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Abstract
With growing interest in biometric technologies, speaker height estimation directly from acoustic
signals has emerged as a valuable capability for applications in forensics, authentication, and speech
profiling. However, most state-of-the-art systems rely on full speech input, which poses challenges
for conversational privacy. This study investigates the feasibility of predicting speaker height from
sub-lexical acoustic features using lightweight models. Basic feature (F0), intermediate features
(formants), and high-dimensional features (MFCCs) were utilized as input across three regression
models: simple linear, multiple linear, and random forest regression.

Results show that MFCCs combined with multiple linear regression yield a statistically signifi-
cant performance using only isolated diphthong /aw/, achieving a minimum root-mean-square error
(RMSE) below 7 cm on the TIMIT dataset. This performance is on par with state-of-the-art full
speech input and deep neural network models. MFCCs also showed greater gains when used with
multivariate models, suggesting that feature complexity and model structure interact to influence
prediction outcomes. Additionally, diphthong /aw/ emerged as the most reliable input unit, consis-
tently yielding low prediction errors in both multiple linear and random forest regressions, whereas
reduced vowel /ax-h/ consistently underperformed across all feature sets and regression models. Fur-
thermore, an inverse relationship between F1 and F4 was observed in both simple linear regression
and random forest feature importance analysis, indicating that as one becomes more predictive, the
other contributes less—suggesting a complementary dynamic in height estimation.

These findings demonstrate that phone based input, which is linguistically impoverished, can
reduce conversational privacy risks and offer a viable alternative to models based on full speech.
They suggest a promising direction for developing interpretable and conversational privacy con-
scious speaker profiling systems using minimal speech input.
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1 Introduction
Speech is central to human communication, enabling the exchange of ideas, emotions, and inten-
tions. Yet beyond conveying linguistic and paralinguistic content, speech also encodes information
about the speaker. For example, it reveals demographic attributes such as age and gender (Schilling
& Marsters, 2015), as well as physical characteristics like vocal tract length (Lammert & Narayanan,
2015). Together, these cues contribute to a distinctive vocal signature, making speech both a com-
municative tool and a biometric marker. This means that speech is not only a tool for linguistic
communication but also a medium revealing speaker-specific traits. Because of this dual function,
speech can serve as a powerful input for various speech technologies, particularly in the field of
Automatic Speech Recognition (ASR), which seeks to convert spoken language into written text.
While the primary goal of ASR is accurate word recognition, this field has also been extending
the applications by increasingly integrating speaker-related information to adapt to diverse speaking
populations, for example, the domains of speaker verification using speaker recognition and speaker
profiling for communities with different background. Beyond speaker identification and verification,
ASR systems can extract demographic and physiological traits through speaker profiling. Speaker
profiling involves extracting speech and inferring stable physiological and demographic traits, such
as age, gender, and height, using acoustic features. To improve accuracy in estimating height, state-
of-the-art research has increasingly looked beyond traditional features, and rather converted full
speech into vectors as input of height estimation tasks through deep neural network models (Poor-
jam, Bahari, Vasilakakis, & Hamme, 2015; Rajaa, Van Tung, & Siong, 2021).

On one hand, the use of full speech signal making height prediction feasible objectively, for ex-
ample Rajaa et al. (2021)’s single-task setting for height prediction have achieved a root mean square
error (RMSE) of 6.0 for female speakers. This encourages the technological trend of widely using
biometric voice recognition technologies for identity management (Mohammed & Ali, 2024). For
instance, financial institutions such as HSBC employ VoiceID as a unique vocal identifier for secure
telephone banking access. In the educational context, voice recognition systems are increasingly
used in online assessments to authenticate users, particularly individuals with disabilities (Rudra-
pal, Das, Debbarma, Kar, & Debbarma, 2012), help prevent identity fraud, such as impersonation
by a “ringer” (Yee & MacKown, 2009), and uphold academic integrity (Hernandez-de Menendez,
Morales-Menendez, Escobar, & Arinez, 2021).

On the other hand, embeddings derived from the entire speech signal raise both biometric pri-
vacy and conversational privacy concerns. First, although using the full speech signal for prediction
and estimation is highly effective, it necessarily involves collecting sensitive biometric data. If this
information is misused or inadequately stored, it can lead to serious security risks. Second, full
speech recordings inherently capture semantic content that may include sensitive personal informa-
tion, making people wary of systems that store or analyze complete utterances. This apprehension
is reflected in growing public awareness and mistrust toward home devices perceived to “listen in”
on conversations. Interestingly, many users are less concerned about their use of biometric data than
about the risk of conversational content being monitored or repurposed Despres et al. (2024). This
raises a need to research methods that use linguistically impoverished input, such as sub-lexical seg-
ments, to achieve predictive performance comparable to models trained on full speech recordings.
Therefore, developing high-performing models that can achieve comparable results using minimal
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input data, for example, phone-based speech utterances, could strengthen public confidence in bio-
metric voice recognition technologies and encourage broader acceptance by alleviating concerns
about conversational privacy.

Research on speaker profiling, especially height estimation, has a long history that predates
the use of deep neural networks and the use of full speech signals. These earlier studies based
on acoustic-physiological mechanism may offer valuable insights and directions for contemporary
research on height prediction from speech aimed at preserving speaker privacy.

1.1 Acoustic-physiological Mechanism
Early studies investigating the relationship between vocal tract length (VTL), formant frequencies,
and speakers’ height can be traced back to the twentieth century. Based on the source-filter theory of
speech (Fant, 1960), the vocal tract acts as an acoustic filter, with its length determining the spacing
between resonances (formant frequencies) of supralaryngeal vocal-tract. A longer vocal tract re-
sults in lower and more closely spaced formant frequencies. Building on this theoretical framework,
Fitch and Giedd (1999) demonstrated a strong correlation between speaker height and vocal tract
length (VTL) across individuals of varying ages and statures (r = 0.93), with taller speakers typi-
cally exhibiting longer vocal tracts. Along with (Fant, 1960), Fitch and Giedd (1999) established a
link between VTL, formant frequencies, and speaker height, suggesting that taller individuals tend
to have longer VTLs and consequently produce speech with lower formant frequencies, and vice
versa. These observations imply that the relationship between speaker height and acoustic features
is mediated by systematic anatomical variations (González, 2004; Lass & Davis, 1976). Given this
relationship, acoustic features may serve as a viable basis for predicting speaker height. Nonethe-
less, empirical results have been inconsistent. Several studies have reported limited or unreliable
correlations, and most attempts to accurately estimate height from formants have not been success-
ful (González, 2004; Hatano et al., 2012; Lammert & Narayanan, 2015).

