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Abstract
This thesis proposes a lightweight multimodal framework for punchline detection in spoken dia-
logue, aiming to enhance computational efficiency while maintaining classification accuracy. The
architecture integrates three types of input features: (1) Textual representations from a pretrained
ALBERT model, which incorporate both the punchline and its preceding conversational context; (2)
Acoustic features derived from COVAREP, including pitch (F0), energy, harmonics-to-noise ratio,
glottal parameters and so on; and (3) Humor-centric features (HCF), a handcrafted set of syntactic,
semantic, and affective indicators empirically associated with humorous delivery. The model em-
ploys a cross-attention mechanism to align information across modalities, followed by max-pooling
and a lightweight Multi-Layer Perceptron (MLP) classifier. Its design prioritizes low computational
overhead, making it well-suited for deployment in latency-sensitive or resource-constrained envi-
ronments.

Experiments conducted on the UR-FUNNY dataset demonstrate the effectiveness of the pro-
posed model, which achieves an accuracy of 72.33% and an F1-score of 0.7231. To assess the
relative contribution of each modality, we conduct ablation studies by removing one modality at a
time. When acoustic features are excluded, the F1 score drops to 0.6504, indicating the importance
of acoustic information in humor detection. Removing contextual input also results in a notable de-
cline, with the F1 score decreasing to 0.6523. In comparison, the exclusion of HCF features causes
a smaller reduction, with the F1 score falling to 0.6927. These results highlight the complementary
nature of semantic, prosodic, and structurally-informed cues in spoken humor recognition. Overall,
the proposed model offers a practical and interpretable approach to multimodal humor detection,
contributing toward the development of more nuanced conversational AI systems.
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1 Introduction
Humor is a core component in human communication. It can create a relaxed and pleasant atmo-
sphere for dialogue, with both social and practical functions. Research has shown that humor can
be used to grab attention, establish rapport, build trust, and boost persuasive power Choube and
Soleymani (2020). In addition to its communicative value, humor contributes to social cohesion,
reduces conversational tension, and can positively influence psychological well-being M. Xu, Chen,
Lian, and Liu (2023). Given these benefits, the recognition and understanding of humor hold great
research value in the field of artificial intelligence, especially for speech systems that aim to simu-
late social adaptability and emotionally intelligent interactions. In practice, the integration of humor
detection and artificial intelligence presents promising applications in various fields: (1) It sup-
ports the development of robots, virtual assistants, and other human-computer interaction systems
that can engage users in a more natural and compelling manner. By incorporating humor recogni-
tion, these systems are able to increase user satisfaction and reduce miscommunication, which in
turn improves commercial value and economic benefits. (2) With more accuracy punchline detec-
tion, ASR pipelines can improve subtitle timing and alignment, aiding humor comprehension for
non-native and hearing-impaired users, and potentially boosting audience retention and streaming
platform revenue. (3) Humor recognition in assistive technology and companion robotics facilitates
socially sensitive and emotionally acceptable reactions, especially in daily and long-term interaction
settings. This can help build long-term trust and engagement in human-AI interaction.

In recent years, humor recognition has emerged as a popular research topic in the field of natural
language processing. Research on humor recognition has experienced many stages, evolving from
rule-based approaches with handcrafted features to more recent deep learning and multimodal sys-
tems. Early studies in humor detection mainly relied on handcrafted features derived from linguistic
humor theories, which were used with shallow classifiers such as Naive Bayes and SVMs. These
features include syntactic patterns (e.g., specific part-of-speech sequences), lexical ambiguity (e.g.,
pun-related or polysemous words), and incongruent semantic associations (e.g., surprising or con-
textually unexpected terms). Such handcrafted features aim to capture incongruity, ambiguity, and
surprise—three key mechanisms in textual humor—and demonstrate the essential role of the text
modality in humor recognition. Yang, Lavie, Dyer, and Hovy (2015)proposed a supervised classi-
fication framework using handcrafted features based on four linguistic humor theories. As neural
methods gained traction, Chen and Soo (2018) were one of the first to apply deep learning architec-
tures to humor detection, which inspired further developments using hybrid models like CNN-LSTM
and highway networks to boost accuracy. Building on these developments, researchers later turned
to Transformer-based models, which have great advantages in capturing long-range dependencies
within humorous text (Weller & Seppi, 2020).

Although these earlier efforts primarily concentrated on textual features, recent advances have
shifted toward multimodal approaches to better reflect how humor is conveyed in real-world com-
munications. In real-world communication, humans convey meaning through multiple modalities.
Humor does not only come from text information; speech prosody, facial expressions, and body
movements are also involved. Therefore, integrating non-text modalities is crucial for effective hu-
mor recognition. The UR-FUNNY dataset proposed by Hasan et al. (2019) marked a turning point to
multimodal-based research, which means that humor recognition research start to integrate textual,
auditory, and visual modalities. Based on this dataset,Hasan et al. (2019) developed a Contex-
tual Memory Fusion Network (C-MFN) that extends MFN by integrating sequential context through
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LSTM-based unimodal encoders and Transformer self-attention, with context representations initial-
izing MFN’s memory components. The model encodes punchlines using MFN augmented with con-
textual memories, and classifies humor based on the combined state of LSTMs and gated memory,
excelling in tasks requiring long-range context modeling. Choube and Soleymani (2020) proposed
the HF (Hierarchical Fusion) model on the UR-FUNNY dataset, leveraging GRU-based contextual
modeling and hierarchical weighted fusion of text, audio, and video to explicitly capture bimodal
and trimodal interactions. More recently, Hasan et al. (2021) further advanced this direction by
proposing a more semantically enriched framework—the Humor Knowledge Enriched Transformer
(HKT). Their model fused Transformer-based representations from text, audio, and visual modalities
using a Bimodal Cross-Attention mechanism, which performance strongly on UR-FUNNY dataset.
Building on this line of research, M. Xu et al. (2023) developed the MuSE-Humour system, which
leverages pseudo labeling and contextual modeling to improve performance on spontaneous speech.

As Zhou (2024) notes in a recent survey, although acoustic shifts, timing, and delivery are of
great theoretical importance, they still remain underexplored in spoken humor research. Meanwhile,
it is still a great challenge for most humor recognition models to deploy in real-time or resource-
limited conditions for their complex structure. These methodological limitations highlight the need
for lightweight, context-aware and multimodal models that can capture how punchlines are delivered
in real-world speech.

To address these challenges, this study proposes a lightweight, context-aware, and multimodal
framework that integrates textual, acoustic, and humor-centric features (HCF). To achieve this, the
model is designed to be lightweight by removing the visual modality and using efficient transformer-
based encoders with reduced parameter sizes. The model utilizes a pretrained ALBERT encoder
to extract contextualized representations from the punchline and its preceding utterances. At the
same time, acoustic features extracted from speech are encoded via a transformer-based acoustic
encoder, and HCF are encoded using a separate transformer-based module. To model the interac-
tion between modalities, we introduce a cross-attention mechanism in which the textual and HCF
sequences jointly attend to the acoustic representation. This allows the model to capture fine-grained
dependencies between language and prosodic signals. The resulting cross-modal representations are
then combined with global summary vectors from each modality through a pooling-based fusion
strategy, producing a unified representation for classification. This unified representation is passed
to a fully connected layer to perform binary humor classification. The experiments are conducted on
the UR-FUNNY dataset, leveraging aligned textual and acoustic inputs. Results demonstrate that the
proposed model achieves a strong balance between accuracy and efficiency, making it well-suited
for real-world deployment in resource-constrained settings.

Now that the motivation for this research has been presented, the structure of this thesis is as
follows:

• Section 1.1 presents the research questions and hypotheses

• Section 2 reviews relevant literature and positions this work within current research

• Section 3 describes the methodological approach

• Section 4 details the experimental setup

• Section 5 presents and analyzes the results
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• Section 6 discusses insights and the role of different components

• Section 7 concludes challenges, limitations, future directions and implications

1.1 Research Questions and Hypotheses
In light of the preceding discussion, this research addresses the following question:

How does integrating acoustic features (such as pitch (F0), energy, glottal param-
eters) into a lightweight, context-aware punchline detection model influence its bi-
nary classification performance, as evaluated by F1-score and Accuracy?

From which the following subquestions are derived:

• How does incorporating contextual features influence the model’s ability to detect humor?

• How does incorporating HCF influence the model’s ability to detect humor?

[Hypothesis: Based on Choube and Soleymani (2020) findings that, in a context-aware hierar-
chical fusion architecture, integrating acoustic features with textual input improved punchline clas-
sification accuracy from 64.72% to 66.68% on the UR-FUNNY dataset—an absolute gain of 1.96
percentage points, we hypothesize that integrating acoustic features into a lightweight, context-aware
punchline detection model will yield improvement in binary classification performance, as measured
by F1 score and accuracy, compared to a text-only baseline.]
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2 Literature Review
This section provides a comprehensive review of the existing research related to automatic punchline
detection, with a particular focus on context-aware punchline detection using multimodal features.
By conducting a thorough and critical analysis of the literature in this domain, this review attempts to
offer valuable insights into the methods and effectiveness of applying multimodal modeling strate-
gies to improve humor understanding in spoken dialogue. Special attention is given to approaches
that incorporate acoustic and contextual inputs with textual input to enhance punchline classification
accuracy.

