract

The number of individuals affected by visual impairments worldwide continues to rise, creating a
growing need for real-time assistive technologies that can enhance navigation, situational aware-
ness, and independence. While current assistive tools provide valuable support, they often suffer
from high latency, lack of contextual clarity, and prohibitive costs. Recent advancements in neural
text-to-speech (TTS) systems, such as FastSpeech 2 and ChatTTS, offer an opportunity to bridge
this gap by delivering fast, natural-sounding speech. This thesis focuses on optimizing low-latency
TTS pipelines tailored for real-time assistive applications. The project will benchmark state-of-
the-art TTS models, apply optimization strategies such as post-training quantization, TensorRT ac-
celeration, and enhance input text clarity through prompt engineering and lightweight rephrasing
of outputs from vision-language models like BLIP-2. By addressing these problems, this research
aims to create a complete, accessible, and responsive assistive voice pipeline that empowers visually
impaired users to interact with their environment more safely and effectively.
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1 Introduction

Visual impairment affects more than 250 million individuals worldwide, posing serious challenges
in daily tasks such as navigation, object recognition, and environmental awareness. Assistive tech-
nologies, including screen readers, audio navigation aids, and object description applications, have
long played a critical role in promoting the independence of visually impaired users. However,
despite their value, many existing solutions suffer from critical limitations: delays in generating
spoken feedback, insufficient contextual clarity, and high costs that limit accessibility to a broader
population.

Recent advances in neural text-to-speech (TTS) systems, such as FastSpeech 2 and ChatTTS,
offer promising new opportunities. These models can generate natural and fluent speech at signif-
icantly faster speeds than traditional autoregressive architectures, suggesting the potential for real-
time, low-cost assistive technologies that transform visual inputs into accessible auditory descrip-
tions. Nevertheless, the direct deployment of these models in real-world assistive settings introduces
new challenges that require careful consideration.

While models like FastSpeech 2 and ChatTTS deliver high-quality speech, their default configu-
rations are not fully optimized for the stringent demands of real-time assistive applications. In such
contexts, it is not sufficient for speech to sound natural; it must also be generated with extremely low
latency, achieve high intelligibility, and deliver concise, contextually relevant information. More-
over, the textual inputs feeding these TTS systems—typically outputs from visual-language models
like BLIP-2—often require rephrasing and refinement to ensure that the resulting speech is clear,
spatially meaningful, and immediately actionable for the user.

Thus, without dedicated optimization for both inference speed and linguistic clarity, even state-
of-the-art TTS systems remain inadequate for building fast, responsive, and accessible assistive
pipelines.

Current research in TTS optimization primarily focuses on general-purpose applications such as
virtual assistants, audiobook narration, or dialogue systems, where trade-offs between speed, clarity,
and expressiveness are tolerated differently. Few studies explicitly target the unique constraints of
assistive use, where intelligibility and near-instantaneous feedback are critical for user safety and
autonomy. In particular, the integration of vision-language captioning with optimized TTS models
for real-time assistive use cases remains an underexplored area.

Addressing this gap is crucial for translating recent breakthroughs in speech synthesis into prac-
tical, life-enhancing technologies for people with visual impairments.

This thesis proposes a comprehensive approach to optimizing low-latency TTS systems for real-
time assistive applications. The project will:

1: Benchmark and optimize FastSpeech 2 and ChatTTS models through post-training quantiza-
tion, TensorRT acceleration, and so on;

2: Improve the clarity and conciseness of text inputs by applying prompt engineering and lightweight
rephrasing techniques to outputs from visual-language models like BLIP-2;

3: Evaluate the complete system using latency measurements, subjective Mean Opinion Score
(MOS) testing with 30 listeners, and objective metrics such as Word Error Rate (WER).
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By addressing both model efficiency and input clarity, this research aims to bridge the gap be-
tween research-grade TTS technologies and real-world assistive applications.

Now that the motivation for this research has been presented, the structure of this thesis is as
follows:

1.1

Section [I.T] presents the research questions and hypotheses

Section 2] reviews relevant literature and positions this work within current research
Section 3| describes the methodological approach

Section 4| details the experimental setup

Section [5| presents and analyzes the results

Section [6| discusses implications and insights

Section [/|concludes with key findings and future directions

Research Questions and Hypotheses

In light of the preceding discussion, this research addresses the following question:

[How can state-of-the-art low-latency T'TS models such as FastSpeech 2 and ChatTTS
be optimized and integrated with vision-language outputs to deliver high-quality,
real-time speech output for assistive applications, balancing the trade-offs between
latency, naturalness, and intelligibility?]

This main question can be broken down into the following sub-questions:

How does post-training quantization (e.g., FP32 to FP16/INT8) impact the latency and speech
quality of FastSpeech 2 and ChatTTS models?

Can ONNX acceleration significantly reduce inference time while preserving Mean Opinion
Scores (MOS) above 4.0?

Does rephrasing and optimizing vision-language model outputs (e.g., from BLIP-2) improve
the intelligibility and contextual clarity of synthesized speech?

What are the measurable trade-offs between reducing latency and maintaining intelligibility
in real-time assistive applications?

Hypothesis:

Applying INT8 post-training quantization to FastSpeech 2 and ChatTTS will achieve a latency
reduction of at least 30% compared to baseline FP32 models, while maintaining a MOS score of 4.0
or higher.

ONNX accelerated TTS models will achieve at least 1.5x faster inference speeds compared to
their unoptimized PyTorch versions without significant loss of naturalness or intelligibility.
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Rephrasing vision-language outputs before TTS synthesis will reduce Word Error Rate (WER)
by at least 10% and improve user comprehension in assistive feedback scenarios.

These hypotheses will be tested through a combination of latency benchmarks, subjective MOS
evaluations, intelligibility measurements (via WER), and robustness assessments under noisy condi-
tions.
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2 Literature Review

This section reviews research on speech synthesis, model optimization, and assistive vision-language
systems. It focuses on developing low-latency, easy-to-understand text-to-speech (TTS) systems
combined with real-time image captioning for assistive use. Although modern TTS models like
FastSpeech 2 and ChatTTS can produce fast and natural speech, they are not fully optimized for
real-time needs in helping blind or visually impaired users. Similarly, models like BLIP-2 and
ChatCaptioner create detailed captions, but these are often too long or unclear for direct speech
output. This literature review highlights the main challenges in current systems and shows why
further improvements are needed for real-time assistive applications.