Given the inconsistent correlations between formants and height, researchers have explored al-
ternative acoustic features for height estimation. Features such as fundamental frequency (F0) and
Mel-frequency cepstral coefficients (MFCCs) have gained attention for their potential to capture sub-
tle physiological differences related to height (Dusan, 2005; Ganchev, Mporas, & Fakotakis, 2010).
Although F0 is more directly influenced by vocal fold properties, it may reflect trends associated
with speaker size and may correlate with physical dimensions. MFCCs, as compact representations
of the speech spectrum, are widely used in speech processing. MFCCs have been assessed the corre-
lation with height estimation (Dusan, 2005) and have also been used as input of deep neural networks
for height prediction (Rajaa et al., 2021).

However, different acoustic features capture these height-related variations with varying effec-
tiveness, as evidenced by the contradictory findings reported by Dusan (2005) and Ganchev et al.
(2010).
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1.2 Research Gap
According to Dusan (2005)’s findings, using multi-linear regression, higher-dimensional acoustic
features such as MFCCs, were shown to exhibit stronger correlations with speaker height (r = 0.74),
whereas lower-dimensional features, such as fundamental frequency (F0), showed weaker corre-
lations (r = 0.59). This suggests that higher-dimensional features may be more informative and
accurate for predicting height. This view is further supported by previous studies that relied on
lower-level features such as formants, which often reported low correlations with speaker height
(González, 2004; Hatano et al., 2012). When Ganchev et al. (2010) employed openSMILE to ex-
tract and rank acoustic features for height prediction based on prediction error, although MFCCs
remained the top-performing features, F0 also appeared multiple times among the top 50 features,
which contrasted with Dusan (2005)’s findings and proved that lower-dimensional features may still
carry numeral relevant information for height estimation.

Therefore, the first research gap concerns whether correlation translates to prediction accuracy
in height prediction. Dusan (2005)’s study assumed higher dimension features are more useful to
predict height without demonstrating that increasing the dimensionality of acoustic features leads to
actually improved performance as measured by lower prediction error. This assumption was chal-
lenged by the research of Ganchev et al. (2010), which assessed the effectiveness of acoustic feature
subsets in height prediction using prediction error metrics such as Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE). Ganchev et al. (2010) particularly found that three subsets of F0
features ranked in the top 10, despite F0 being the acoustic feature with lower correlation in Dusan
(2005)’s study. This rationale underpins the choice of RMSE as an appropriate evaluation metric for
this study and motivates the development of Sub-Research Question 1 (Sub-RQ1).

Furthermore, the second research gap concerns phone-specific patterns that have been largely
overlooked in prior work. Dusan (2005)’s correlation results differed significantly between vowels,
the Pearson correlation coefficient for /iy/ (r = 0.73) was approximately double that of the reduced
vowel /ax-h/ (r = 0.36), highlighting significant vowel-dependent differences in height predictabil-
ity. However, it remains unclear whether these vowels are also associated with higher prediction
accuracy. This observation highlights the need for further analysis of vowel-specific performance
measured by prediction error and points to the potential utility of phone-level modelling for height
prediction, leading to the formulation of Sub-Research Question 2 (Sub-RQ2).

The third research gap concerns the comparison between linear and non-linear regression models
for height prediction. Dusan (2005) used a multiple linear regression model, while Ganchev et al.
(2010) applied a Support Vector Machine (SVM) with a kernel function, representing a non-linear
approach. This methodological difference may partly account for the discrepancies in their find-
ings and underscores the need to examine the performance of both linear and non-linear regression
models using the same set of acoustic features. The goal is to determine which approach more effec-
tively captures the relationship between acoustic features and speaker height. In addition, this study
uses feature importance scores from the random forest model to investigate specific relationships
between acoustic features and height, contributing to the formulation of Sub-Research Questions 3
and 4 (Sub-RQ3 and Sub-RQ4).
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1.3 Research Questions and Hypotheses
In light of the preceding discussion on the identified research gaps, and based on the phone-level
approach used by Dusan (2005), which suggests a valuable direction for height prediction using
minimal speech input and aligns with privacy considerations, I propose a tiered analysis that in-
vestigates how acoustic feature complexity and model choice affect the accuracy of speaker height
estimation at the phone level, with a focus on vowels. In this study, the terms vowel and phone will
used interchangeably. The rationale for this will be further explained in 3.2. This study addresses
the following research question:

How does acoustic feature complexity affect height prediction accuracy when com-
paring basic features (F0), intermediate features (formants), and high-dimensional
features (MFCCs) across different regression models at phone-based level?

This main question can be broken down into the following sub-questions:

1. How does the use of different feature sets (basic, intermediate, high-dimensional) impact
RMSE across phones and regression models? In particular, do high-dimensional features
(MFCCs) consistently outperform simpler features?

2. Are there specific phones for which height can be predicted most or least accurately, and
do these patterns align with articulatory openness (open vs. closed vowels) and phonetic
reduction?

3. How does the performance (RMSE) of linear regression models (simple and multiple) compare
to that of a non-linear model (random forest regression) in predicting speaker height from
acoustic features across phones?

4. Which acoustic features contribute most significantly to height prediction in the random forest
regression model, and how do feature importance patterns relate to the acoustic-physiological
mechanisms?

• H1: High-dimensional acoustic features (MFCCs) will produce lower RMSE values than ba-
sic (F0) and intermediate features (formants) across most phones when using linear regression
models. This hypothesis is inspired by Dusan (2005), who reported that the correlation be-
tween speaker height and acoustic features increases with the dimensionality of those features
using multiple linear regression model. However, this hypothesis aims to explore under what
conditions different feature sets most effectively predict height, rather than to assert a uniform
superiority of MFCCs across all linear modelling scenarios.

• H2: The phone /ax-h/ will consistently exhibit the highest RMSE across all feature sets (Du-
san, 2005), due to its status as a reduced vowel characterized by high articulatory and acoustic
variability. Open vowels (/aa/, /ae/, /aw/) are expected to yield lower RMSE values, as they
involve greater vocal tract expansion compared to close vowels. This stretching enhances the
acoustic distinction between speakers of different heights, leading to more consistent cues for
height prediction.
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• H3: Multiple linear regression will outperform simple linear regression, but the improvement
will be more pronounced for high-dimensional features (MFCCs with 13 dimensions) than for
intermediate features (formants with four dimensions) (Dusan, 2005).