This section is structured as follows. First, I outline the keywords and search strategies used in
the literature review as well as the inclusion/exclusion criteria employed to select the most pertinent
studies. Following this, I provide a thematic synthesis of the key contributions in the field of humor
detection. The review begins by introducing commonly used humor-related corpora, followed by
early text-based approaches and their limitations in modeling the complexity of humor. It then
turns to state-of-the-art multimodal methods, with a particular focus on how acoustic and contextual
signals are incorporated to enhance performance. Finally, the review highlights persisting limitations
and open challenges in current research.

2.1 Search Strategy and Selection Criteria
To ensure comprehensive literature coverage, a multi-stage search procedure was conducted across
major databases: Google Scholar, IEEE Xplore, ACL Anthology, EMNLP,INTERSPEECH, ICASSP,
Scopus, and Web of Science. The search process followed a structured approach with detailed log-
ging of keywords, filters, and screening criteria to support replicability.

• Primary Search (Broad Field of Humor Detection)
Keywords: (”humor detection” OR ”humor recognition” OR ”punchline detection”)

Purpose: Identify foundational work in automatic humor recognition

• Secondary Search (UR-FUNNY and Multimodal Fusion)
Keywords: (”multimodal” OR ”acoustic features”) AND (”humor” OR ”punchline”)

Focus: Studies involving audio or acoustic delivery features

• Tertiary Search (Lightweight & Context Modeling)
Keywords: (”lightweight model” OR ”context-aware”) AND (”humor” OR ”punchline”)

Goal: Identify recent studies on context-aware, lightweight humor detection

To streamline the paper selection process, the retrieved studies were organized by their relevance
to these specific research topics. While numerous studies were retrieved during the literature search,
not all were directly relevant to the goals of the current investigation. To ensure a focused and coher-
ent review, specific selection criteria were established. First, studies that addressed only text-based
humor detection—without incorporating acoustic or contextual elements—were excluded, as they
fall outside the scope of this multimodal research. Second, in order to reflect recent technological
developments, only peer-reviewed works published from 2010 onward were included. This time
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frame was chosen to capture contemporary advancements in speech-based humor recognition and
multimodal modeling. By applying these filters, the resulting body of literature remains both current
and thematically aligned, thereby offering a solid foundation for the present study, which seeks to
improve spoken humor recognition through the integration of context and acoustic features within a
lightweight neural framework.

Next, I outline the inclusion and exclusion criteria used to select the literature reviewed in this
study. The inclusion criteria were as follows: (1) studies that focused on punchline or humor detec-
tion in spoken language, where delivery and timing play a significant role in humor perception; (2)
empirical research incorporating acoustic features or applying acoustic analysis in humor classifica-
tion; (3) studies that employed context-aware modeling approaches, such as GRUs or transformer-
based architectures, in spoken humor detection tasks; (4) papers reporting quantitative evaluation
metrics (e.g., accuracy, F1-score), especially those using multimodal datasets such as UR-FUNNY.

The exclusion criteria were as follows: (1) non-peer-reviewed materials, including blog posts,
preprints, or informal reports without formal evaluation procedures or reproducibility; (2) studies
that focused solely on clean text-based humor classification without consideration of prosody, speech
delivery, or conversational context; (3) research limited to laughter detection or sentiment analysis
lacking punchline-level annotation or interpretive modeling; (4) works relying exclusively on visual
modalities (e.g., facial expressions) without incorporating linguistic or acoustic components; (5)
studies based on non-English corpora that are not transferable to English-based ASR and acoustic
modeling systems.

By applying these criteria, the selected literature is both timely and consistent with the objec-
tives of this study. This targeted selection provides a solid foundation for understanding the current
state of multimodal, context-aware punchline detection and provides a reference for the design of
a lightweight framework that integrates acoustic and contextual signals to improve spoken humor
recognition.

Based on these criteria, the selected literature is grouped thematically to reflect the main trends
and methodologies in spoken humor detection. Each of the following subsections (2.2-2.3) focuses
on a different research perspective.

2.2 Humor-Related Corpora
In natural language processing (NLP) research, corpora are important resources for model train-
ing and evaluation. Especially for the complex task of humor recognition, a suitable corpus is of
paramount importance. A suitable corpus should not only cover various forms of humor, but also
provide appropriate annotations to accurately identify humorous content. However, the subjectivity
and diversity of humor make it particularly difficult to collect high-quality corpora. Nevertheless,
with the rise of humor recognition research, a number of humor corpora have emerged in recent
years, providing valuable resources for research in this field.

Yang et al. (2015) constructed the ”Pun of the Day” dataset, which collected more than 2,000
positive samples from the pun website ”Pun of the Day”, while negative samples came from the As-
sociated Press, the New York Times, Yahoo Answers, and proverbs. It is clear that there are distinct
differences between the positive and negative datasets and all selected negative samples were limited
to vocabulary present in the positive samples. To address the limitations of humor datasets in terms
of type and size, Weller and Seppi (2020) collected more than 550,000 jokes from the r/Jokes section
on Reddit. The humor level of each joke was quantified based on user feedback from the r/Jokes
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community. In contrast to purely text-based humor datasets, Hasan et al. (2019) introduced the UR-
FUNNY dataset, a large-scale multimodal corpus based on TED-style monologues. It consists of
1,866 videos from over 1,700 speakers and covers a wide range of topics. Each utterance is anno-
tated for humor using transcript-based laughter tags. The dataset provides tri-modal alignment (text,
audio, video) at the word level and includes preceding conversational context for each humorous in-
stance. These features make UR-FUNNY highly suitable for punchline detection and context-aware
modeling in spoken language. Following this, Patro et al. (2021) developed the Multimodal Humor
Dataset (MHD), using dialogue scenes from the sitcom The Big Bang Theory. Humor labels were
derived from laugh tracks, and multiple lines of dialogue were grouped into segments to reflect the
importance of contextual buildup. Additional attributes, such as speaker identity and scene timing,
were also included to support more fine-grained modeling.

2.3 Approach for Humor Detection
2.3.1 Text-based Humor Detection Approaches

Early research on humor recognition primarily focused on textual input, using linguistic features
and contextual cues to identify humor. In traditional machine learning approaches, researchers
usually preprocess the text, extract handcrafted features, and train classifiers such as Support Vec-
tor Machines (SVMs) or Random Forests for humor binary classification. For early foundational
work, Yang et al. (2015) proposed a supervised classification framework using handcrafted features
based on four linguistic humor theories: incongruity, denoting semantic contradiction or unexpected
contrast; ambiguity, involving multiple plausible interpretations of words or phrases; interpersonal
effect, reflecting social or emotional intent conveyed through sentiment-laden language; and pho-
netic style, characterized by sound-based devices such as rhyme or alliteration. Their systems have
achieved initial success in distinguishing humorous and non-humorous, but the system lack tem-
poral modeling and multimodal input, which limits their applicability in natural dialogue systems.
Although these methods are relatively efficient and easy to interpret, especially on small datasets,
they often have difficulties in scalability and generalization. Since they rely heavily on hand-crafted
features, they may capture superficial patterns in language rather than the underlying humorous in-
tent.

To address the shortcomings of traditional models, recent researches have paid more attention to
deep learning and pre-trained language models. Unlike traditional methods, deep learning models
do not depend on manually crafted humor features. Deep learning models can automatically extract
high-level semantic features from large-scale data through end-to-end learning, which helps to re-
duce the need for manual feature extraction and enabling more accurate capture of the deeper seman-
tics of humor. Bertero and Fung (2016) proposed a pioneering model to detect the setup–punchline
in conversational humor analysis. They trained an LSTM-based classifier using dialogue transcripts
from The Big Bang Theory. The architecture combined convolutional neural networks (CNNs) for
encoding individual utterances with a long short-term memory (LSTM) network to capture contex-
tual dependencies across dialogue turns. In addition, the model incorporated several high-level lin-
guistic features such as sentence length, part-of-speech ratio, antonym occurrence, sentiment score,
and speaker identity. Their CNN-LSTM framework achieved an F1 score of 62.9% on the test set, an
8% improvement over the conditional random field (CRF) baseline model. Compared to traditional
n-gram-based methods, the model improved recall and reduced false positives. While their work
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demonstrated the effectiveness of sequential modeling in identifying humor in dialogue, the model
was still limited in terms of input modality and generalizability. Subsequent studies attempted to
address these limitations by incorporating more diverse features and deeper network structures.

Building on this line of research, Chen and Soo (2018) introduced a deep CNN model that
combined filter-size variation with Highway Networks for humor classification. They tested the
model on both English datasets—including Pun of the Day, 16000 One-Liners, and Short Jokes—as
well as a Chinese joke corpus (PTT Jokes). The model achieved strong results in F1 scores, reaching
0.943 on the PTT dataset and 0.903 on One-Liners. These results showed that CNNs are effective
in extracting surface-level and lexical humor features across different languages and joke styles.
However, their model did not include contextual or acoustic inputs, l which limited its ability in
dealing with spoken or dialogue-based humor. In later work, researchers started to introduce large-
scale pretrained language models. Weller and Seppi (2020) developed a humor detection model
based on BERT(Devlin, Chang, Lee, & Toutanova, 2019). By using self-attention, their system
captured contextual semantics in short jokes. Evaluated on Short Jokes, Pun of the Day, and Reddit,
the BERT-based model achieved an F1 score of 0.986 on Short Jokes and outperformed a CNN
+ Highway Layer baseline (F1 = 0.951). It even exceeded crowd-sourced human performance on
Reddit data. That said, the model did not account for structural relationships between joke setup
and punchline—an important element in humor delivery—and also lacked awareness of broader
conversational context, such as previous Reddit comments.