2.1 Search Strategy and Selection Criteria

29 9

* Low-Latency TTS: ’low-latency TTS”, "FastSpeech 2 optimization”, “’real-time speech syn-
thesis”

* Evaluation Metrics: "MOS evaluation speech”, ”TTS intelligibility benchmark™, “speech
intelligibility metrics”

The following inclusion and exclusion criteria were applied:

1. Inclusion: Research published between 2016 and 2024 focused on neural TTS or latency-
focused speech synthesis.

2. Inclusion: Papers evaluated using human perceptual metrics (e.g., MOS) or intelligibility tests
(e.g., WER).

3. Exclusion: Non-neural or outdated TTS systems.

4. Exclusion: Articles without experimental results or performance benchmarks.

2.2 [Assistive Technologies for Visual Impairment]

Visual assistance tools, such as Seeing Al and BeMyEyes, use either human volunteers or object
detection pipelines to narrate surroundings. While these solutions are powerful, they have their own
limitations. Seeing Al relies on a cloud architecture that requires networking when complex scenes
need to be described, which limits its speed and independence. BeMyEyes not only needs to be con-
nected to the internet, but also relies on real-time responses from volunteers, making the operation
more complex. Kaur, Ganore, Doiphode, Garud, and Ghuge| (2017) Literature highlights the need
for local, real-time audio feedback systems tailored to user navigation and scene understanding.

2.3 [Neural Text-to-Speech (T'TS) Systems]

FastSpeech 2 and ChatTTS represent major strides in speech synthesis by improving naturalness and
inference speed. FastSpeech 2 uses non-autoregressive techniques and duration prediction, making
it more suitable for latency-critical applications.Ren et al.| (2022) However, real-time deployment
still requires post-training optimization, particularly when integrated with real-world vision inputs.
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The success of these models depends not only on synthesis speed but also on clarity, especially in
assistive settings.

2.4 [Vision-Language Models and Captioning]

The ChatCaptioner model can describe images in rich detail, but due to its use of large language
models (LLMs), it suffers from long latency, making it unsuitable for blind users who require near-
instant feedback/Chen, Zhu, Haydarov, Li, and Elhoseiny (2023) BLIP and BLIP-2 are more effi-
cient vision-language models that can generate relevant descriptions, but their outputs are not op-
timized for clarity or speech intelligibility/L1, Li, Savarese, and Hoi (2023) Prompt design (e.g.,
“Describe this image for a blind user”) can improve caption relevance, but many cases still require
post-processing, such as rule-based rephrasing or sentence restructuring. This project proposes a
lightweight transformation module that restructures caption outputs into concise, spatially grounded,
and speech-friendly text.

2.5 [Inference Optimization Techniques]

To meet real-time constraints, TTS systems must be optimized beyond their base configurations.
Several techniques are key:

* Quantization: This technique compresses models by converting weights from floating-point
(e.g., FP32) to lower-precision formats (e.g., INT8). Wu et al. Wu, Judd, Zhang, Isaev, and
Micikevicius| (2020) showed that INT8 quantization could reduce inference latency by up to
4x on CPUs, with minimal impact on perceptual quality. This makes quantization especially
suitable for low-power or edge deployment.

* TensorRT Acceleration: TensorRT is a deep learning inference engine that compiles models
into optimized CUDA kernels for NVIDIA GPUs. It supports multiple optimizations such as
layer fusion, FP16/INT8 precision calibration, and kernel tuning.Zhou and Yang (2022) These
improvements are particularly beneficial for non-autoregressive TTS models, where linear
layers and convolutions dominate the computation cost.

2.6 [Human Factors in Speech for Assistive Use]

Speech interfaces for visually impaired and elderly users must prioritize intelligibility, speed, and
clarity over naturalness and emotion. Human-centered design literature emphasizes that overly ex-
pressive speech may become a distraction rather than an aid in practical tasks. The quality of assistive
speech is commonly evaluated through a mix of subjective and objective metrics:

* Mean Opinion Score (MOS): A subjective scale (1-5) where human listeners rate the quality
and clarity of synthesized speech. In assistive use cases, it should prioritize intelligibility over
naturalness.International Telecommunication Union| (1996))

* Word Error Rate (WER): WER is calculated by comparing ASR transcriptions of synthe-
sized speech to the original text. It provides a proxy for how well users might understand the
spoken content/Goldwater, Jurafsky, and Manning (2010)
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* Short-Time Objective Intelligibility (STOI): STOI evaluates how understandable a signal is
under noisy conditions. It is particularly relevant for outdoor or unpredictable acoustic envi-
ronments and is commonly used in enhancement and TTS evaluation studies.,Taal, Hendriks,
Heusdens, and Jensen| (2011))

This project will combine these three metrics to evaluate the trade-offs between clarity, latency,
and naturalness in real-time applications.

2.7 [Summary of Literature Review]

Although prior research has achieved notable success in improving the speed and quality of TTS
models, and in designing captioning systems for images, there remains a significant gap in com-
bining these elements into a unified, low-latency, and intelligibility-optimized pipeline for assistive
technologies. Most existing literature fails to address the specific needs of visually impaired users
who require fast, unambiguous speech feedback grounded in real-world perception. This thesis
aims to close this gap by optimizing inference speed and input clarity across the full system, from
vision-language captioning to final speech synthesis, using tools like quantization, TensorRT, and
prompt-aware rephrasing.
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3 Methodology

This section outlines the methods used to design, optimize, and evaluate real-time assisted speech
pipelines designed to provide a rapid, understandable description of the environment for blind users.
The methodology includes an overview of the selected dataset, the architecture and functionality of
the core model, quantification and optimization strategies, experimental configuration for delayed
evaluation, and ethical considerations during the study.

3.1 Dataset Description

In order to rigorously evaluate system performance without introducing training variability, this
study uses only datasets for testing and inference. Two types of data sources are used:

* Vision-Language Input: A curated set of 20 real-world images drawn from the COCO 2017
validation setLin et al.| (2015) and VizWiz 2020 datasetGurari et al.| (2019) was used to eval-
uate the BLIP image captioning system. The images include diverse everyday scenes such as
roads, vehicles, indoor objects, and people. These were selected to reflect scenarios that visu-
ally impaired users might encounter, aligning with the intended assistive application context.
Captions were generated using the BLIP base model, with either full PyTorch inference or a
hybrid ONNX-PyTorch configuration.