To validate the proposed hypotheses, RMSE values obtained from the simple linear regression,
and random forest regression using formant and MFCC features are first aggregated by computing
the mean RMSE across all features for each phone. This results in one representative RMSE value
per phone, allowing for appropriate statistical comparison. Table 1 below presents the hypotheses
falsifiability criteria:

Hypothesis Test IV DV Accepted if:

H1
Friedman F0, For-

mants,
MFCCs
(from SR)

(Mean)
RMSEs of
phones

It is considered validated if statisti-
cally significant results (p < 0.05) al-
low analysis of the conditions under
which each feature set predicts height
most effectively.Wilcoxon Formants,

MFCCs
(from MR)

RMSEs of
phones

H2
Friedman 20 Phones RMSE of SR /ax-h/ consistently yields higher RM-

SEs AND one of the open vowels (/aa/,
/ae/, /aw/) consistently yields lower
RMSEs across all 3 tests

Wilcoxon 20 Phones RMSEs of
MR

Wilcoxon 20 Phones RMSEs of
RF

H3
Wilcoxon SR, MR Mean RM-

SEs of
Formants

MR outperform SR in both tests

Wilcoxon SR, MR Mean RM-
SEs of
MFCCs

Wilcoxon Formants,
MFCCs

∆RMSE Improvement of MFCCs is more pro-
nounced than of formants

Table 1: Overview of Hypotheses Validation

1.4 Thesis Outline
Now that the motivation for this research has been presented, the structure of this thesis is as follows:

• Section 2 reviews relevant literature categorized into three main themes, and then situates the
present study within a research framework developed around the gap highlighted in the works
of Dusan (2005) and Ganchev et al. (2010).

• Section 3 describes the dataset, acoustic features selected, regression models, evaluation method-
ology and ethical considerations of this work.
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• Section 4 details the data preparation steps and experiment setups.

• Section 5 presents and analyzes the regression results and validates the hypotheses using sta-
tistical tests.

• Section 6 discusses key insights, addresses limitations, and provides answers to the research
questions.

• Section 7 concludes with key findings and future directions.
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2 Literature Review
This chapter begins by outlining the search strategy and selection criteria used in the literature review
process. Following this, a comprehensive review of prior research on height prediction using speech
signals is presented. The review is organized into three thematic categories, followed by a systematic
comparative analysis of research gaps identified in the studies by Dusan (2005) and Ganchev et al.
(2010):

• Perception Studies: Research focused on human listeners’ perception of apparent height
based on speech stimuli.

• Correlation Studies: Studies investigating the relationship between height or vocal tract
length (VTL) and one or more sets of acoustic features.

• State-of-the-Art (SOTA) Performance: Research employing advanced machine learning
techniques, including deep neural networks, for height prediction from speech.

• Research Gap Analysis: A detailed examination of the limitations and gaps in the works of
Dusan (2005) and Ganchev et al. (2010).

2.1 Search Strategy and Selection Criteria
The literature search strategy employed a combination of Boolean operators and quoted search terms
on Google Scholar, arXiv, and IEEE, using targeted keywords to gather a diverse and relevant set of
sources. Keywords from each thematic category were incorporated in every search to ensure com-
prehensive coverage.

Primary search:

• Main Theme: “height estimation” OR “speaker height prediction” OR “physical traits from
speech”

• Acoustic Features: “formant frequencies” OR “F0” OR “F1” OR “F2” OR “F3” OR “F4”
OR ”MFCC” OR “acoustic features” OR “speech signal”

• Machine Learning Method: “machine learning” OR “deep learning” OR “neural network”

Secondary search:

• Main Theme: “biometric voice recognition” OR “speaker profiling” OR “voice biometrics”

• Acoustic Features: “formant frequencies” OR “F0” OR “F1” OR “F2” OR “F3” OR “F4”
OR ”MFCC” OR “acoustic features” OR “speech signal”

Explanation of selection criteria:

1. Inclusion criteria: Peer-reviewed journal articles and conference papers reporting empirical
results, both subjective and objective evaluation, related to height prediction from speech using
acoustic features or full speech signal as input.

2. Exclusion criteria: Studies focusing on VTL structure analysis and acoustic features only.
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2.2 Perception Studies
To begin with, the literature on human perception of a speaker’s height from speech includes two
key perceptual studies conducted by the same group of researcher at different times. Although the
present study does not aim to investigate human listeners’ subjective estimations of VTL or speaker’s
height, previous work by Barreda (2016) and Barreda and Predeck (2024) still provides useful con-
text for understanding the complexity of height prediction from speech based on vowel acoustics.

Formant values and vowel identity could mislead listeners’ height judgments systematically.
When vowels implied similar VTLs, the back vowel /U/ was perceived to be ”taller” than the front
vowels /i/ and /ae/, likely due to its lower F1 and F2 values (Barreda, 2016). On the other hand, the in-
clusion of higher formants improved perceptual accuracy, suggesting that listeners relied not only on
VTL-related cues but also on vowel-specific spectral characteristics (Barreda, 2016). The significant
influence of vowel identity on perceived height is further supported by Dusan (2005), whose findings
revealed varying correlation coefficients between vowels, acoustic features, and speaker height. This
indicates that the effectiveness of vowels and acoustic features in height prediction models can differ
substantially in terms of accuracy. These differences warrant closer analysis through phone-specific
patterns, highlighting a research gap concerning phoneme-specific effects in height prediction. In
particular, there is a need to examine feature importance scores derived from random forest regres-
sion across formant frequencies, especially F1, F2, and F4, to assess whether higher formants offer
supplementary cues that align with human perceptual strategies.

Furthermore, Barreda and Predeck (2024) argued that human listeners had an ”underlying sys-
tematic process” and used social knowledge to produce stable speaker height judgments without
needing higher formant information, but this conversely suggests that regression models which lack-
ing such cognitive mechanisms, may yield results that do not reflect a similarly systematic process.
This also underscores the importance of examining feature importance scores from random forest
regression to identify which acoustic cues drive model predictions.

2.3 Correlation Studies
Fant (1960)’s source-filter theory of speech provided the theoretical basis for understanding the cor-
relation between vocal tract length (VTL) and formant frequencies. Building on this, Fitch and
Giedd (1999) employed magnetic resonance imaging (MRI) to examine the relationship between
VTL and body size, offering direct anatomical evidence. Fitch and Giedd (1999) reported a strong
correlation between speaker height and VTL (r = 0.93), demonstrating the potential of VTL as a pre-
dictor of height. Together, these findings suggest that taller individuals tend to have longer VTLs,
which in turn produce lower formant frequencies. Conversely, formant frequencies can serve as in-
direct indicators of VTL, making it possible to infer a speaker’s height. These studies are critically
important, as they establish a fundamental connection between VTL, formant structure, and speaker
height—forming the basis for height estimation using acoustic cues.

Nonetheless, one critical limitation of Fitch and Giedd (1999)’s study is that subsequent attempts
to replicate or extend its correlation findings have often failed to yield consistent or reliable results.
For example, both González (2004) and Hatano et al. (2012) aimed to extend the earlier findings
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from English to other languages—Spanish and Japanese respectively. However, none of the F0
coefficients reached statistical significance, and all correlation values were below 0.60 in absolute
terms (González, 2004). Similarly, Hatano et al. (2012) reported that VTL did not reliably predict
body height, F0, or formant frequencies in adult male speakers. Therefore, F0 and formants, as ba-
sic and intermediate-dimensional acoustic features, can be seen as unreliable predictors of speaker
height according to the subsequent studies. However, it is important to note that Hatano et al. (2012)
was significantly constrained by a small sample size—only five Japanese speakers—and a limited
set of five vowels, underscoring the broader issue of insufficient data in this line of research.