Despite the advances in textual humor detection, most existing approaches remain restricted to
linguistic input and overlook the role of acoustic signals—such as pitch variation, pausing, and in-
tonation, that are often critical for recognizing humor in spoken language. Prior linguistic research
(Schuller, Batliner, Steidl, & Seppi, 2011) has demonstrated that prosodic cues contribute signifi-
cantly to the perception of irony, sarcasm, and emotional salience, which are frequently employed
in humor. However, few computational models incorporate these signals effectively. For instance,
Mao and Liu (2019) proposed a BERT-based framework for humor detection in Spanish tweets, par-
ticipating in the IberLEF 2019 HAHA shared task. Their system achieved strong performance (F1 =
0.784) by fine-tuning a multilingual BERT model and applying a score-based reclassification strat-
egy. While effective in textual domains, their method, much like that of Weller and Seppi (2019),
focused solely on textual input and did not consider nonverbal or prosodic cues. This limitation
reduces the model’s capacity to capture the nuances of humor in spoken contexts, where delivery
features such as exaggerated stress or rhythmic phrasing are often key to triggering laughter.

This review follows the development path of automatic humor recognition, starting from early
rule-based and feature-engineered methods, and moving toward deep learning models that can learn
contextualized semantic representations. Although Transformer-based architectures like BERT have
brought notable improvements in detecting humor from text, most of these models still focus only on
linguistic input. Suprasegmental cues, such as prosody, rhythm, and timing, are rarely included, even
though they play a key role in understanding humor in spoken interactions. In addition, many exist-
ing models pay little attention to dialogic context. They are often trained on scripted or short-form
texts, which makes it difficult to apply them effectively to spontaneous and real-life conversations.
Due to these shortcomings, it becomes clear that there is a strong need for humor recognition models
that are not only lightweight and context-aware, but also capable of handling multiple modalities.
Such models are expected to better match how humor is actually expressed and interpreted in natural
speech.
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2.3.2 Multimodal Humor Detection Approaches

While Transformer-based architectures have shown great promise in capturing textual humor, they
remain limited in their ability to model delivery, prosody, and timing—elements that are critical
for understanding humor in spoken communication. As a result, recent research has shifted toward
multimodal approaches that incorporate audio and visual information alongside text.

A major leap in multimodal modeling came with the work of Hasan et al. (2019), who introduced
the Contextual Memory Fusion Network (C-MFN) on the UR-FUNNY dataset. Their architecture
extends MFN by integrating sequential context through LSTM-based unimodal encoders and Trans-
former self-attention, with context representations initializing MFN’s memory components. The
model encodes punchlines using MFN augmented with contextual memories, and classifies humor
based on the combined state of LSTMs and gated memory, excelling in tasks requiring long-range
context modeling. C-MFN achieved 65.23% binary classification accuracy with three modalities
and was one of the first systems to explicitly incorporate dialog-level memory for punchline pre-
diction. However, the model’s computational complexity and lack of interpretability may hinder its
scalability in real-world applications. Choube and Soleymani (2020) introduced the HF (Hierarchi-
cal Fusion) model on the UR-FUNNY dataset. HF integrates text, audio, and video via GRU-based
context modeling and hierarchical modality fusion, achieving 67.84% binary accuracy. Unlike prior
work, HF explicitly models bimodal and trimodal interactions through weighted linear combinations,
though it uses pre-extracted acoustic features (e.g., prosodic cues from COVAREP) without separate
prosody isolation. The model’s hierarchical design enhances humor detection but may face scal-
ability challenges in resource-constrained scenarios.Hasan et al. (2021) proposed a more semanti-
cally enriched framework—the Humor Knowledge Enriched Transformer (HKT). Their model fused
Transformer-based representations from text, audio, and visual modalities using a Bimodal Cross-
Attention mechanism, while enriching the text with knowledge-based embeddings from ConceptNet
and sentiment information from NRC-VAD lexicons. HKT achieved state-of-the-art accuracy of
77.36% on UR-FUNNY and 79.41% on MUStARD(Castro et al., 2019), outperforming competitive
models such as MAG-XLNet and MISA. Nevertheless, the model showed sensitivity to noisy visual
data and did not provide explicit modeling of acoustic contributions within the acoustic modality.

H. Xu et al. (2022) introduced a Hybrid Multimodal Fusion Model (HMF-MD) in the MuSe 2022
Humor Sub-Challenge. Their two-stage pipeline first extracted unimodal features using BiLSTMs
and Transformers, then performed multimodal fusion across speech, text, and video using attention-
based alignment. While their model achieved a strong AUC of 0.8945 on the Passau-SFCH dataset
(Amiriparian et al., 2022), its reliance on a relatively small dataset and implicit prosody modeling
raised concerns about generalizability and robustness.

To improve efficiency, Pramanick, Roy, and Patel (2022) leveraged optimal transport theory to
align modality-specific embeddings for multimodal sarcasm and humor detection. Their lightweight
framework achieved competitive performance with reduced computational cost. However, their fo-
cus remained on text-image and video-text pairs, lacking audio or ASR input—key components for
humor detection in spoken settings.

More recently, M. Xu et al. (2023) participated in the MuSe 2023 Cross-Cultural Humor Sub-
Challenge by introducing a high-capacity multimodal pipeline using Whisper for audio, Eva02 for
video, and mBERT for text. Their model utilized pseudo-labeling and post-smoothing to mitigate
temporal misalignment and modality imbalance, achieving an AUC of 0.9112 on Passau-SFCH.
Despite its performance, the system’s reliance on visually-heavy features and lack of explicit prosody
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modeling limits its transparency and adaptability to voice-only contexts.
Taken together, these studies demonstrate the progress and diversity of multimodal humor recog-

nition systems. However, few models explicitly focus on acoustic features—such as pitch, rhythm,
and speech rate—which are vital for interpreting timing-sensitive humor. Furthermore, the reliance
on high-capacity fusion networks often results in computational burdens, making them computation-
ally inefficient. These gaps highlight the need for compact, context-aware multimodal architectures
with targeted acoustic modeling, particularly for speech-driven humor applications.

2.4 Summary and Observed Limitations
Early humor detection models based on artificial linguistic features are interpretable, but they lack
the ability to capture temporal dynamics and context. With the rise of deep learning, Transformer-
based models (such as BERT) have enhanced text representation learning. However, most of these
methods are still limited to textual input and ignore the prosodic and contextual cues that are cru-
cial for spoken humor. Multimodal methods have addressed some of these issues by integrating
audio and visual modalities and have achieved remarkable results on datasets such as UR-FUNNY
and MUStARD. Nevertheless, most models have the following drawbacks: First, they incur high
computational costs, which restricts real-time applications and makes deployment difficult; In addi-
tion, they rely heavily on visual inputs that are susceptible to noise, while paying less attention to
acoustic features and contextual features independently. These limitations point to a clear need for a
lightweight, context-acoustic multimodal humor detection system that are better suited for punchline
detection in natural spoken dialogue.
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3 Methodology
In this section, I will outline the methodology used to address the research question and validate the
hypothesis on a high level. First, in subsection 3.1, I will discuss the datasets utilized for training
and testing the models. Next, subsection 3.2 will focus on the introduction of the model frame-
work. Subsection 3.3 will then elaborate on the evaluation method and metric employed. Finally, in
subsection 3.4 I will discuss the Ethics and Research Integrity.

3.1 Dataset Description
For this study, I employed the UR-FUNNY dataset (Hasan et al., 2019), which is a multimodal
corpus specifically made for computational punchline recognition in spoken language. UR-FUNNY
consists of 1,866 TED-style talk videos, delivered by 1,741 distinct speakers across 417 diverse
topics, ensuring a wide range of speaker identities, discourse types, and speaking styles. Because of
this, the dataset has a wide range of speaker identities, speaking styles, and topic types, which makes
it useful for studying humor in a real-world setting, not only scripted jokes.

Each video is segmented into utterances and annotated for humor using laughter cues present in
the transcripts. If an utterance is directly followed by a [LAUGHTER] tag, it is labeled as humorous.
Conversely, non-humorous instances are selected from utterances that are not followed by laughter,
ensuring they are structurally similar but lack humorous markers. The dataset includes 8,257 hu-
morous and 8,257 non-humorous utterances, providing a balanced binary classification setup. This
makes it a balanced dataset for binary classification. UR-FUNNY also provides preceding dialogue
context for each labeled instance, which is defined as the segment of speech between the current
utterance and the most recent preceding humorous utterance (or from the beginning of the video if
no earlier humorous utterance exists). Including this context allows models to better capture how
humor is constructed across multiple utterances, rather than treating each line as independent. This
makes the dataset especially useful for punchline detection systems that require discourse-level un-
derstanding.