* TTS Input and Output: The captions generated by BLIP served as direct input to a pre-
trained English FastSpeech 2 model for speech synthesis. No fine-tuning was performed.
FP32, FP16 and INTS inference modes were tested to evaluate latency and intelligibility trade-
offs. The synthesized audio was also evaluated with Whisper ASR to compute automatic
transcription and word error rates (WER).

The images were resized to 384 times 384 pixels using OpenCV and normalized according to
ImageNet standards. They were not annotated or labeled manually and served solely as BLIP input
to test captioning latency and quality. The English subset of CSS10Park and Mulc|(2019) consists of
high-quality audio and aligned transcripts that make it suitable for evaluating text-to-speech systems,
especially when measuring intelligibility via automated transcription tools.

3.2 Core Methods and Models

The system architecture consists of a sequential pipeline that combines a visual language model and
a text-to-speech model. The pipeline is structured to simulate how a visually impaired user interacts
with a wearable or handheld assistive device that captures images and provides audio feedback about
the scene.

* BLIP (Bootstrapped Language-Image Pretraining): The BLIP model is a transformer-
based vision-language model that generates natural language descriptions from input images.
It was selected for its ability to generate rich, contextually relevant captions in a zero-shot
setting. BLIP was used without any domain adaptation.
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» Caption Rephrasing Module: This module applies a set of hand-crafted transformation rules
to simplify the output of BLIP. These include removing extraneous adjectives, resolving pro-
nouns to explicit nouns when possible, and reordering phrases to prioritize spatial and action-
able content. The rephrasing was done to improve downstream intelligibility when the caption
is synthesized into speech.

* FastSpeech 2: FastSpeech 2 is a non-autoregressive TTS model known for low latency and
high-quality synthesis. It separates duration prediction from synthesis, enabling faster infer-
ence than autoregressive models like Tacotron 2. A pre-trained English model was used to
synthesize rephrased captions into spoken audio.

The modular design of the pipeline allows components to be optimized independently. Outputs
from each module were passed forward, making it easier to swap models or evaluate changes.

3.3 Technical Framework

The entire system was implemented in Python, utilizing the following major libraries and frame-
works: PyTorch: Used for running BLIP and FastSpeech 2 models. PyTorch’s flexibility allowed
experimentation with both full and half-precision inference modes. HuggingFace Transformers:
Provided pretrained checkpoints for BLIP and model export tools for ONNX conversion. ONNX
Runtime: Used to run BLIP on CPU after exporting from PyTorch. Expected this to significantly
reduce inference latency. TorchScript and AMP: Employed to quantize FastSpeech 2 to FP16 pre-
cision and improve GPU inference efficiency. Dynamic Quantization: Used to convert linear layers
in the FastSpeech2 model to use int8 operations on CPU at runtime. OpenAl Whisper: Used as the
transcription engine to measure Word Error Rate (WER) of synthesized audio.

Text inputs and outputs between modules were passed in pipeline. Audio outputs were saved in
WAV format with a sample rate of 22050 Hz and a bit depth of 16.

3.4 Model Optimization Techniques

To achieve real-time performance, two key optimizations were applied:

* FP16 Quantization of FastSpeech 2: Using PyTorch AMP (Automatic Mixed Precision),
inference for FastSpeech 2 was carried out in half precision. This allowed a 20—40% reduction
in inference time on GPU, without compromising perceptual speech quality. Quantization was
achieved through mixed-precision wrappers and JIT compilation.

* BLIP to ONNX Export: Since BLIP does not support FP16 and the GPU version is not
supported by the system files, the model was exported to ONNX (opset 16) and executed on
CPU. The ONNX model achieved faster inference time than the PyTorch baseline when batch
size was fixed to 1 and memory operations were optimized.

No weight pruning or distillation was applied, as the focus remained on deployment ready models
using post-training inference improvements.
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3.5

Latency Configuration Sets

To benchmark the trade-offs between latency and output quality, five experimental configurations
were tested:

1.

6.

Set 1: BLIP-GPU + FS2-GPU (FP32): A full-GPU baseline using original PyTorch models
in default precision. Useful for comparing against accelerated setups.

. Set 2: BLIP-GPU + FS2-GPU (FP16): The same as Set 1, but with FastSpeech 2 converted

to FP16 for faster synthesis.

. Set 3: BLIP-CPU (PyTorch) + FS2-GPU (FP16): BLIP inference moved to CPU to simulate

partial acceleration or limited GPU access.

. Set 4: BLIP-ONNX (CPU) + FS2-GPU (FP16): Most optimized configuration, with ONNX-

accelerated BLIP and FP16 FastSpeech 2.

. Set 5: BLIP-CPU + FS2-CPU (FP32): A fallback configuration tested for low-end or em-

bedded devices.

Set 6: BLIP-GPU + FS2-CPU (INTS): A configuration test using the INTS8 for FastSpeech?.

Each configuration used the same 20 image-caption samples for fair comparison. Latency was
measured from the moment the image was loaded to the moment the synthesized WAV file was
saved.

3.6

Evaluation Methodology

The system was evaluated through both subjective and objective means:

* Latency: Inference latency was measured using Python’s time module. Measurements were

recorded for each of the pipeline BLIP image captioning and FastSpeech 2 speech synthesis
across various configurations (e.g., FP32, FP16, and ONNX). This enabled a detailed compar-
ison of performance under different deployment setups.

Word Error Rate (WER): To evaluate the intelligibility of synthesized speech, generated au-
dio was transcribed using OpenAI’s Whisper ASR model. The transcriptions were compared
against the expected text captions to compute the word error rate (WER). Lower WER values
indicate clearer and more intelligible synthesis output.

Mean Opinion Score (MOS): Thirty participants, blind to the system configuration, were
asked to rate 20 audio samples per setup on a 1-5 scale based on intelligibility and perceived
naturalness.

All test cases were repeated three times with random shuffling to eliminate ordering bias in
evaluation.
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3.7 Ethics and Research Integrity

This research was conducted in accordance with institutional ethical guidelines, particularly con-
cerning responsible Al use and fair evaluation practices.