On the other hand, Lammert and Narayanan (2015) also examined the relationship between VTL
and formant frequencies using data from five speakers, but evaluated their results using RMSE rather
than correlation coefficients. Their findings were insightful: the results generally supported Fitch
and Giedd (1999), and found that the lowest RMSE values were associated with higher formants,
which are less influenced by articulation (Lammert & Narayanan, 2015). Higher formant values
may support more accurate VTL estimation and speaker height inference, aligning with patterns
observed in human perceptual judgments reported by Barreda (2016). Along with the findings of
González (2004), which showed that F2 of /e/ exhibited a relatively strong correlation with height for
both male and female speakers, these results collectively underscore the need to investigate phone-
specific patterns in height estimation, particularly in light of the varied and inconsistent conclusions
across studies.

Nonetheless, the aforementioned studies are limited to using only formant frequencies or combi-
nations of F0 and formants as acoustic features, without directly examining the relationship between
speaker height, VTL, and a broader set of acoustic features. Addressing this gap, Dusan (2005) in-
vestigated various acoustic feature sets at the vowel level and their correlations with speaker height.
The study yielded two key insights. First, higher correlation values between acoustic features and
height were associated with increased dimensionality, as they accounted for a greater proportion of
variability in speaker height. Reported correlation coefficients were MFCC (r = 0.74), LPC (r =
0.73), formants (r = 0.73), and F0 (r = 0.59) (Dusan, 2005), suggesting that higher-dimensional fea-
tures may be more informative for height prediction when considered individually. The conclusion
of the meta-analysis by Pisanski et al. (2014) further supported Dusan (2005) with the analysis that
F0 accounted for a maximum of 2% of the variance in human height, while formants explained up
to 10% of height variation within sexes. Second, a combined feature set comprising MFCCs, LPCs,
and formants could account for 57.2% of the variability in speaker height. This finding positions
MFCCs as a preferred input over other feature types in SOTA experiments, due to their strong corre-
lation with speaker characteristics. It also motivated the use of full speech signals as input, given that
full speech is even higher in dimensionality than MFCCs and may therefore capture more speaker
height variability. However, this study has several limitations, which, along with the contradictory
findings reported by Ganchev et al. (2010), will be discussed in Section 2.5 as the basis for identify-
ing the main research gap.

In short, correlation studies have provided valuable insights into how different acoustic features
vary in their association with speaker height, guiding the selection of input features for height pre-
diction models, but they assess mainly the theoretical usefulness of features based on correlation,
without evaluating actual model performance through prediction error metrics such as RMSE. While
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perception studies have provided further insight into phone-specific feature relevance on top of cor-
relation studies, they typically examine only five vowels, resulting in insufficient data to analyze why
certain phones may be more informative. Additionally, both types of studies have primarily relied on
limited regression approaches, without exploring how different regression models might influence
results. These limitations collectively point to the three key research gaps addressed in this study.

2.4 State-of-the-Art (SOTA) Performance
State-of-the-art (SOTA) studies typically follow three key practices: (1) employing advanced ma-
chine learning techniques to extract features from full speech signals, (2) utilizing deep neural net-
works as the estimation models, and (3) training and evaluating their systems using existing datasets
with annotated metadata (Poorjam et al., 2015; Rajaa et al., 2021). The primary goal of these SOTA
approaches is to estimate or predict speaker height with improved accuracy, aiming to minimize pre-
diction error.

As noted in Section 2.3, SOTA architectures commonly use MFCCs either as input features or
as components of embedded representations. For instance, both Poorjam et al. (2015) and Kalluri,
Vijayasenan, and Ganapathy (2019) extracted 20 MFCCs, with Poorjam et al. (2015) expanding
them into a 60-dimensional vector by including first and second-order derivatives, while Kalluri et
al. (2019) used MFCCs only in a baseline system. In contrast, Rajaa et al. (2021) did not use MFCCs
directly, opting instead for an unsupervised encoder that processes full speech signals. Since these
studies employed advanced embeddings and sophisticated models, they did not place emphasis on
understanding or analyzing the input features but only evaluate the prediction performance. From a
privacy-conscious perspective, using minimal yet informative input features combined with a com-
plex model may represent a promising direction for future research. Building on these studies, the
use of RMSE remains a suitable evaluation metric for assessing prediction performance. Across
these approaches, SOTA systems typically report best-case RMSEs in the range of 6 to 7 cm for
height estimation. Therefore, in this study, any RMSE result falling within the 6 to 7 cm range can
be considered outstanding to be proposed as good minimal input, as it is achieved without the use of
advanced machine learning architectures.

2.5 Research Gap Analysis
Section 2.3 discussed the findings of Dusan (2005), which suggest that higher-dimensional acoustic
features may be more informative for height prediction. This implies an underlying assumption that
higher-dimensional features are more effective, meaning more accurate, for predicting height. This
notion is further supported by the findings of González (2004) and Hatano et al. (2012), which show
that basic and intermediate features such as F0 and formants yield low correlation values in height
prediction. While Ganchev et al. (2010) acknowledged the strong relevance of MFCCs, noting that
half of the top 50 parameters were statistical functionals derived from them, F0 also appeared mul-
tiple times among the top-ranked features. This latter finding challenges the underlying assumption
of a limited role for F0 in height prediction and suggests that correlation alone does not necessarily
translate to predictive accuracy when using acoustic features. Therefore, the first question arises:
Does the prediction performance align more closely with the correlation-based findings of Dusan
(2005) or with the audio feature ranking results reported by Ganchev et al. (2010)? This question
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motivates sub-RQ1, as outlined in 1.3.

Dusan (2005) reported that close and mid-close front vowels, showed stronger correlations be-
tween speaker height and MFCC features, for example, /iy/ (r = 0.73), /ih/ (r = 0.70), and /ix/ (r
= 0.69). While this provides substantial evidence that correlation strength varies across vowels in
multiple regression, it remains unclear whether these vowels actually yield higher prediction accu-
racy. The original study focused primarily on acoustic feature sets, without further analysis of vowel
identity. This represents a significant research opportunity, especially given insights from Sections
2.2 and 2.3, which suggest that vowel identity plays an important role in height perception and esti-
mation. From a phonetic perspective, vowel distinctions are shaped by modifications in vocal tract
configuration that primarily affect the first three formant frequencies, but, higher formants such as
F4 and F5 additionally contribute to voice projection and resonance (Story, 2004), which actually
aligned with Barreda (2016)’s findings. Given this physiological basis and its potential implications
for speaker profiling, further exploration of vowel-specific effects on height estimation is both justi-
fied and promising to formulate sub-RQ2 as outlined in 1.3.