A significant strength of UR-FUNNY lies in its tri-modal structure. It combines text, audio,
and video features in a word-aligned format, which supports more detailed and synchronized multi-
modal analysis. (1)Textual features include the raw utterance transcripts and associated word-level
embeddings. (2)Acoustic features are extracted using the COVAREP toolkit at a sampling rate of
30 Hz, capturing low-level descriptors such as pitch (F0), energy, harmonics-to-noise ratio, glottal
parameters, and spectral slope—several of which have been shown to correlate with acoustic mark-
ers of humor, such as timing, exaggeration, and vocal dynamics. (3)The video part is extracted with
OpenFace(Baltrušaitis, Robinson, & Morency, 2016). It includes facial Action Units, gaze, head
movement, and mouth shape, which help detect non-verbal cues.

The average humorous utterance in the dataset lasts approximately 5.2 seconds, with the pre-
ceding context averaging around 15.4 seconds, giving ample temporal depth for both utterance-level
and dialogue-level modeling. To sum up, UR-FUNNY is a robust and versatile dataset for explor-
ing punchline recognition in spoken language. Its multimodal design, real-speech sources, balanced
labels, and detailed alignment make it suitable for training models that focus on both context and
multiple modalities, especially in tasks related to humor detection.
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Description Quantity

Total number of video clips 16,514
Total video duration (hours) 90.23
Number of speakers 1,741
Total number of utterances 63,727
Average number of utterances per clip 3.86
Total number of words 965,573
Number of unique words 32,995
Average utterance length (words) 15.15
Average utterance duration (seconds) 4.64

Table 1: UR-FUNNY Dataset Statistics

3.2 Model Framework
This section describes the architecture of our proposed lightweight multimodal model for punchline
detection. The model is structured into three stages: (1) Unimodal Representation, where linguistic,
prosodic, and humor-centric features are individually encoded; (2) Bimodal Cross-Attention Layer,
where linguistic and acoustic features are fused via cross-modal attention; and (3) Multimodal Fu-
sion, where pooled representations are concatenated and passed to a classification layer.

3.2.1 Feature Extraction

Figure 1: Overview of the proposed multimodal humor recognition architecture.

As shown in Figure1, the input to our model consists of three modalities: language (l), acoustic
(a), and humor-centric features (HCF) (h). For the language input, we use a pretrained ALBERT
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model (Lan et al., 2019) to obtain contextualized embeddings. Each instance includes a punchline
and up to five preceding utterances as context. These are concatenated and tokenized in the format:

Xl = [CLS],Cl, [SEP],Pl (1)

where Cl and Pl represent the context and punchline respectively. The sequence is passed through
ALBERT to obtain Ul ∈ Rτ×dl , with dl = 768 and τ being the sequence length. The first token Ul[0]
(i.e., ucls) is used for global textual representation.

For acoustic information, we use 81-dimensional features extracted via the COVAREP toolkit,
aligned at the word level. These features are processed by a custom Transformer encoder, consisting
of one self-attention layer. The resulting embedding is denoted as Ua ∈ Rτ×da , where da = 81.

Humor-Centric Features (HCF) consist of four affective and semantic attributes: valence, arousal,
dominance (from NRC-VAD), and ambiguity (computed via ConceptNet and GloVe). These are
structured as Xh ∈ Rτ×dh with dh = 4, and encoded using a single-layer Transformer encoder to
produce Uh.

The language and HCF outputs are concatenated token-wise to form an enriched sequence:

Ul,h = [Ul|Uh] ∈ Rτ×(dl+dh) (2)

This serves as the query input to the subsequent cross-modal fusion layer.

3.2.2 Bimodal Cross-Attention Layer

To model intermodal dependencies between linguistic and prosodic features, we introduce a Bimodal
Cross-Attention Layer. The textual-humor enriched sequence Ul,h ∈ Rτ×(dl+dh) is used as the query
input, and the acoustic representation Ua ∈ Rτ×da serves as the key and value. The standard scaled
dot-product attention is employed:

Attention(Q,K,V ) = softmax
(

QKT
√

d

)
V (3)

where Q =WqUl,h, K =WkUa, and V =WvUa. To enable bidirectional alignment, we also compute
the reverse direction, applying attention from Ua to Ul,h symmetrically. This allows each modality
to capture the most informative dimensions of the other, enriching their respective representations.

Following bidirectional cross-attention, the outputs from both directions are concatenated to form
a fused sequence that captures intermodal dependencies at each timestep. This sequence is then
passed through a single-head self-attention layer, allowing further contextual integration across the
sequence. Finally, a feed-forward (FF) sublayer is applied to transform the fused features into the
final joint representation Z ∈ Rτ×(dl+dh+da).

This Bimodal Cross-Attention Layer introduces only one layer of cross-attention and one layer
of self-attention, making the design shallow and computationally efficient, yet effective at capturing
key multimodal interactions between textual and prosodic information. Residual connections and
layer normalization are applied after each sub-layer to ensure stable optimization.

3https://github.com/Yinnnz/Context-Aware-Punchline-Detection.git

https://github.com/Yinnnz/Context-Aware-Punchline-Detection.git
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3.2.3 Multimodal Fusion

After obtaining the enriched linguistic representation Ul,h, the prosodic encoding Ua, and the cross-
attention output Z, we proceed to generate a compact yet informative vector for final classification
through a multistage fusion strategy. The goal of this stage is to combine multiple sources of infor-
mation in a way that preserves their respective semantic contributions while minimizing computa-
tional overhead. We begin by extracting three key representations:

• ucls ∈Rdl : the output of the [CLS] token from ALBERT, which is widely used in sentence-level
tasks due to its global contextual representation of the input sequence.

• amax ∈ Rda: he max-pooled vector over the time dimension of the acoustic encoder output Ua.
This operation captures the most salient prosodic cues present in the input utterance, such as
pitch peaks, energy shifts, and glottal dynamics.

• zmax ∈ Rdl+dh+da: the max-pooled vector over the cross-modal attention output Z, which rep-
resents fine-grained linguistic–acoustic interactions.

These three vectors are concatenated into a single unified representation:

o = [ucls|amax|zmax] ∈ Rdo, do = dl +da +dl +dh +da (4)

This results in a dense vector that captures global semantics (ucls), raw prosody (amax), and deep
cross-modal dependencies (zmax).

The concatenated feature vector o is then passed through a two-layer fully connected network for
final classification. The first layer applies a ReLU activation to introduce non-linearity, followed by
a dropout regularization (rate = 0.2366) to mitigate overfitting. The second layer projects the output
to a single scalar, which is interpreted as the probability of the punchline being humorous via the
sigmoid function:

p = σ(Wo ·ReLU(Wf o+b f )+bo) (5)

where Wf , b f , Wo, and bo are learnable parameters, and σ denotes the sigmoid activation function.
This architecture is intentionally designed to be shallow and computationally efficient, with only

one attention layer per modality and one cross-attention layer. Despite its simplicity, our experi-
mental results in Section 5 demonstrate its effectiveness in capturing multimodal dependencies for
punchline detection.

3.3 Evaluation Methodology
In this study, the evaluation of the proposed punchline detection model is conducted by usingtwo
standard metrics in binary classification: Accuracy and F1 score. These two metrics canreflect the
overall prediction ability of the model well and they also work well when the dataset is not perfectly
balanced — which is often the case in humor-related tasks. These two metrics are calculated using
the following classification outcomes:True Positives (TP) refer to the number of humorous utterances
correctly classified as humorous, and True Negatives (TN) denote the number of non-humorous ut-
terances correctly classified as non-humorous. False Positives (FP) represent non-humorous utter-
ances incorrectly labeled as humorous and False Negatives (FN) refer to humorous utterances that
are wrongly labeled as non-humorous. Accuracy measures the proportion of correctly predicted
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instances—both humorous andnon-humorous—over the total number of predictions. It is defined
as:

Accuracy =
T P+T N

T P+T N +FP+FN
(6)

F1-score is the harmonic mean of precision and recall. This is helpful when dealing withclass im-
balance, which often appears in humor detection. F1-score offers a more balancedevaluation of the
model’s ability to correctly identify humorous punchlines. Therefore, F1-score is used as the pri-
mary metric for early stopping and model checkpointing during training. The F1-score is calculated
as:

F1-score =
2 ·T P

2 ·T P+FP+FN
(7)

3.4 Ethics and Research Integrity
This study adheres to the ethical guidelines of responsible research practices and reflects a sustained
commitment to integrity throughout the research process. During the development of the proposed
lightweight multimodal humor detection model, we have consistently considered the ethical impli-
cations related to dataset usage, algorithmic fairness, model transparency, and computational sus-
tainability. Particular attention was given to ensuring that data sources were appropriate and that
model behavior would not reinforce social biases or exclude underrepresented voices. The follow-
ing subsections will elaborate in more detail on how each of these dimensions has been addressed in
the design, implementation, and evaluation of the model.

3.4.1 Data Ethics and Privacy

This study utilizes the UR-FUNNY dataset, a public multimodal humor dataset that contains video
clips of English stand-up comedy performances. All the data used has been anonymized and is only
for academic purposes. This dataset does not contain any Personally Identifiable Information (PII).
The participants in the original recordings are all public figures in performance scenarios, which
minimizes privacy concerns. Additionally, this study has neither collected nor processed any other
user data.