3.7.1 Data Ethics and Privacy

No personally identifiable or sensitive data was used. All datasets were sourced from publicly avail-
able, research-licensed repositories. All voice samples in are synthetic and do not represent identi-
fiable individuals. All processes comply with the requirements of the GDPR |European Parliament
and Council of the European Union|(n.d.)

3.7.2 FAIR Principles Implementation

* Findable: Datasets and source code are hosted in repositories with permanent URLs and DOI
support.

» Accessible: No authentication is required to access the resources, which are provided under
MIT licenses.

* Interoperable: All data and models use open formats (WAV, JSON, ONNX, TorchScript).

* Reusable: Scripts are fully documented, and setup instructions are provided via README
guides.

3.7.3 Open Science Practices

The entire pipeline has been made available in a public GitHub repository. Contributions from
the community are encouraged under standard open-source contribution policies. The research is
designed to align with transparency and accountability principles in machine learning.

3.7.4 Bias and Fairness

While the dataset is English-only and mono-speaker, the pipeline is modular and can be extended
to multilingual or multispeaker settings. Output captions and synthesized speech were reviewed to
ensure they do not encode or amplify bias. Edge cases were manually inspected to avoid misleading
generalizations.

3.7.5 Environmental Impact

By focusing on post-training quantification and avoiding fine-tuning or retraining large models, the
carbon footprint of this study was kept to a minimum. Most experiments are performed on a single
workstation with no distributed computing or GPU clusters.
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3.7.6 Reproducibility and Replicability

Random seeds, model versions, and system configurations for each experiment are fixed and recorded.
The software environment is containerized, and all dependencies are listed in a reproducible format
(e.g., requirements.txt, Dockerfile). Several tests were carried out to confirm the stability of the
results.

Conclusion: This method provides a robust framework for evaluating real time captioning-to-
speech systems with minimal computational overhead. It isolates inference efficiency as the primary
variable, enabling a centralized analysis of the deployment feasibility of the secondary application.
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4 Experimental Setup

To ensure full reproducibility and clarity in experimental design, this section describes in detail how
the proposed pipeline was tested, optimized, and evaluated. The primary goal of this research is to
enable visually impaired users to receive fast and intelligible spoken descriptions of their surround-
ings. This is achieved by building and optimizing a vision-to-speech pipeline that combines BLIP (a
vision-language model) and FastSpeech 2 (a non-autoregressive TTS model).

The focus of this thesis is not to improve model accuracy via training or fine-tuning, but to reduce
inference latency through post-training quantization and deployment optimization. To evaluate the
trade-offs between speed and output quality, five different configurations were tested across various
combinations of BLIP and FastSpeech 2 execution environments.

4.1 System Architecture Overview

The proposed assistive pipeline consists of the following components executed sequentially:

1. BLIP (Bootstrapped Language-Image Pretraining): Takes an input image and generates a
descriptive caption.

2. Text Rephrasing Module: Performs light syntactic transformation to simplify captions for
speech clarity (e.g., removing redundant clauses).

3. FastSpeech 2: Converts the rephrased text into natural-sounding speech with low latency.

4.2 Data Preparation

Unlike traditional training pipelines, this project uses data solely for testing and inference, without
any fine-tuning or supervised training.

Images for BLIP Inference

To evaluate BLIP captioning performance and test latency across optimization variants, a total of 20
images were collected from two publicly available datasets:

COCO 2017 Validation Set: 10 images were randomly selected to represent common object-
rich indoor and outdoor scenes.

VizWiz 2020 Dataset: 10 images were chosen to reflect real-world assistive contexts such as
navigation, cooking, and object retrieval for visually impaired users.

Images were preprocessed only to match BLIP’s input requirements: 1:Resized to 384 x 384
pixels. 2:Normalized using ImageNet means and standard deviations. 3:Loaded using PyTorch’s
torchvision.transforms.

These images were used repeatedly across all inference sets to ensure fair comparison between
experiments.
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Speech Samples for Evaluation

To evaluate the inference performance and intelligibility of FastSpeech 2, English text inputs were
selected from the test set of the preprocessed corpus. While the CSS10 dataset was used for experi-
ments in other languages, the English synthesis in this evaluation relied on a pre-trained FastSpeech
2 model trained on the LISpeech dataset, which contains 13,100 utterances by a single female En-
glish speaker.

Important: No fine-tuning or additional training was performed.

Audio outputs from FastSpeech 2 were later evaluated for: 1:Word Error Rate (WER) using
Whisper ASR. 2:Mean Opinion Score (MOS) from 10 human raters. 3:Inference latency using
Python’ library:time.

4.3 Hardware and Software Environment
All experiments were conducted on a single system to maintain consistency:
e CPU: Intel Core i5-12400 (6 cores, 12 threads)
* GPU: NVIDIA RTX 4060 GPU (8GB VRAM)
* RAM: 32GB DDR4
* OS: Ubuntu 22.04 LTS

Software stack:

* Python 3.10, PyTorch 2.1.0 (CUDA 11.8)

* HuggingFace Transformers (BLIP), ESPnet (FastSpeech 2)
* ONNX Runtime 1.16.1 (for BLIP-ONNX inference)

* Whisper ASR for transcription and WER

4.4 Quantization and Optimization Strategies

To reduce latency, the following techniques were applied:

* FastSpeech 2 Quantization (FP16)(INT8): Using PyTorch AMP (automatic mixed preci-
sion), inference precision was reduced to FP16. Using dynamic quantization to convert linear
layers in the FastSpeech2 model to use int8 operations on CPU at runtime. This speeds up
matrix operations on GPU while maintaining acceptable quality.

* BLIP ONNX Conversion: Since BLIP cannot run in FP16 mode and GPU inference was
quiet complex to implement under the system, the model was converted to ONNX format
using HuggingFace’s exporter and executed on CPU. This reduced memory overhead and
inference time.

All latency measurements included the full pipeline: image — caption — rephrased text —
audio.
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4.5 Evaluation Metrics

Each configuration was evaluated using the same image and text inputs. The following metrics were
recorded: 1 Latency: End-to-end time from image input to audio output. 2 MOS (Mean Opinion
Score): Subjective speech quality rated on a 1-5 scale by 10 human participants. 3 WER: Whisper
ASR transcribed synthesized speech and compared it to expected text. Lower WER indicates higher
intelligibility.