One of the key differences between Dusan (2005) and Ganchev et al. (2010) lies in their choice
of modeling approach: the former used multiple linear regression, while the latter applied a Support
Vector Machine (SVM) with a kernel function, representing a non-linear method. This methodolog-
ical contrast may explain the inconsistencies in their findings. Moreover, neither study thoroughly
investigated the interaction between acoustic features, vowel identity, and speaker height. Instead,
they focused separately on feature-height correlation or predictive performance, overlooking the
critical role that vowel identity may play in shaping these relationships. Notably, this gap can be
explored using feature importance scores from random forest models, which are well-suited for
uncovering such patterns. Therefore, the present study addresses this limitation by evaluating pre-
diction accuracy across different regression models, while also examining the influence of vowel
identity and feature types through detailed analysis of random forest feature importance.

This section identifies three key research gaps: (1) the assumption that higher-dimensional fea-
tures improve height prediction is untested, as correlation does not guarantee accuracy—highlighted
by conflicting findings from Dusan (2005) and Ganchev et al. (2010); (2) vowel identity’s role in
height estimation remains unexplored despite evidence showing variation in feature correlations
across vowels; and (3) prior studies used differing regression models without examining how model
type affects performance. This study addresses these gaps by comparing feature sets, evaluating
both linear and nonlinear models, and analyzing vowel-specific patterns using random forest feature
importance to inform sub-research questions.
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Table 2: Summary of Key Literature

Reference Key Findings Theme

Barreda (2016)

Investigated how formant frequencies influence listener
judgments of speaker’s height, suggesting human perceived
different height from vowel quality with similar VTLs, and
suggested higher formants improved perceptual accuracy.

Perception
Studies

Barreda and Pre-
deck (2024)

Suggested human listeners had an ”underlying system-
atic process” and would use social knowledge to estimate
speaker’s height.

Perception
Studies

Fant (1960)

Proposed the source-filter theory of speech, which laid the
foundation for the theory of acoustic speech production,
forming the basis for modeling VTL and speaker charac-
teristics prediction from acoustic cues.

Correlation
Studies

Fitch and Giedd
(1999)

Reported a strong correlation between speaker height and
VTL (r = 0.93), founding the direction of height estimation
using VTL.

Correlation
Studies

González (2004)
Found correlations between formants and height or weight
were generally weak, with stronger results in females than
males (r < 0.60).

Correlation
Studies

Hatano et al. (2012)
Showed that basic and intermediate features such as F0 and
formants yield low correlation values in height prediction,
especially vowel /e/.

Correlation
Studies

Lammert and
Narayanan (2015)

Demonstrated that the lowest RMSE values were associated
with higher formants, which were less influenced by articu-
lation.

Correlation
Studies

Pisanski et al.
(2014)

Summarized that F0 accounted for a maximum of 2% of the
variance in human height, while formants explained up to
10% of height variation within sexes.

Correlation
Studies

Kalluri et al. (2019)
Achieved a minimum RMSE of 6.1 cm using a combination
of acoustic features.

SOTA Per-
formance

Poorjam et al.
(2015)

Achieved MAEs of 5.8 cm in female using ANNs and
LSSVR, with a 60-dimensional vector as input.

SOTA Per-
formance

Rajaa et al. (2021) Achieved RMSEs of 6.0 cm for single-task model.
SOTA Per-
formance

Story (2004)

Demonstrated that vowel distinctions are shaped by vocal
tract configurations that mainly influence the F1-F3, higher
formants (F4 and F5) enhance voice projection and reso-
nance.

Research
Gap

Analysis

Dusan (2005)
Showed that higher feature dimensionality was linked
to stronger correlations and captured more variability in
speaker height.

Research
Gap

Analysis

Ganchev et al.
(2010)

Demonstrated MFCCs’ strong relevance in height predic-
tion, with half of the top 50 features derived from them,
while F0 also ranked top-10 3 times.

Research
Gap

Analysis
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3 Methodology
This section outlines the overall methodology used to address the research question and evaluate the
hypothesis. Subsection 3.1 introduces the TIMIT dataset used for training and testing, along with the
rationale for its selection. Subsection 3.2 presents the phone-based approach, outlining its rationale,
objectives, and the motivations for selecting this method. Subsection 3.3 presents the acoustic feature
sets supported by a pilot study and justification for each choice, and then the regression models.
Subsection 3.4 details the evaluation metrics and statistical tests employed to assess the significance
of performance differences. Finally, Subsection 3.5 discusses the ethical considerations relevant to
this study.

3.1 Dataset Description
The primary dataset used in this study is the TIMIT Acoustic-Phonetic Continuous Speech Corpus
(Garofolo et al., 1993). It is characterized by its well-controlled design, aimed at supporting both
acoustic-phonetic research and the development and evaluation of ASR system. It features approxi-
mately five hours of high-quality recordings from 630 speakers across eight major American English
dialect regions. Each speaker reads ten carefully selected, phonetically rich sentences, ensuring a
comprehensive phonetic coverage and a balanced distribution of speech content. The dataset in-
cludes both male and female speakers and provides time-aligned transcriptions along with its high
quality recording, making it suitable for task like vowel-based feature extraction and detailed acous-
tic analysis.

A key advantage of TIMIT is the inclusion of speaker metadata, such as age, gender, dialect
region, education level, and height, which is particularly relevant for this study. Height information
is often missing from other publicly available speech datasets, making TIMIT a rare and valuable
resource for research exploring the relationship between acoustic features and physical speaker char-
acteristics. Moreover, TIMIT’s widespread use in related work (Dusan, 2005; Ganchev et al., 2010;
Pellom & Hansen, 1997; Poorjam et al., 2015; Rajaa et al., 2021) provides a solid benchmark for
comparison and justifies its selection for this study.

Each speaker folder of TIMIT contains 10 utterances, each utterance accompanied by an audio
file (.WAV), a phoneme label file (.PHN), a word label file (.WRD) and a transcription file(.TXT).
However, it does not contain annotation in Praat file format (.TextGrid), and the time-aligned phoneme
annotations in phoneme label files use sample index instead of time (second), which require further
data preprocessing before extracting features using Praat software.

3.2 Phone-based Approach
The phone-based approach was first proposed by Lamel and Gauvain (1995) and later adopted by
Dusan (2005). Its central idea is to isolate non-linguistic, speaker-specific acoustic features by mod-
eling individual phones rather than longer, semantically rich speech segments. Because phones
operate at the sub-lexical level, this approach ensures that the input does not contain any semantic
information. Instead, it captures only biometric traits, reducing the risk of inadvertently collecting
conversational content. Therefore, this method allows the development and evaluation of height
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prediction models that rely on minimal, linguistically impoverished input while retaining relevant
acoustic markers.