3.4.2 FAIR Principles Implementation

The dataset and code resources used in this study comply with the FAIR principles: Findable: All
resources have been indexed and can be accessed through public code repositories (such as Hug-
gingFace and GitHub). Accessible: The UR-FUNNY dataset and pre-trained models (such as BERT
and COVAREP) are publicly available under academic licenses. Interoperable: The data processing
pipeline is implemented using standard Python libraries and open frameworks. Reusable: All exper-
imental codes are modular and have been documented to ensure reproducibility. Hyperparameters,
training configurations, and model weights can be reused in future research.

3.4.3 Open Science Practices

This project actively contributes to the advancement of open science by utilizing a suite of widely
adopted open-source tools and frameworks, including HuggingFace Transformers, PyTorch, and the
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pre-trained ALBERT model. Throughout the research process, we maintained a commitment to
transparency and reproducibility by thoroughly documenting the entire modeling pipeline—from
dataset preprocessing and feature extraction to model architecture, training configuration, and eval-
uation procedures. All relevant source code, including data loading scripts, model definitions, and
training routines, will be made publicly available via GitHub upon acceptance of the thesis. In addi-
tion, key metrics and training dynamics have been continuously logged and visualized using Weights
& Biases (wandb), ensuring that experimental workflows are fully traceable. This approach facili-
tates future replication, adaptation, and community-driven improvement of our proposed framework.

3.4.4 Bias and Fairness

Although the UR-FUNNY dataset offers a relatively diverse collection of speech samples in terms of
speaker identities, topics, and delivery styles, it is predominantly constructed from English-language
stand-up comedy performances originating in Western cultural contexts, particularly from the United
States and Canada. This cultural homogeneity may introduce both linguistic and socio-cultural
biases into the model. As a result, the patterns learned by the model may reflect humor norms and
delivery mechanisms that are specific to Western English-speaking audiences, limiting the model’s
ability to generalize to other cultures, languages, or humor genres.

Furthermore, humor is inherently subjective, and the process of annotating punchlines is suscep-
tible to annotator bias. For instance, what one annotator perceives as humorous may be interpreted as
neutral or even offensive by another, depending on their individual background, cultural exposure,
or sense of humor. Since the UR-FUNNY dataset relies on binary humor annotations (humorous
vs. non-humorous) typically derived from audience laughter cues, it may oversimplify the nuanced
nature of humor perception and overlook subtle or culturally specific forms of humor.

These limitations highlight important ethical and methodological concerns regarding fairness
and inclusivity in humor classification research. To mitigate these issues, future work should aim
to incorporate multilingual and cross-cultural humor datasets, including performances from non-
Western cultures and non-English speakers. Additionally, implementing annotation strategies that
involve multiple annotators with diverse backgrounds could help capture a broader spectrum of
humor perceptions. Techniques such as consensus-based labeling, weighted voting, or subjective
scoring distributions could further address inter-annotator variability and improve the fairness and
robustness of humor recognition systems.

3.4.5 Reproducibility and Replicability

To enhance reproducibility, all model codes, configuration files, and data preprocessing scripts will
be publicly released. The model is based on open-source pre-trained components and is trained on
the publicly available UR-FUNNY dataset. Although fixed random seeds have not been applied to
all components, the core processes are deterministic and replicable. This enables other researchers
to reproduce the reported performance and further validate the research findings.

In summary, this study has tried to take ethical factors into consideration from data selection,
model design to training process. We strive to use public data to avoid privacy issues, and adopt
efficient model structures to reduce unnecessary consumption of computing resources. We also
make the code and experimental settings public to facilitate other researchers to reproduce and verify
the results. As humor recognition technology is promoted in more languages and cultures, future
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research also needs to continue to pay attention to fairness, inclusiveness and the boundaries of
technology use to ensure that these systems are used responsibly.
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4 Experimental Setup
This chapter presents the technical and practical settings of the conducted experiments, including-
data preprocessing, input construction, dataset partitioning, model variants, and the computational
environment. All experiments are carried out on the UR-FUNNY dataset with a focus onevaluating a
context-aware, multimodal approach to spoken punchline detection using text andacoustic features.

4.1 Data Preparation
The input to the proposed model is constructed from three sources of information: textual features,
acoustic features, and HCF. These features are extracted from the UR-FUNNY dataset, a multimodal
humor corpus. All features are aligned at the word level and serialized into .pkl format prior to
training, using the official script provided with the dataset.

Language Input: Each data point consists of a punchline and up to five preceding context ut-
terances. All utterances are tokenized using the AlbertTokenizer from HuggingFace Transformers.
The tokenized sequence is formatted as [CLS] context [SEP] punchline, where [CLS] is a classifica-
tion token and [SEP] separates the context and punchline segments. The combined token sequence
is then passed through a pre-trained ALBERT model (albert-base-v2) to extract contextual embed-
dings. For each token, the corresponding hidden state is obtained from the final transformer layer.
The output embedding dimension is 768, and sentence-level representations are subsequently aligned
with acoustic and HCF features for joint modeling.

Acoustic Input: Acoustic features are extracted using the COVAREP toolkit (Degottex, Kane,
Drugman, Raitio, & Scherer, 2014). These include a rich set of low-level descriptors such as fun-
damental frequency (F0), harmonic-to-noise ratio (HNR), mel-cepstral coefficients, glottal source
parameters, and other prosodic indicators. For each word, the start and end time are determined
using forced alignment with P2FA, and the corresponding acoustic frames are sliced and averaged
across time to obtain a fixed-length vector. Each utterance is padded or truncated to a predefined
number of words (e.g., 20), ensuring temporal consistency across samples.

Humor-Centric Features (HCF): HCF are designed to capture affective and semantic properties
relevant to humor, following the theoretical basis of the ambiguity and superiority theories of humor.
Each word is assigned a 4-dimensional HCF vector comprising: 1. Valence (positive/negative sen-
timent), 2. Arousal (calm/excited), 3. Dominance (submissive/dominant), 4. Ambiguity (degree of
semantic uncertainty). The first three dimensions—valence, arousal, and dominance—are extracted
from the NRC VAD lexicon (Mohammad, 2018), which assigns each English word a score between
0 and 1 for each emotional dimension. The ambiguity score is computed based on ConceptNet(Liu
& Singh, 2004) and GloVe(Pennington, Socher, & Manning, 2014) embeddings. Specifically, for
each word, its top-N related concepts are retrieved from ConceptNet, and their 300-dimensional
GloVe embeddings are obtained. Pairwise cosine distances between the sense vectors are calcu-
lated and averaged to quantify ambiguity: the greater the distance, the higher the ambiguity score.
This method reflects the number and diversity of plausible meanings a word can convey in context.
For each utterance, the HCF vectors of individual words are averaged to obtain a fixed-length 4-
dimensional representation aligned with the ALBERT and acoustic features. These representations
are then padded or truncated as needed to match the token sequence length.

All modalities are synchronized at the word level using alignment indices provided by the dataset.
The resulting features are stored in a .pkl file and loaded dynamically during training and evaluation.
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4.2 Data Splitting
The dataset used for this study is the UR-FUNNY and data is divided using the official data folds.pkl
split file. To ensure a balanced evaluation, the dataset was split into three subsets:

• Train Dataset: Consisting of 70% of the total data, used for model optimization.
• Dev Dataset: The development dataset, used for validation during training, makes up 15%of

the total data.
• Test Dataset: The test dataset, also comprising 15% of the total data, is used to evaluate the

final model performance.
To ensure reproducibility, we set a fixed random seed (seed=100) for all stochastic processes,

including Python, NumPy, and PyTorch. Additionally, we disabled non-deterministic CuDNN be-
havior by setting torch.backends.cudnn.deterministic=True and benchmark=False.

4.3 Experimental Environment
4.3.1 Hardware

All experiments were conducted on the Hábrók high-performance computing (HPC) cluster pro-
vided by the University of Groningen. Each job was executed on a compute node equipped with
an NVIDIA V100 GPU (32 GB VRAM), a 32-core Intel Xeon CPU, and 128 GB of RAM. This
configuration provided sufficient computational resources for training and evaluating the proposed
multimodal model with minimal latency or memory constraints.

4.3.2 Software Environment

The implementation was developed in Python 3.10. Model training and inference were performed
using PyTorch 2.0.1. The HuggingFace Transformers library (version 4.36.2) was used to load the
pre-trained ALBERT model and process token embeddings. Acoustic features were handled using
torchaudio 2.1.0 and librosa 0.10.1. Additional utility libraries, including NumPy (1.24.3), pan-
das (1.5.3), and scikit-learn (1.3.0), were employed for data manipulation and metric computation.
All experiments were executed within a Conda-managed environment to ensure reproducibility and
consistent dependency versions across runs.

4.3.3 Training and Evaluation

The model was trained using the AdamW optimizer. To account for differences in modality com-
plexity and feature scale, distinct learning rates were applied to each encoder: 5× 10−5 for the
ALBERT text encoder (to fine-tune pre-trained weights conservatively), 3× 10−3 for the acoustic
encoder (to accelerate learning of low-level features), and 3×10−4 for the HCF encoder. A warmup
ratio of 0.07178 was used with a linear learning rate scheduler to prevent unstable weight updates at
the early stages of training.