Each measurement was averaged over 20 random samples.

4.6 Test Configurations

Six distinct experimental configurations were defined:

Experiment 1: Full GPU Baseline (BLIP + FS2 FP32)

The object is to establish a baseline using default GPU inference for both models, without any
optimizations. Details: 1:BLIP runs on GPU using PyTorch FP32. 2:FastSpeech 2 runs on GPU
using full precision (FP32).

Experiment 2: GPU BLIP + GPU FS2 FP16

The object is to test the impact of FP16 inference on FastSpeech 2 latency. Details:1: BLIP remains
on GPU (unoptimized) 2: FastSpeech 2 runs on GPU with FP16

Experiment 3: CPU BLIP + GPU FS2 FP16

The object is to evaluate hybrid CPU+GPU setup for constrained GPU environments. Details:1:
BLIP runs on CPU (PyTorch) 2: FastSpeech 2 on GPU with FP16

Experiment 4: CPU BLIP-ONNX + GPU FS2 FP16

The object is to maximize optimization using ONNX for BLIP and FP16 for TTS. Details:1: BLIP
exported to ONNX and run on CPU with ONNX Runtime. 2: FastSpeech 2 runs on GPU with FP16
Experiment 5: CPU-CPU (Fallback)

The object is to benchmark minimal hardware setup. Details:1: BLIP on CPU (PyTorch) 2: Fast-
Speech 2 on CPU (FP32)

Experiment 6: GPU BLIP + CPU FS2 INT8

The object is to test the impact of INT8 inference but on CPU on FastSpeech 2 latency. Details:1:
BLIP remains on GPU. 2: FastSpeech 2 runs on CPU with INT8
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4.7 Extended Evaluation: Precision-Aware Testing for FastSpeech 2

Following the initial six pipeline configurations, additional experiments were designed to system-
atically analyze the impact of different floating-point precisions and quantization strategies on the
FastSpeech 2 model. While the primary focus remained on inference latency and speech intelligi-
bility, this extended evaluation isolated FastSpeech 2 performance under various configurations to
provide deeper insights into optimization opportunities.

Test Sentences

A set of 20 English sentences, which can reflect diverse syntactic and phonetic structures, was used
and pre-processed to align with the input requirements of FastSpeech 2. These sentences were only
served as input text for benchmarking purposes.

Precision Configurations

To compare the performance trade-offs between precision modes, the following configurations were
tested:

INT8 on CPU: Dynamic quantization was applied using PyTorch’s built-in quantization APIL
This approach can reduce model size and can improve CPU inference speed at the potential cost of
quality.

FP16 on GPU: Automatic mixed-precision inference was activated using PyTorch’s autocast to
leverage FP16 operations on compatible GPUs, this approach can reduce latency and VRAM usage
while maintaining good speech quality.

FP32 on CPU: Standard 32-bit floating-point precision served as a baseline for CPU inference.

FP32 on GPU: Standard 32-bit floating-point precision was used on GPU to benchmark the
default GPU performance.

Repetitions and Averaging

Each of the 20 sentences was synthesized five times per each configuration. This repetition ensures
robustness against random fluctuations in runtime or system load. Then the average latency was
calculated for each configuration to provide a fair comparison of inference performance. These
additional tests are designed to isolate test whether reduced-precision modes FP16 and INTS deliver
consistent performance improvements compared to the default FP32 mode on FastSpeech?2.

4.8 Summary

This section described the test setup used to evaluate inference latency and speech quality of a
BLIP-FastSpeech 2 pipeline under five deployment scenarios and a set of isolate tests to evaluate
whether different precision can affect the latency. Results from these experiments, including MOS,
WER, and latency statistics, are presented in Section [5
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5 Results

This section presents the results of the five experimental configurations described in Section[d] Each
configuration was evaluated using a fixed set of 20 test images to ensure consistency. For each image,
the complete pipeline—from visual input to final synthesized speech—was executed and timed using
Python’s library. Latency values are reported in seconds and refer to the total time from image input
to audio output, including captioning, rephrasing, and speech synthesis.

5.1 Latency Results
Summary Statistics

Table [I| provides descriptive statistics for each experiment. Each configuration was evaluated across
the same 20 image inputs.

Table 1: Latency summary statistics for each experiment (in seconds)

Experiment Mean Std Dev Min Max

Experiment 1 (GPU-GPU, FP32) 2.02 0.06 191 2.16
Experiment 2 (GPU-GPU, FP16) 2.05 0.06 1.94 219
Experiment 3 (CPU-GPU, FP16) 2.85 0.18 2.55 3.28
Experiment 4 (ONNX-GPU, FP16)  3.28 0.05 321 3.38
Experiment 5 (CPU-CPU, FP32) 2.84 0.18 260 3.27
Experiment 6 (GPU-CPU, INTS) 2.11 0.07  2.00 2.28

Latency Distribution

Figure [2] shows the latency distribution per experiment using box plots. These visualize the central
tendency and variability of latency measurements and make it easy to identify the most efficient
configurations.
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Latency Distribution per Experiment
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Figure 1: Latency distribution across all experimental configurations.

5.2 Analysis and Comparison

In this section, we analyze the latency characteristics of all six experimental configurations by com-
paring their performance in detail, exploring both central tendencies (mean latency) and distribu-
tional patterns (variance and outliers). The goal is to understand how hardware choices and opti-
mization strategies affect the overall responsiveness of the assistive speech pipeline and to identify
which trade-offs exist between deployment efficiency and speed.

Experiment 1 vs Experiment 2 (GPU Baselines)

Experiment 1 served as the baseline, where both BLIP and FastSpeech 2 were executed on GPU us-
ing default full-precision (FP32) inference. This configuration produced the lowest average latency
across all configurations at 2.02 seconds, with relatively low variance (standard deviation of 0.06
seconds). This result built a reference point for assessing how subsequent optimizations or hardware
reallocations impact performance.