In this study, the preset vowel subset provided by the TIMIT dataset are used as phone-based
input for several reasons. First, this choice follows the precedent established by Lamel and Gauvain
(1995) and Dusan (2005), ensuring methodological continuity and comparability. Second, TIMIT
vowel subset includes a diverse set of vowel types. Compared to González (2004) and Hatano et al.
(2012) who used only basic monophthongs /a/, /e/, /i/, /o/, and /u/, TIMIT vowel subset enable richer
exploration of how different phonetic classes contribute to speaker height estimation by including
also diphthongs. Finally, vowels are preferred over consonants because they naturally contain critical
acoustic features (e.g., F0, formants) that are essential for experiments in this study. Consonants,
by contrast, often lack these continuous resonant properties, making them less informative for this
application. Therefore, throughout this work, the term phone refers exclusively to vowel segments
rather than consonants or other sounds, as only vowels were included in the analysis due to their rich
acoustic properties relevant for height prediction.

3.3 Feature Selection and Regression Models
3.3.1 Pilot Study of Feature Extraction and Software Selection

Due to the absence of Praat annotation files, I initially conducted a pilot study using utterances named
SA1 and SA2, the universal utterances shared by all speakers, to explore whether basic features (F0,
formants F1-F4) could be extracted directly from audio and phoneme label files. The aim was to use
Python library librosa and Linear Predictive Coding (LPC), a widely used technique for formant es-
timation over the past decades (Rabiner, 1978) to extract F0 and F1-F4. If successful, this approach
could provide a streamlined alternative to Praat for extracting basic acoustic features, eliminating the
need for additional data preprocessing steps and script development typically required when using
Praat.

However, the results presented several limitations. First, the F0 extraction using librosa’s func-
tion was generally unreliable, as it occasionally produced missing or erratic values. More critically,
the formant values estimated were often unstable and inconsistent that they did not align with the
knowledge about formant values and vowels. In many cases, the F1-F3 values did not align with
well-established acoustic patterns of vowel formants. For example, the expected F1-F3 ranges for
vowel /i/ in American English were 280Hz, 2250Hz, and 2890Hz respectively (Ladefoged & John-
son, 2006), but some extracted values often ranged outside this range, such as close to 310Hz, 530Hz,
and 1980Hz respectively. Furthermore, some vowels and F4 were often not estimated. Thus, these
issues suggested that while this Praat-free approach was promising in concept, it was not a feasible
replacement for Praat in reliable acoustic feature extraction.

3.3.2 Feature Selection

I selected fundamental frequency (F0) as a basic 1-dimension feature, formant frequencies (F1-F4) as
intermediate-dimension features, and 13 Mel-frequency cepstral coefficients (MFCCs) to represent
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high-dimension features, as these are commonly used in the literature, which is summarized in the
table below:

Literature F0 Formants MFCCs
Dusan (2005) ✓ ✓(F1-F4) ✓(10 dimensions)

Ganchev et al. (2010) ✓ ✓

Hatano et al. (2012) ✓ ✓(F1-F4)
González (2004) ✓ ✓(F1-F4)

Lammert and Narayanan (2015) ✓(F1-F4)

Table 3: Acoustic Features Used in Related Literature

Fundamental frequency (F0): Fundamental frequency (F0) is determined by the rate of vocal
fold vibration and represents the lowest frequency of a periodic waveform. It is often equated with
pitch, as the two typically correspond closely (Ladefoged & Johnson, 2006). F0 can be estimated
using the following formula:

f0 =
1

2L

√
T
µ

Formants: Resonant frequencies, also known as formants, correspond to overtones shaped by the
vocal tract configuration and are critical in differentiating vowel qualities (Ladefoged & Johnson,
2006):

First Formant (F1): F1 is the lowest formant and is inversely related to vowel height. Vowels
with a high tongue position, such as /i/ and /u/, have a low F1, while vowels with a low tongue po-
sition have a high F1. This pattern reflects articulatory vowel height. F1 can be perceived in creaky
voice or simulated by tapping gently on the throat near the jaw while maintaining a vowel posture.

Second Formant (F2): F2 is associated with the frontness or backness of the tongue. Front vow-
els, for example, /i/ and /e/, have a high F2, while back vowels, such as /u/ and /o/, have a low F2.
F2 is more perceptible when vowels are whispered, due to the absence of vocal fold vibration.

Third Formant (F3): F3 contributes to finer distinctions in vowel quality, though it plays a less
prominent role than F1 and F2 in basic vowel identification. It is more difficult to isolate perceptu-
ally, but it adds nuance to the overall vowel sound.

Fourth Formant (F4): While F4 does not play a major role in distinguishing vowel quality, it may
reflect speaker-specific traits such as head or vocal tract size. F4 is suggested to be a normalization
reference for other formants (F1-F3).

Mel-Frequency Cepstral Coefficients (MFCCs): The computation of Mel-Frequency Cepstral
Coefficients (MFCCs) involves the following steps:
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1. Framing and Windowing:
xw[n] = x[n] ·w[n]

2. Fourier Transform (FFT):

X [k] =
N−1

∑
n=0

xw[n] · e− j2πkn/N

3. Power Spectrum:
P[k] = |X [k]|2

4. Mel Filter Bank Application: Apply a set of triangular filters spaced according to the Mel
scale to obtain the Mel energy coefficients M[m].

5. Logarithm of Mel Energies:
logM[m]

6. Discrete Cosine Transform (DCT):

cn =
M

∑
m=1

logM[m] · cos
[

πn
M

(m−0.5)
]
, n = 1,2, ...,NMFCC

Here, cn is the nth MFCC coefficient, M is the number of Mel filters, and NMFCC is the number
of coefficients extracted. In this study, I chose to extract 13 MFCCs because this number strikes a
practical balance between capturing essential spectral information and maintaining computational
efficiency. The lower-order coefficients effectively represent the overall spectral shape and the sepa-
ration of source (vocal folds) and filter (vocal tract) characteristics, which are crucial for modelling
speech. Additionally, extracting 13 coefficients is a well-established convention in speech process-
ing, commonly used in both classical and modern systems, making it a reliable and comparable
choice for analysis and modelling.

3.3.3 Regression Models

Acoustic Feature Set Simple Linear Multiple Linear Random Forest
F0 ✓

Formants (F1-F4) ✓ ✓ ✓

MFCCs (1-13) ✓ ✓ ✓

Table 4: Overview of Regression Models Applied to Each Acoustic Feature Set

This study employs both linear and non-linear regression models. Simple linear regression is applied
to evaluate each acoustic feature individually. By using only one feature at a time, this approach
offers a clear and interpretable demonstration of predictive power for each variable in isolation.
While this simplicity helps highlight distinct patterns across features, it is less capable of capturing
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the full relationship between feature sets and speaker height, and therefore is expected to yield lower
predictive performance overall. Multiple linear regression is included because the seed paper by
Dusan (2005) used it to demonstrate the correlation between speaker’s height and multiple acoustic
features. In contrast, non-linear regression is incorporated to reflect the methodological direction of
Ganchev et al. (2010), who used more advanced non-linear approaches. This study applies random
forest regression as a non-linear method that can model complex, non-linear dependencies without
requiring extensive parameter tuning, providing a more interpretable alternative to techniques such
as support vector machines or deep neural networks.