The loss function was binary cross-entropy, which is suitable for the binary nature of the humor
classification task. To reduce overfitting, a dropout rate of 0.2366 was applied to the transformer
encoder layers and the fusion module, selected empirically based on preliminary validation perfor-
mance.
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Training was conducted for 15 epochs with a batch size of 16. The maximum sequence length
was fixed at 85 tokens per example, covering both punchline and context. All transformer-based en-
coders employed a single attention layer with 1 head, and the cross-modal attention module included
1 layer with 4 heads. The fusion module projected the concatenated features to a 172-dimensional
latent space before classification.

Model performance was monitored on the validation set during training, using both Accuracy
and F1-score as evaluation metrics. The model checkpoint yielding the highest F1-score on the
validation set was retained for final testing. No early stopping mechanism was applied. All test
results reported in this study are based on the model selected by validation performance.

4.4 Baseline models
To assess the performance of our proposed model, we compare it against several representative base-
lines widely used in multimodal sentiment and humor classification. The selected models include
both early fusion and hierarchical fusion strategies. Below is a brief description of each:

• SVM(Support Vector Machine): A classical early-fusion baseline that concatenates features
from multiple modalities—typically text and acoustic vectors—into a single feature vector,
which is then classified using a linear or kernel-based Support Vector Machine. In humor
recognition tasks, this model is typically applied only at the punchline level, ignoring con-
textual information from preceding utterances. Due to the lack of temporal modeling and
modality-specific attention, SVM fails to capture inter-modal dependencies or sequential hu-
mor cues. Although simple and computationally efficient, it is limited in its ability to model
subtle or temporally grounded humor structures, especially in conversational data.

• CNN (Convolutional Neural Network): An early-fusion approach where multimodal feature
vectors are concatenated and treated as sequences (e.g., word-level inputs) before being passed
through convolutional layers. The CNN applies local filters to extract spatial or short-range
dependencies, making it suitable for identifying low-level patterns in the input. However, it
lacks mechanisms for long-range modeling or hierarchical context integration. As such, CNN-
based models are often unable to capture the nuanced interplay between modalities or exploit
the sequential context that is critical for detecting humor in multi-utterance dialogues.

• TFN (Tensor Fusion Network): A neural fusion architecture introduced by Zadeh, Chen, Po-
ria, Cambria, and Morency (2017) and designed for multimodal data analysis. It first leverages
LSTM to extract sequential features from the textual modality, capturing the temporal dynam-
ics of language. Then, it employs an outer - product operation to fuse features across three
modalities (e.g., text, audio, visual). Through this fusion, TFN models intricate interactions at
unimodal, bimodal, and trimodal levels, enabling it to capture both simple single - modality
patterns and complex cross - modality relationships for tasks like sentiment analysis.

• C-MFN (Contextual Memory Fusion Network): An extension of the Memory Fusion Net-
work (MFN), this model is specifically designed to incorporate sequential context in multi-
modal interactions(Hasan et al., 2019). It uses separate LSTM encoders to capture unimodal
context representations, and applies a Transformer-based self-attention mechanism to model
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intra- and inter-modal interactions hierarchically. The outputs of these unimodal and multi-
modal context modules are used to initialize the memory components of the MFN. For each
prediction, the punchline is encoded using MFN, and the final classification is based on the
last state of the memory. C-MFN is particularly effective in dialogue-based tasks like humor
recognition, where long-range dependencies and temporal context play a crucial role.

• bc-LSTM (Bidirectional Contextual LSTM): An architecture that employs bidirectional
LSTM layers to model contextual dependencies among utterances in multimodal sequences
(Poria et al., 2017). Multimodal features are first extracted separately, then concatenated and
fed into the bidirectional LSTM to capture sequential information from both preceding and
succeeding utterances. This structure enables the model to integrate cross-utterance contex-
tual cues while leveraging fused multimodal features, making it suitable for spoken dialogue
analysis where temporal order and inter-utterance relations are critical.

• HF (Hierarchical Fusion): A context-aware multimodal architecture for punchline detec-
tion(Choube & Soleymani, 2020). It uses GRU to model sequential dependencies among
utterances, capturing the contextual flow crucial to humor understanding. Before fusion, mul-
timodal feature vectors are dimensionally aligned to ensure consistency across modalities.
This design allows HF to effectively integrate context and modality-specific cues, improving
performance in spoken dialogue scenarios.
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5 Results
This section presents the experimental results and evaluates the proposed multimodal model for
punchline detection on the UR-FUNNY dataset. The model’s performance is assessed using Accu-
racy and F1-score, which provide complementary insights into its classification effectiveness. We
compare our approach with several baseline models from prior work to highlight its relative ad-
vantages. In addition, an ablation study is conducted to investigate the contribution of individual
modalities. These analyses provide a comprehensive understanding of the model’s performance,
both in its full configuration and under reduced settings.

5.1 Results
To evaluate the effectiveness of the proposed lightweight multimodal framework, we conducted a
series of experiments on the UR-FUNNY dataset. The full model incorporates three types of in-
put: textual features (including both the punchline and up to five preceding utterances as context),
acoustic features extracted from speech signals using the COVAREP toolkit, and HCF designed to
capture structured indicators such as incongruity, exaggeration, or polarity shift. Under this con-
figuration, the model achieves an accuracy of 72.33% and an F1-score of 0.7231, representing the
highest performance among all evaluated settings. As shown in Table 2, our model consistently out-
performs all baseline systems, including classical early-fusion methods such as SVM and CNN, as
well as more advanced hierarchical architectures like HF, TFN, C-MFN and bc-LSTM. While many
prior models offer high accuracy at the cost of computational complexity, our proposed approach
achieves a favorable trade-off between accuracy and efficiency. The performance gain, combined
with its compact architecture, demonstrates that incorporating prosodic and contextual features into
a lightweight design can significantly enhance punchline classification in spoken dialogue settings.

Method Accuracy (%) F1 Score

SVM 61.22 0.6036
CNN 63.98 0.6631
TFN 65.83 –
C-MFN 65.23 –
be-LSTM 66.99 0.6565
HF 67.84 0.6885
Our Model 72.33 0.7231

Table 2: Comparison of Accuracy and F1-score between different models

5.2 Ablation Studies
To investigate the contribution of each modality to the model’s predictive performance, we conducted
a series of ablation studies, each involving the removal of one input type from the full multimodal
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configuration. The goal was to assess the relative importance of contextual, acoustic, and HCF by
observing the resulting impact on classification metrics.

The removal of contextual information—operationalized as using only the punchline and exclud-
ing preceding utterances, yielded an accuracy of 65.39% and an F1-score of 0.6523. This highlights
the importance of conversational history in humor understanding, as contextual build-up often plays
a critical role in comedic effect.

When acoustic features were excluded, the model’s performance dropped to an accuracy of
65.29% and an F1-score of 0.6504, resulting in the largest performance decline among all condi-
tions. This indicates that acoustic features—such as pitch, energy, and speech rhythm—contribute
meaningfully to punchline detection, likely by capturing delivery-based cues that go beyond textual
content.

Finally, when the HCF were removed, the model achieved an accuracy of 69.82% and an F1-
score of 0.6927. Although the drop is relatively smaller, it still reflects a meaningful loss in per-
formance, especially considering the low dimensionality of HCF. These features appear to pro-
vide structured, interpretable signals—such as incongruity, polarity shifts, and semantic exagger-
ation—that are not easily inferred from raw text or audio streams alone.

Taken together, these findings confirm that all three modalities contribute in complementary
ways. Context offers high-level discourse structure, acoustics convey delivery-related nuances, and
HCF introduces domain-aware semantic signals. Their combination yields the best results, validating
the effectiveness of the proposed multimodal design.

Modality Combination Accuracy (%) F1 Score

no context 65.39 0.6523
no acoustic 65.29 0.6504
no hcf 69.82 0.6927
full multimodal 72.33 0.7231

Table 3: Results of Ablation Study across different modality combinations
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6 Discussion
This chapter discusses the experimental findings in detail and reflects on the effectiveness of the pro-
posed lightweight multimodal model. It begins by comparing the model’s performance with a range
of established baselines, highlighting its ability to achieve a favorable balance between accuracy and
computational efficiency. Furthermore, it provides an in-depth examination of how different input
modalities—namely acoustic features, conversational context, and humor-centric cues—contribute
to the task of humor recognition. Through a series of ablation studies, we explore the specific role
and value of each component. The discussion also considers broader implications for multimodal
modeling, emphasizing how the proposed architecture supports both interpretability and practical
deployment.

6.1 Overall Performance and Comparison with Baselines
Compared to several established baseline models, our proposed lightweight multimodal framework
demonstrates clear and consistent advantages in both accuracy and F1-score for spoken humor classi-
fication. Traditional early fusion methods, such as SVM and CNN, operate by directly concatenating
features from different modalities and feeding them into a classifier. While these approaches are easy
to implement, they lack the capacity to model modality-specific dependencies or contextual relation-
ships—both of which are critical in humor recognition tasks that rely heavily on nuanced delivery,
timing, and semantic subtleties.