In contrast, Experiment 2 introduces FP16 quantization for the FastSpeech 2 model while re-
taining BLIP inference on the FP32 GPU. The puzzling point is that the average latency increases
slightly to 2.05 seconds — still within acceptable limits for real-time applications, but contrary to typ-
ical expectations for quantization. Due to faster matrix operations and lower memory throughput,
FP16 computing is often considered to reduce latency, especially on modern NVIDIA GPUs opti-
mized for mixed-precision workloads. However, in this case, the quantified improvement may be
offset, as the BLIP remains in FP32 and dominates the latency profile. Because BLIP is transformer
based and computationally expensive, its processing time can obscure the benefits of optimizing
only TTS components.

These two experiments revealed an important insight: in a multi-part system, end-to-end latency
optimization must address the most computationally expensive part. A small amount of savings
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in the downstream TTS portion does not significantly affect the overall pipeline speed when the
upstream visual language model is still not optimized.

Experiment 3 (CPU BLIP + FP16 GPU TTS)

Experiment 3 examined the impact of offloading BLIP to CPU while keeping FastSpeech 2 on GPU
with FP16 quantization. This setup simulates scenarios where GPU resources may be shared or
partially unavailable, such as edge deployment or embedded use. Latency increased considerably in
this configuration, averaging 2.85 seconds, nearly 0.8 seconds slower than the full GPU pipeline.

The large observed increase in latency can be attributed to the significant computational cost
of running BLIP inference on the CPU, which lacks the parallelism and tensor acceleration found
in GPUs. Despite offloading TTS to an optimized GPU backend, the pipeline is still affected by
the slow title generation step. In addition, the increased standard deviation (0.18 seconds) in this
configuration reflects the variable behavior of CPU bound inference, which is more susceptible to
system-level resource contention and less certain in execution time.

This model emphasizes that placing BLIP on the CPU without effective acceleration or other
optimizations is not appropriate for time sensitive applications.

Experiment 4 (ONNX BLIP + FP16 GPU TTS)

The purpose of Lab 4 is to execute BLIP with ONNX Runtime on the CPU and FastSpeech 2 at
FP16 mode on the GPU, providing a fully optimized hybrid setup. The hypothesis of Experiment 4
is that outputting BLIP to ONNX and taking advantage of the graphics optimizations of the ONNX
runtime (e.g., kernel fusion, reduced memory overhead) will reduce the inference burden on the CPU
and improve performance relative to Experiment 3. It also provides reference information for edge
devices or embedded devices.

Contrary to expectations, this configuration resulted in a maximum average latency of 3.28 sec-
onds. Although the variance is still low (0.05 sec standard deviation), the consistent latency suggests
that the ONNX Runtime performs no better than the original PyTorch on the CPU in this case. There
are several possible factors that contribute to this result: (1) ONNX transformations may introduce
additional preprocessing cost; (2) The architecture of BLIP involves multi stage attention and cross
model embedding, which may not fully benefit from the optimization capabilities of ONNX; (3)
There may be a lack of optimization acceleration when performing certain operations on the CPU at
runtime; (4) The consumption of communication between the CPU and GPU also greatly increases
latency.

Despite this, ONNX may still offer deployment advantages in contexts where PyTorch is not
supported or where memory usage is a greater concern than speed. However, for low-latency audio
feedback applications, this configuration appears suboptimal under current conditions.

Experiment 5 (CPU Baseline)

Experiment 5 represents the fallback configuration, where both BLIP and FastSpeech 2 run en-
tirely on CPU with no quantization or export-based optimization. Its average latency was 2.84
seconds—similar to Experiment 3, which suggests that the primary delay stems from the captioning
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step rather than speech synthesis. The relatively high standard deviation (0.18 seconds) and max-
imum latency of 3.27 seconds further confirm the unpredictable nature of CPU-only pipelines in
real-time systems.

Surprisingly, this configuration is slightly better than Experiment 4 in terms of average latency,
which may be due to the fact that the execution path of native PyTorch is simpler than ONNX under
CPU limitations. While the FastSpeech 2 model running on the CPU is slower than GPU-based
inference, it is still less bottleneck than BLIP at these settings. Therefore, the results show that
optimizing the subtitle step is also important. Optimizing Base’s BLIP model to ONNX actually
adds higher latency.

Experiment 6 (GPU BLIP + INT8 CPU TTS)

Because this FS2 model does not support running INTS8 precision on GPUs, Experiment 6 introduces
an INTS precision FS2 model to be tested on the CPU. One of the motivations for this experiment
is that quantization models are generally smaller and require fewer resources, making them easier
to deploy on low-end hardware or embedded systems. However, the results show that despite the
moderate average latency of the sub-setup (2.11 seconds), the performance is not better than that of
the fastest configuration (Experiments 1 and 2), both of which run on the GPU. The latency standard
deviation (0.07 seconds) is also slightly higher than running with only GPUs, and I think the main
bottleneck is still the cross-device communication overhead between the GPU and the CPU, with the
extra time incurred in transferring intermediate text between devices. And running INTS precision
by the CPU is not necessarily faster than running FP16 precision by the GPU.

Comparative Insights

Figure 2| visually summarizes the latency distributions. It is clear from the box plot that Experiments
1 and 2 exhibit tight clusters around the 2-second mark, making them the most consistent and suitable
candidates for real-time deployment. In contrast, Experiments 3, 4, and 5 show higher latency and
wider distribution ranges, especially in CPU-bound scenarios. Although Experiment 6 is not very
efficient, it can be used as a reference if it is extremely memory sensitive.

Experiment 1 is still the most efficient and balanced configuration, but Experiment 2 should
not be overlooked, especially in energy sensitive or memory-constrained environments, where FP16
inference can reduce power consumption without sacrificing perceptual quality. While ONNX is
expected to deliver better results, its poor performance here highlights the complexity of optimizing
transformer models outside of its native framework.

The evidence strongly supports the design principle of auxiliary pipelines: performance bottle-
necks are not always where expected (e.g., TTS) and the marginal benefit of one module can be
masked by unoptimized upstream components.
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5.3 Extended Precision Testing for FastSpeech2

FastSpeech 2: Precision-Aware Latency Comparison
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Figure 2: Latency distribution across all experimental configurations.