Simple Linear Regression: Simple linear regression is employed to model the relationship be-
tween a single acoustic feature and speaker height. This model assumes a linear dependency of the
form, where x is each individual feature:

ŷ = β0 +β1x

Multiple Linear Regression: Multiple linear regression is used to evaluate how a set of acoustic
features can jointly predict speaker height. The model assumes a linear combination of inputs, where
x are the selected set of acoustic features:

ŷ = β0 +β1x1 +β2x2 + · · ·+βnxn

Random Forest Regression: Random forest regression is applied to capture potential non-linear
relationships between acoustic features and height. As an ensemble method, it builds multiple de-
cision trees during training and outputs the average of their predictions, improving robustness and
reducing overfitting. Unlike linear models, it can model complex interactions and non-additive ef-
fects among features. Additionally, random forest regression provides feature importance scores,
which help identify which and how acoustic features contribute most to height prediction.

3.4 Evaluation Methodology
Root Mean Squared Error (RMSE): RMSE is a widely used metric for evaluating the accuracy
of regression models and is particularly common in assessing the performance of SOTA height es-
timation systems. It quantifies the average magnitude of prediction errors by taking the square root
of the mean of the squared differences between predicted and actual values. A lower RMSE value
indicates better predictive performance, with smaller errors between predicted and actual speaker
heights. Mathematically, RMSE is defined as:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2

To validate the results, both the Wilcoxon Signed-Rank Test and the Friedman Test are em-
ployed. These non-parametric statistical tests are used to compare paired or grouped observa-
tions—Wilcoxon for pairwise comparisons and Friedman for comparisons across three or more re-
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lated conditions, such as different models or feature sets. The specific use of each test is detailed in
Subsection 1.3.

3.5 Ethics and Research Integrity
This research was conducted in alignment with the ethical standards set by the faculty ethical guide-
lines. No ethical approval was required as the study used TIMIT, a publicly available datasets that do
not include personally identifiable information. All procedures align with the institutional policies
on data handling and responsible research practices.

To promote transparency and collaboration, all scripts and models developed in this study are
shared via [https://github.com/stellasiu/2025thesisdemo], accompanied by documentation and us-
age instructions. The repository includes licensing and citation guidelines. All experiments were
reproducible using standard Python libraries and Praat, which is an open-source tool.

However, the potential biases and fairness limitations of the TIMIT dataset, as well as the re-
sponsibilities involved in reproducing or replicating this study, will be discussed in detail, given
that height prediction from phone-based input still relies on sensitive biometric data extracted from
speech signal.

3.5.1 Bias and Fairness

Although the TIMIT dataset is widely used in speaker profiling research, it presents several potential
biases and fairness limitations.

First, the dataset is linguistically biased, as it is composed exclusively of American English
speakers. This limits its representativeness across English varieties and other languages, potentially
reducing the generalizability of the findings. Since this study does not include any cross-lingual
datasets or experiments to evaluate performance in other linguistic contexts, which constitutes a
clear limitation and suggests an important direction for future research.

Furthermore, the dataset is demographically imbalanced, containing only about 30% female
speakers and an unequal distribution of speakers across dialect regions. Although this imbalance
is not explicitly accounted for in the experimental design as gender and dialect region are not distin-
guished in the analysis, it is reflected in documented disparities in prediction performance reported
in SOTA studies, including substantial differences between male and female speakers. For example,
Rajaa et al. (2021) reported a notable difference in RMSE between male speakers (8.1 cm) and fe-
male speakers (6.0 cm), highlighting the impact of biased dataset on model accuracy. To mitigate this
limitation, future work could explore data augmentation strategies, such as synthetically increasing
the representation of female speakers by sampling from the normal distribution of human height, to
create a more balanced dataset and better evaluate model performance across demographic groups.
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3.5.2 Responsibility of Reproduction and Replication

When reproducing or replicating this study on acoustic feature-based height prediction, it is critical
to acknowledge the responsibility inherent in handling sensitive data. The main challenges concern
both biometric privacy and conversational privacy.

Acoustic features inherently encode biometric information that can distinguish personal speech
characteristics, making it possible to infer or identify individuals based on distinctive combinations
of features. Beyond height, these features can be used for broader speaker profiling in forensic
phonetics field to estimate attributes such as age, gender, and even psychological states (Leemann,
Perkins, Buker, & Foulkes, 2024). In fact, SOTA artificial intelligence methods have demonstrated
the potential to reconstruct a speaker’s facial appearance by learning associations between vocal and
facial features (Leemann et al., 2024), further increasing the sensitivity and potential misuse of such
data. Therefore, the potential social impact of biometric privacy breaches is substantial if such data
is to be leaked or misused. Consent is also a critical concern when collecting new data, and partic-
ipants must be fully informed about how their recordings will be stored, processed, and potentially
shared.

Conversational privacy relates to the semantic content embedded in speech recordings. Some
datasets, such as TIMIT, mitigate this risk by requiring participants to read aloud pre-defined prompts
with rich phonetic coverage. However, datasets containing spontaneous or conversational speech
may include highly sensitive personal details—such as identification numbers, financial information,
or private narratives—that should not be collected without explicit, informed consent. In practical
implementations of speaker profiling, live speech data often contains such content. This risk can
be minimized by collecting phone-based utterances directly, rather than extracting segments from
broader conversational recordings. A further ethical issue involves the risk of misuse for surveil-
lance. If these technologies are deployed without clear safeguards, they could be used to monitor
individuals based on incidental speech content, including humour, political expression, or contro-
versial opinions. Such practices may undermine freedom of expression and erode trust in biometric
technologies. The phone-based approach adopted in this study provides one way to mitigate these
risks: because phones are sub-lexical units, they do not contain any interpretable semantic content,
substantially reducing the likelihood of such misuse and better protecting conversational privacy.

In short, this study suggests that phone-based modelling offers a promising approach to mitigat-
ing conversational privacy risks in acoustic feature-height prediction research. Nonetheless, biomet-
ric privacy concerns remain unavoidable, underscoring the importance of careful handling, secure
storage, and transparent governance of such data.
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4 Experimental Setup
In this chapter, I will a comprehensive overview of the experimental setup throughout this research.
In subsection 4.1, I will introduce the preliminary setup, including data splitting, data preprocessing
steps, feature extraction pipeline, the data cleaning steps in subsection 4.1. The following subsec-
tions (4.2, 4.3, and 4.4 are organized by acoustic feature groups, each describing the experimental
setup, including implementation details, execution time per model, memory usage, and the total
number of features used. For Random Forest regression, relevant hyperparameters are also reported
to ensure reproducibility.

Subsection Acoustic Features Regression Models
4.2 F0 Simple Linear Regression
4.3 Formants (F1-F4) Simple Linear, Multiple Linear, and Random Forest Regression
4.4 MFCCs(1-13) Simple Linear, Multiple Linear, and Random Forest Regression

Table 5: Overview of Experiment Setup

The self-written Praat script used for feature extraction, as well as the Python scripts for phoneme
alignment, data cleaning and regression models in this section, can be found in this repository: Demo
(hereafter referred to as “Demo”). These resources are provided to support full reproducibility and to
facilitate further analysis or adaptation by other researchers, particularly given the limited availability
of publicly shared Praat scripts for separately extracting features.