In our experiments, these early fusion baselines achieved relatively poor performance, with F1-
scores of only 0.6036 (SVM) and 0.6631 (CNN), respectively. These results are significantly lower
than the 0.7231 F1-score achieved by our proposed model. The stark performance gap highlights the
inability of these simple models to capture deeper inter-modality interactions or leverage temporal
discourse context effectively, both of which are essential for understanding punchlines in spoken
dialogue.

In contrast, more sophisticated multimodal fusion strategies, including TFN , C-MFN, bc-LSTM,
and HF, incorporate temporal or hierarchical structures to better model cross-modal dependencies.
These models are theoretically more expressive and capable of capturing fine-grained interactions
across text, audio, and context. However, this enhanced expressiveness comes at the cost of increased
model complexity, heavier computational overhead, and lower interpretability. Their reliance on
deep stacking, tensor operations, or multiple sequential modules makes them less practical for real-
time or resource-constrained applications.

Among these advanced models, the HF architecture achieved the best result with an F1-score
of 0.6885. Despite its relatively strong performance, it still lags behind our model by 3.46 percent-
age points. This margin is non-trivial and indicates that our lightweight model not only competes
with, but surpasses, more elaborate systems while maintaining efficiency and interpretability. The
observed performance gap underscores the potential of our design to retain essential multimodal
information without incurring excessive computational burden.

One of the key strengths of our model lies in its modular architecture. Each modality—context,
acoustic features, and HCF—is processed independently by a dedicated encoder. The resulting em-
beddings are then integrated via a cross-attention module, which explicitly learns the interaction dy-
namics between modalities. This fusion mechanism is computationally light yet effective, avoiding
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the redundancy of deep fusion blocks or static tensor operations. It also promotes a more transparent
understanding of how modality contributions affect final predictions.

In conclusion, our model achieves an effective balance between performance and efficiency. It
consistently outperforms both simple and complex baselines, demonstrating superior capability in
capturing the multimodal nature of humor while retaining a lightweight and interpretable structure.
This makes it particularly well-suited for real-world applications where computational resources are
limited or fast inference is required.

6.2 Role of Different Components
To examine the contribution of individual modalities to humor detection, we conducted a series of
ablation experiments, each targeting a specific input modality. In each case, the rest of the model
architecture and training setup were kept constant. The results are summarized in Table 5.2, and
each sub-section below addresses one of the research questions.

To evaluate the role of acoustic input in the humor recognition process, we removed the acoustic
features from the model while retaining both the textual inputs and HCF. Under this configuration,
the model achieved an accuracy of 65.29% and an F1-score of 0.6504, representing the largest per-
formance drop of 7.27 points in F1 compared to the full model. This outcome underscores the
importance of acoustic information in spoken humor. Acoustic features—such as pitch inflection,
emphasis, hesitation, rhythm, or elongated pauses—often signal irony or serve as cues that lead up to
a punchline. For example, elongated pauses or rising pitch patterns often precede punchlines, help-
ing to build anticipation or signal a shift in tone (Naz, Farooq, & Jabeen, 2023). Similarly, ironic
or sarcastic utterances are frequently marked by slower speech rate, greater pitch variability, and ex-
aggerated intonation (Bryant, 2010), indicating that acoustic cues can serve as powerful signals for
humorous intent. These findings underscore the importance of modeling prosody in humor recogni-
tion systems, particularly in multimodal settings. The drop in performance following the removal of
acoustic input suggests that this modality contributes valuable and non-redundant information to the
classification process, improving both interpretability and the model’s sensitivity to delivery style.

To further investigate the influence of conversational context, we removed all context and re-
tained the punchline, acoustic and HCF as input. This variant achieved an F1-score of 0.6523,
reflecting a drop of 7.08 points relative to the full model. Although slightly smaller than the acoustic
ablation, the degradation still underscores that context plays a major role in humor comprehension.
Such a decline highlights the critical role of discourse-level information in understanding humor.
In many stand-up comedy scenarios, humor arises not from the punchline in isolation but from a
buildup of expectations, narrative progression, or thematic contrast created in the preceding context.
Without this background, the model is deprived of key semantic signals needed to detect incon-
gruity, resolve ambiguity, or appreciate comedic timing. In contrast, the full model leverages up to
five prior utterances, which allows it to learn speaker intent, track dialogue flow, and capture longer-
range dependencies. The sharp performance drop confirms that humor detection is not a standalone
utterance-level classification problem but instead requires a more holistic understanding of dialogue
context.

To assess the value of humor-centric features, we removed the HCF input and preserved only the
textual and acoustic modalities. This configuration resulted in an F1-score of 0.6927, a relatively
modest drop of 3.04 points compared to the complete system. Although the magnitude of the drop
is smaller than that observed when removing context or acoustic features, it remains a meaningful
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indicator of the utility of HCF. These features are specifically designed to encode high-level humor
constructs, including exaggeration, incongruity, polarity shifts, and repetition—all of which are dif-
ficult to extract from raw text or audio alone. The absence of HCF leads to reduced sensitivity to
subtle structural humor patterns, particularly in cases where punchlines are ambiguous or contextu-
ally nuanced. By introducing these targeted signals, the HCF module provides inductive bias that
enhances the model’s interpretability and improves its ability to make fine-grained decisions.

Taken together, the ablation studies highlight that each modality contributes uniquely and mean-
ingfully to the task of humor recognition. Acoustic features plays the most dominant role, followed
by contextual features, with HCF offering an additional performance boost. The relative stability of
the model when HCF is excluded suggests that these features may serve as an optional but effective
enhancement in resource-constrained scenarios. More broadly, these results validate the model’s
design principles, showing that our lightweight architecture effectively integrates complementary
signals from multiple modalities to support nuanced, context-aware humor classification.

6.3 Summary
In summary, this chapter highlights the superior performance and design efficiency of our lightweight
multimodal model. Through comparative evaluation and ablation studies, we demonstrated that each
modality—acoustic, contextual, and humor-centric—plays a distinct and complementary role in spo-
ken humor recognition. Unlike traditional models that compromise interpretability for complexity,
our framework achieves robust performance through modular design and effective cross-modal in-
teraction. These insights confirm the practical value of integrating structured, task-relevant features
into lightweight architectures, making our approach a promising solution for real-world humor de-
tection applications.
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7 Conclusion
This chapter provides a comprehensive conclusion to the study by summarizing its main findings, re-
flecting on technical and methodological challenges, and outlining key limitations and opportunities
for future work. The research aimed to develop a lightweight multimodal framework for spoken hu-
mor recognition, striking a balance between performance, interpretability, and efficiency. Through
a series of experiments and ablation studies, the model demonstrated strong performance compared
to both simple and complex baselines. This chapter also highlights unresolved issues, such as lim-
ited modality coverage and task generalization, and proposes future directions to improve model
robustness, expand functionality, and explore real-world deployment potential.

7.1 Challenges
Throughout the course of this study, several significant challenges were encountered, primarily re-
lated to technical capabilities and data handling. These challenges are outlined as follows:

1) Dataset preprocessing and data format issues
The UR-FUNNY SDK-format dataset, while preprocessed to an extent, still required significant

additional handling. One of the challenges lies in the nested structure of data entries, where tex-
tual and acoustic features are stored under different keys (e.g., punchline f eatures, context f eatures).
Some entries unexpectedly contain string representations instead of numerical vectors, resulting in
error during tensor conversion. I had to manually inspect the data set, perform safety checks and
write secure conversion functions to ensure that the model could process all samples without inter-
ruption. Although these steps are not part of the model design itself, they are crucial for establishing
a stable training process.

2) Cross-modal Shape Alignment and Fusion Design
One of the main difficulties in this project was aligning features from different modalities, which

often vary in both length and dimensionality. The text and audio encoders produced outputs with
different shapes, so extra steps were needed to ensure that the punchline and context representations
could be compared and fused correctly. Getting this alignment right was important for allowing the
cross-attention module to work effectively. We also spent time experimenting with different ways of
combining the two types of input. The goal was to let each modality contribute its own information
without losing meaning in the process. Though it might seem simple in theory, building this fusion
mechanism involved a lot of adjustment and testing to get it to function reliably.

3) Model Adaptation for Ablation Studies
Conducting ablation studies—such as removing the acoustic modality or the humor-centric fea-

tures (HCF)—required careful reconfiguration of both the model architecture and the training pipeline.
Since the original model integrates modalities through tightly coupled cross-attention and concate-
nation operations, each modality is embedded at a different stage of the architecture. As a result,
removing a single modality was not a matter of simply disabling an input channel; it necessitated
structural rewrites. Specifically, modifications had to be made to the model.py file to define variant
architectures that exclude one of the modalities, as well as to main.py to handle different data prepro-
cessing and model instantiation logic. Additionally, the inference script (test.py) required adaptation
to accommodate changes in input dimensionality and feature flow. Each ablation variant—text-only,
text + HCF, and text + acoustic—demanded distinct structural considerations, particularly because
the affected components were often embedded within layers such as the cross-attention block or the
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fusion layer. Maintaining consistency across these multiple model variants without breaking compat-
ibility or duplicating code proved to be a considerable challenge. This task was further complicated
by the interdependencies among modality-specific encoders and fusion mechanisms, underscoring
the complexity of conducting rigorous ablation experiments in multimodal learning frameworks.