To further test precision and quantify the impact on FastSpeech2 performance, additional tests were
ran specifically for the TTS component. The results confirm that FP16 inference on GPUs consis-
tently achieves the lowest average latency. Specifically, the configuration of the FP32 on the GPU is
about 1.4% slower than the FP16 on the GPU, while the INT8 on the CPU is 1.5% slower than the
FP16 on the GPU. Latency is highest whten run FP32 on the CPU, which is about 2.8% slower than
FP16 on the GPU. This finding highlights that quantization, while reducing model size and resource
using, does not always translate into meaningful speedups, especially when executed with CPUs or
where there is communication. These precision-focused tests support previous observations: FP16
on the GPU is still the most efficient configuration for live deployments of FastSpeech2. While INT8
quantization offers deployment advantages, smaller scale, and easier CPU deployment, it does not
significantly outperform GPU-based FP16 in latency critical scenarios.

5.4 Expanded Observations

* End-to-end latency is dominated by BLIP: Whether on GPU or CPU, the vision-language
model is the primary optimization target for real-time applications.

* Quantization is not always faster unless bottlenecks are addressed: FP16 TTS inference
had minimal impact on total latency when BLIP was the limiting factor.

* ONNX’s real-world gains are situational: While in theory this approach is efficient, ONNX
inference did not reduce latency in this specific CPU scenario. Other tools should be used
before committing to ONNX deployments.
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* Hybrid setups may not be beneficial without careful tuning: Splitting execution across
CPU and GPU introduces additional latency due to memory access patterns and queuing.

* System consistency matters: GPU only configurations were not only faster but also more
consistent, as indicated by their lower standard deviation in latency.

In the next part, we analyze speech quality, intelligibility, and listener feedback to assess whether
latency reductions lead to trade-offs in user experience.

5.5 Subjective Evaluation (MOS Ratings)

To assess the perceived quality of synthesized speech, a Mean Opinion Score (MOS) test was per-
formed. Listeners rated audio samples randomly selected from five experimental configurations, on
a scale of 1-5 for comprehensibility and naturalness.

Across all configurations, participants reported that the speech was easy to understand, and they
had no difficulty recognizing the spoken words, confirming a high level of intelligibility. The av-
erage MOS ratings for intelligibility were consistently above 4.0, indicating that even with various
optimization methods (e.g., FP16, CPU inference), speech clarity remained stable.

However, in terms of naturalness, most raters agreed that the speech output did not sound human.
They described the voice as somewhat mechanical or robotic, especially in prosody, rhythm, and
expressiveness. While the pronunciation was accurate and clear, listeners noted a lack of emotional
tone or variation typically present in natural human speech.

Furthermore, many listeners said that they could not distinguish between the outputs of the five
different system configurations. The variations in deployment strategy (CPU vs. GPU, quantized vs.
full precision) had no noticeable impact on perceived audio quality, confirming that these technical
differences were imperceptible to the end-user in terms of sound quality.
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6 Discussion

After reviewing the experimental results and combining them with the original research objectives
and hypotheses in Section 1, it is clear that this study provides important insights into the challenges
and potential of deploying optimized text-to-speech systems for real-time assisted applications. This
section discusses the extent to which each hypothesis is supported, the broader implications of the
results, and the key takeaways from actual deployment.

6.1 Validation of the First Hypothesis

The first hypothesis suggests that applying INT8 or FP16 post-training quantization to FastSpeech 2
and ChatTTS will reduce latency by at least 30% while maintaining a mean opinion score (MOS) of
4.0 or higher compared to the FP32 model.

In fact, due to tool and compatibility limitations, this FastSpeech 2 only can apply FP16 quantiza-
tion on GPU and apply INT8 quantization on CPU. ChatTTS is excluded from the final system due to
its high baseline latency (around 25 seconds), which makes it unsuitable for real-time applications.
The fpl6-quantized FastSpeech 2 model showed a slight reduction in latency when isolated, but
when integrated into the overall pipeline, the average end-to-end latency improved only marginally
— less than 2%. Specifically, the average latency changed from 2.02 seconds for the FP32 configu-
ration (Experiment 1) to 2.05 seconds for the FP16 configuration (Experiment 2). And because this
model does not have Quantization-Aware Training, the FastSpeech model that causes INT8 quanti-
zation can only run under the CPU, so this quantization does not improve the end-to-end latency as
expected, and even takes longer to run with FP16 precision.

This result shows that the first hypothesis is not fully supported in terms of reducing latency.
However, subjective listener scores confirm that speech produced in FP16 and INT8 mode retains
high intelligibility. Most participants were able to recognize words clearly and highly value intelli-
gibility, even when they said the voice sounded “machine-like.” Therefore, although the acceleration
speed is lower than expected, it effectively meets the perceived quality standard (MOS > 4.0), which
verifies the stability of FastSpeech 2 under quantization.

6.2 Validation of the Second Hypothesis

The second hypothesis assumes that a ONNX or similar TTS model speedup will result in a speedup
of at least 1.5x on the PyTorch baseline without a significant reduction in naturalness or intelligibility.

This assumption was partially confirmed. The FastSpeech 2 model, once quantized to FP16 and
run on the GPU, showed an isolated speed improvement when analyzed independently. However,
system-level latency has not been reduced by a factor of 1.5. The reason for this is that the execution
time of the BLIP module dominates in the full pipeline. Because BLIP is not quantized and runs
on CPU or ONNX runtime in many configurations, its latency effectively masks the benefits of
optimizing the TTS model.

From a perceived quality perspective, listeners report that the voice output remains intelligible
and consistent in tone across different configurations. However, most people also notice that the
audio sounds distinctly synthetic, lacking human emotion or rhyme. This suggests that while nat-
uralness may be limited by FastSpeech 2 or dataset style rather than quantification or acceleration,
comprehensibility is not compromised.
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6.3 Validation of the Third Hypothesis

The third hypothesis proposed that rephrasing outputs from vision-language models would reduce
Word Error Rate (WER) by at least 10% and improve user comprehension in assistive scenarios.

This is supported qualitatively. I used the Whisper ASR model to WER all the samples, and
almost all of the experiments showed a WER below 5% in most cases for the speech output. Listeners
stated that the descriptions were direct, useful in context, and easier to understand. Although the
original BLIP output has been relatively concise and intact, the rephrased sentences are simpler and
more action-oriented.

For visually impaired users, the ability to quickly understand audio is essential. Therefore, this
retelling step is a low-cost, high-impact intervention that can be integrated without retraining the vi-
sual language model. This insight strongly supports the research goal of balancing intelligibility and
latency, suggesting that linguistic preprocessing can be just as valuable as numerical optimization.