4) Uncertainties in Experimental Design Decisions
A key challenge throughout this study was managing various uncertainties in experimental de-

sign—especially when it came to selecting hyperparameters and determining suitable training strate-
gies. As is common in postgraduate research, many important decisions had to be made without
established guidelines or known optimal configurations. Among the parameters that most affected
performance were the dropout rate, the dimensionality of the fusion layer, the number of attention
heads in the cross-modal alignment module, and the total number of training epochs. Each of these
choices had a direct influence on how stable the model’s training process was and how well it ulti-
mately performed.

Early experiments revealed that the model exhibited strong sensitivity to certain hyperparameter
combinations. This sensitivity was especially pronounced in multimodal settings, where nonlinear
interactions between input streams exacerbated instability. For instance, setting the dropout rate too
low led to overfitting, while overly high values caused underfitting or even training collapse. Sim-
ilarly, increasing the number of attention heads or the width of the fusion layer sometimes resulted
in abnormal fluctuations in training loss, gradient vanishing, or non-convergence. To address these
issues, I adopted a hybrid approach combining manual tuning with automated search. A systematic
grid search was conducted on key parameters to strike a balance between model capacity and gener-
alization ability. In addition, gradient clipping and learning rate warm-up strategies were employed
to prevent gradient explosion and stabilize parameter updates during early training.

Overall, resolving these uncertainties in experimental design was essential for developing a re-
producible and stable model. It also provided valuable insights into the nuanced relationship be-
tween architectural complexity, modality fusion strategies, and training dynamics. Through exten-
sive experimentation and fine-tuning, I was able to construct a lightweight multimodal system that
performed robustly across different configurations, including ablation scenarios.

7.2 Limitations
This study proposes a lightweight multimodal model that shows promise in balancing accuracy,
computational efficiency, and practical applications. Rather than pursuing optimal performance at
the expense of increased complexity, the model is designed to intentionally prioritize a compact
structure suitable for practical applications. Despite these advantages, there are still some limitations
that are worth exploring.

First of all, although the model has shown competitive results on the UR-FUNNY dataset, with
the highest test accuracy of 72.33% and an F1 score of 0.7231 in the full multimodal setting, there
is still room for improvement.Given the design priority on efficiency, the model uses only one self-
attention layer per modality and a single-layer cross-attention module for fusion, which may limit its
ability to capture long-range dependencies and subtle inter-modal interactions. As a result, certain
complex humor patterns—such as jokes that rely on long dialogue history, nuanced speaker intent,
or subtle cultural references—may not be fully represented or correctly interpreted. In addition,
This study focuses on the textual and acoustic modalities and constructs a humor model based on
acoustic features and semantic content. Visual cues such as facial expressions and gestures play an
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important role in human humor perception. Although the visual modality was deliberately ignored
to maintain the simplicity of the model, the absence of the visual modality may limit the model’s
ability to recognize multimodal humor, as non-verbal signals are crucial in multimodal humor.

Meanwhile, this study focuses on the binary classification recognition of humor, that is, deter-
mining whether a segment is humorous. This task definition is concise and clear and is suitable
for building a basic humor recognition system. However, as a complex linguistic phenomenon, hu-
mor has diverse expression styles and emotional hierarchies. Simply classifying it as ”humorous”
or ”non-humorous” is still rather crude. The model cannot distinguish between different types of
humor (such as sarcasm, exaggeration, irony, black humor, etc.), nor can it identify dimensions such
as humor intensity, style, or the emotional response of the audience. This singularity in the modeling
hierarchy limits the application scope of the model in more complex scenarios.

Last but not least, the training process in this study adopted a fixed setup: a predefined learning
rate, the AdamW optimizer and the standard binary classification cross-entropy loss. Although the
model is suitable for baseline evaluation, future research can explore whether enhancement methods
(such as cyclic learning rates, advanced data augmentation (such as acoustic noise simulation), or
curriculum learning) can further improve the performance without deviating from the lightweight
concept.

In conclusion, this study proposed a lightweight multimodal architecture that achieves a balance
between deployability and reasonable accuracy in humor recognition tasks. Although the model
shows robust performance under limited computing resources, future research should still focus on
improving model performance and humor level understanding capabilities, exploring richer modal
feature inputs and more efficient training strategies, while always adhering to the core design concept
of lightweight and efficient.

7.3 Future Work
Future research can further expand and refine the lightweight multimodal humor recognition model
proposed in this study to enhance its practicality, generalizability, and overall system performance.

First of all, we can introduce more expressive yet low-computational-overhead feature enhance-
ment mechanisms. For example, lightweight attention modules, adaptive feature recalibration meth-
ods, or inter-modal contrastive learning strategies are all expected to improve the collaborative mod-
eling effect between modalities without significantly increasing the number of parameters. Addition-
ally, it is also a direction worth exploring to further explore the deep connections between acoustic
information and semantic information on the current basis, or to conduct more meticulous dynamic
fusion of features in different time segments.

Secondly, considering that non-verbal cues such as facial expressions, eye gaze, and body move-
ments play a crucial role in humor perception, in the future, we can consider introducing compressed
visual features (such as using lightweight visual encoders like MobileNet) to construct a three-modal
version of the lightweight network. Such an expansion can significantly enhance the model’s ability
to perceive and understand multimodal humor while maintaining computational efficiency

At the same time, Although the binary classification setup is concise and clear and suitable for
establishing a basic humor recognition system, humor essentially has rich types and semantic hier-
archies, and simply modeling it through binary classification is too simplistic. Future research can
try to expand the task definition. For instance, we can construct multi-class humor recognition(such
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as distinguishing sarcasm, exaggeration, black humor, etc.) or introduce regression modeling of hu-
mor intensity, thus enhancing the system’s ability to distinguish humor styles, expression intensities,
and emotional responses, and making the model closer to the humor dissemination and perception
mechanisms in real contexts.

In addition, more flexible optimization techniques can be introduced, such as cyclic learning
rates, data augmentation methods with acoustic perturbations, curriculum learning, etc., to improve
the model’s adaptability to complex training samples and the convergence speed, thereby enhancing
the model’s robustness and generalization ability.

It is worth noting that currently, the model is only trained and evaluated on the UR-FUNNY
dataset. Although it has a certain degree of diversity, it still mainly reflects the characteristics of En-
glish TED speech corpora. Humor shows significant differences among different languages, cultures,
and audience groups. For future improvement, we can explore cross-language andcross-cultural
adaptability, and try to migrate the model to multiple language datasets or spontaneous spoken dia-
logues to evaluate its robustness in multi-language and multi-style humor recognition scenarios. At
the same time, strategies such as unsupervised pre-training and cross-modal alignment can also be
introduced to reduce dependence on annotated corpora and improve the practicality of the model in
low-resource scenarios.

Finally, It is expected that the model’s lightweight nature will enable its use in real-world sys-
tems with limited resources. Future research can further evaluate its deployment feasibility and
operational efficiency in mobile devices, embedded systems, and interactive voice platforms. For
example: integrating humor recognition capabilities in voice assistants to enhance the naturalness
and personalized experience of human-computer interaction; or combining the humor perception
module with the speech recognition system (ASR pipeline) to label and understand the humorous
content in comedies and talk shows in real time, thereby enhancing the audience’s immersive expe-
rience in auditory media.

In conclusion, the lightweight multimodal humor recognition model provides new ideas for con-
structing intelligent systems with real-time performance and deployability. Future work should con-
tinue to deepen feature modeling, expand the ability to understand context, and strengthen practical
application value while maintaining an efficient structure, so as to promote the application of humor
recognition technology to a wider range of practical scenarios.

7.4 Impact and Relevance
This study focuses on humor recognition in spoken dialogue and contributes to the field of mul-
timodal affective computing. Compared to traditional sentiment or emotion classification, humor
is more complex because it often depends on timing, delivery, and context rather than just word
meaning. The lightweight multimodal model proposed in this work addresses both practical needs
(e.g., real-time performance) and theoretical questions about how spoken humor can be captured by
machines.

Experimental results show that adding acoustic features—such as pitch, energy, glottal parame-
ters—improves the model’s ability to detect humor, especially in spoken settings. These nonverbal
signals help highlight moments of exaggeration or punchline delivery. Contextual utterances also
helps the model to understand when something is funny based on previous dialogue turns, rather
than judging each sentence in isolation.
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Another important aspect is the use of HCF, which provide structural information based on com-
mon humor patterns, such as repetition or contrast. These features make the model’s behavior a bit
easier to interpret and support the overall learning process. This aspect also relates to recent work in
explainable AI, though in a more focused and practical way.

The proposed framework is not only compact and efficient but also modular and extensible. Its
design makes it suitable for real-world deployment in applications such as intelligent agents, virtual
companions, and interactive learning environments. By enabling real-time humor understanding on
resource-limited devices, this model meets the growing need for responsive and socially aware AI
systems.

Academically, the work offers a solid foundation for further research in multimodal humor de-
tection. It encourages future studies to explore richer fusion strategies, cultural variation in humor,
and the inclusion of additional modalities such as facial expressions or laughter. Overall, the study
provides practical insights into how multimodal cues can be leveraged for nuanced language under-
standing, contributing to more natural and engaging human-computer interactions.
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