6.4 Validation of the Fourth Hypothesis: Trade-offs Between Latency and
Intelligibility

The last hypothesis explores the trade-off between latency reduction and intelligibility. The results
show that there is no significant perceived loss when optimizing the delay by model quantization
or hardware offloading. All six configurations, regardless of their hardware settings or optimization
techniques, scored similarly in terms of comprehensibility. Participants noted that all voice outputs
were clearly legible.

This outcome is encouraging. It implies that system latency can be adjusted to match hardware
constraints without significantly degrading user experience, provided the underlying model architec-
ture is stable. Even configurations running on CPU (Experiments 3 and 5) maintained intelligibility,
though at higher latency.

This confirms that the proposed optimization methods, while offering only moderate latency
benefits, are at least perceptually lossless in practical terms. This aligns well with real-world use
cases where latency tolerance exists up to a certain point, especially when user comprehension is
preserved.

6.5 Limitations

Despite the meaningful findings, several limitations should be noted. First, only FastSpeech 2 was
tested under quantization due to technical limitations with ChatTTS and INT8 compatibility. Thus,
conclusions about quantization generalizability are limited to one model.

Second, the audience’s ratings are taken from the general population, not from visually impaired
users. When comprehensibility is assessed, ratings of naturalness and overall usability may not
reflect the preferences or sensitivities of the target user group.

Third, the sample size for MOS testing was limited. Though results were consistent, statistical
significance could not be formally confirmed without a larger participant pool. Moreover, many
participants said that they could not detect differences between the five configurations—highlighting
a need for more sensitive evaluation methods, such as pairwise comparisons or forced-choice tests.

Finally, ONNX optimization did not meet expectations in CPU configurations. While its theoret-
ical benefits are well-documented, its practical performance was lower than anticipated, suggesting
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a need for future research into pipeline-aware optimization strategies.

6.6 Concluding Reflections

In short conclusion, this study explores how quantization, rephrasing, and deployment strategies
affect the latency and intelligibility of real-time captioning-to-speech systems. While the latency
reduction is smaller than assumed, the perceived quality is still high, validating the use of FP16
quantization and lightweight input override deployed in a secondary setup.

These results provide a foundation for further optimization of upstream components such as
BLIP and exploration of richer rhythms in TTS systems. The key takeaway is that perceived in-
telligibility can be maintained even within computational constraints, which makes the optimized
subtitling-to-speech pipeline feasible in the real world, for use on devices.
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7 Conclusion

This thesis investigated the design and optimization of a visual-to-speech pipeline that combines
image captioning and speech synthesis to help visually impaired users. The system integrates the
BLIP model for generating natural language subtitles and FastSpeech 2 for converting text into high-
quality speech. Throughout the project, key aspects of latency, intelligibility, and model deployment
strategies were explored. In this conclusion, I will summarize the main contributions, discuss future
research directions, and reflect on the broader implications and relevance of this work.

7.1 Summary of the Main Contributions

The primary contributions of this work can be summarized as follows:

* Developed and evaluated an integrated pipeline that takes real-world images as input, gener-
ates descriptive captions using BLIP, and synthesizes corresponding speech using FastSpeech
2.

* Conducted a detailed latency analysis across different configurations, including full PyTorch
inference, ONNX deployment for BLIP, and FP16, INT8 quantization for FastSpeech 2. No-
tably, GPU-based inference consistently outperformed CPU-only setups, with FP16 providing
additional acceleration in some scenarios.

* Implemented a caption rephrasing module that simplifies BLIP outputs by removing adjec-
tives, resolving pronouns, and reordering spatial phrases.

* Evaluated the system’s intelligibility using Word Error Rate (WER) from Whisper ASR,
demonstrating that most configurations achieved a WER below 5%, indicating high transcrip-
tion accuracy. Informal listening tests confirmed that the generated speech was natural and
easy to understand.

7.2 Future Work

Several directions could extend the contributions of this thesis:

* Integrate the BLIP decoder into the ONNX export process to enable fully accelerated caption-
ing on GPU or edge devices. This could reduce CPU-GPU transfer overhead and simplify
deployment.

* Explore additional quantization techniques (e.g., re write part of the architure of FastSpeech
2 model to implement INTS8) or pruning methods to further reduce model size and latency,
making the pipeline suitable for real-time applications on low-power devices.

* Incorporate more diverse and dynamic datasets, including noisy real-world images and longer
captions, to evaluate the system’s robustness in more challenging scenarios.

* Conduct a formal Mean Opinion Score (MOS) study with a larger participant pool to quanti-
tatively assess user satisfaction and naturalness of the generated speech.
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* Investigate the potential integration of external knowledge graphs or context-aware modules
to enhance the captioning quality, particularly for complex scenes.

7.3 Impact & Relevance

This research contributes to the development of accessible multimodal technologies that bridge vi-
sual and auditory information for visually impaired users. By integrating state-of-the-art captioning
and text-to-speech models, this system demonstrates a practical approach to generating real-time
audio descriptions of visual scenes. The exploration of different deployment strategies, including
ONNX, FP16 and INT8 quantization, highlights the importance of balancing speed and quality in
assistive systems. Beyond assistive applications, this work provides insights into building efficient
vision-to-speech pipelines that can be adapted for robotics, AR/VR, and human-computer interac-
tion.

Overall, this thesis demonstrates that careful model selection, targeted optimizations, and thought-
ful evaluation strategies can significantly improve both the performance and usability of Al-driven
systems designed to make technology more inclusive.
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Appendices

A Code Link

All codes for testing and optimization in this thesis will be submitted to this Github link:
https://github.com/Yennn3/Thesis/tree/f6aaac4df5270a00a99fd537a338217ded80851c
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B Al Declaration



Declaration

| hereby affirm that this Master thesis was composed by myself. The work

here is my own except where explicitly stated otherwise in the text. | have applied generative
Al software to assist in writing this thesis as follows:

1: It was used to translate parts of this thesis.

2: It was used to polish parts of the text to make the text more official and appropriate.

3: It was used to provide me with a broader mind when | am designing my thesis and to help
me understand some professional concepts.

4: It's used to help me optimize my original code properly. Because the original code | wrote

was not very clearly structured. | fully understand the code | submitted.

Yan Qiu / 11/06/2025
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