4.1 Data Preparation
4.1.1 Data Splitting

The TIMIT dataset provides a predefined train/test split, consisting of 462 speakers in the training set
and 168 speakers in the test set. Both sets include coverage of all eight dialect regions (DR1-DR8)
and contain a balanced mix of male and female speakers. Within each set, speakers are organized
into dialect region folders and labeled according to gender and speaker ID.

I adopted this predefined split for the experiments for three main reasons. First, it effortlessly
ensures representation across all dialect regions and speaker demographics. Second, it maintains a
practical train/test ratio of approximately 73.3% to 26.7%, which supported an effective and straight-
forward hold-out validation process. Third, as noted by Garofolo et al. (1993), this split guaranteed
that there was no overlap in sentence text between the training and test sets, ensuring that model
evaluation was not biased by repeated content.

However, since dialect regions were not a critical factor in the current experiments, the files were
reorganized into simplified train and test directories locally. For clarity and consistency, all files
were renamed using the format shown in the following table (see timitrename.py in Demo):

https://github.com/stellasiu/2025thesisdemo
https://github.com/stellasiu/2025thesisdemo
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Division Explanation
Set Train or Test

Dialect Region Dialect regions 1-8
Speaker ID Provided by TIMIT dataset, including the gender prefix

File Part File name of the audio file, e.g. SA1, SX403

Table 6: Overview of Renaming Pattern

4.1.2 Phoneme Alignment

To extract acoustic features using Praat, it is first necessary to align the phonetic transcriptions from
the TIMIT dataset with their corresponding audio recordings. Each audio file in the dataset is ac-
companied by a .PHN file, which lists phone-level segmentations with corresponding start and end
times. However, these timestamps are expressed in sampling rate units rather than seconds, and no
annotated alignment files in .TextGrid format are provided.

Therefore, to prepare the data for phonetic alignment and analysis, I developed a multi-stage pre-
processing pipeline using custom Python scripts (see sr2s.py, phn2txt.py and txt2grid.py in Demo).
The first step involved converting all start and end times in the .PHN files from sample indices to sec-
onds by dividing each value by TIMIT’s sampling rate (16,000). This conversion was implemented
in a batch process to efficiently handle all files. Next, I designed another Python script to system-
atically convert the modified .PHN files into .txt files with a simplified and more readable format,
maintaining the structure of phone labels along with their corresponding time intervals in seconds.
Then, in order to facilitate compatibility with Praat, the .txt files were programmatically converted
into .TextGrid format. This final step involved generating properly structured .TextGrid files for each
audio sample, using the same file names as the corresponding recordings, and preserving all phone
boundary information within time-aligned tiers.

Figure 1: A Spectrogram with Transcription of One of the Sentence-texts All Speakers Spoke

https://github.com/stellasiu/2025thesisdemo
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4.1.3 Height Conversion

In addition to preparing the phoneme annotations, the height metadata from the TIMIT dataset was
also processed. Since only speaker height was required for the analysis and the values were origi-
nally recorded in inches, a conversion to centimeters (cm) was performed for all speakers, rounded
to two decimal places (see heightconversion.py in Demo). The converted data were saved to a sep-
arate .csv file to facilitate the later data cleaning process. This conversion was necessary because
the RMSE used in the evaluation is measured in cm, and aligning the units ensured consistency in
model output and interpretation.

4.1.4 Feature Extraction

I extracted the feature sets using different software tools, depending on the type of acoustic feature.
I used Praat to extract the fundamental frequency (F0) and formants (F1-F4). Then I used the Python
library librosa to compute the Mel-Frequency Cepstral Coefficients (MFCCs).

• Fundemantal Frequency (F0): I extracted F0 using a self-written Praat script (see f0 all.praat
in Demo). This script automated the extraction of mean F0 values from phones (vowel seg-
ments) in multiple .TextGrid and .WAV file pairs within a specified directory, and saved the
results to individual .csv files. It began by defining the input configuration and generating a list
of files to process. A key feature of the script was its use of a predefined, space-separated list
of ARPAbet vowel labels from the TIMIT dataset, which ensured that only intervals labeled
as vowels were analyzed. For each vowel segment, the script computed the mean F0 within a
typical pitch range of 75-600 Hz, helping to ensure more reliable measurements.

• Formants (F1-F4): I extracted formant frequencies (F1-F4) using a Praat script that I mod-
ified from one originally developed by Joey Stanley available online (see formants all.praat
in Demo). Similar to the F0 extraction script, this script automated the extraction of formant
values from TIMIT vowel segments by processing paired .TextGrid and .WAV files within a
specified directory. For each vowel segment, the script retrieved the start and end times, calcu-
lated the duration, and measured the mean frequencies of F1, F2, F3, and F4 over that interval.
The results were saved in .csv format for each file to support further analysis and model inte-
gration. This approach improved upon the pilot study by ensuring consistent extraction of all
four formant values, thereby guaranteeing feature completeness.

• MFCCs: I extracted MFCCs using a custom Python script (see mfcc phoneme.py in Demo),
built with the librosa library. This script processed .WAV files and used accompanying .TextGrid
annotations to extract MFCC features from vowel-labeled phoneme segments. I used the de-
fault librosa settings, with a hop length of 512 and 13 MFCCs per segment. For each vowel
segment, the script identified the corresponding time interval, computed its duration, and ex-
tracted MFCCs using a standard short-time Fourier transform (STFT) window. It then calcu-
lated the mean value for each MFCC dimension across the segment and saved the results to a
.csv file for each input, supporting further analysis and modeling.

https://github.com/stellasiu/2025thesisdemo
https://github.com/stellasiu/2025thesisdemo
https://joeystanley.com/
https://github.com/stellasiu/2025thesisdemo
https://github.com/stellasiu/2025thesisdemo


Section 4 EXPERIMENTAL SETUP 33

4.1.5 Data Cleaning Procedures

After extracting all the acoustic features, the resulting values were saved as individual .csv files
named according to the audio file naming pattern described in subsection 4.1.1. To prepare the data
for experiment, these files needed to be merged into a single .csv file per data splitting set per feature
set (train/test), so that each feature type had a corresponding train.csv and test.csv file that included
speaker height in cm. For each feature set, I performed this data cleaning and merging using a
custom Python script (see praat sm clean.py in Demo), which parsed the filenames based on the
renaming pattern (see Table 6) and merged the height metadata accordingly.

4.2 Experiment 1: F0
For the first experiment, I conducted a simple linear regression using only the F0 feature set to
examine its standalone predictive power and to provide a baseline for comparing against more com-
plex feature sets. F0, which represents vocal pitch, has been widely studied and reported to have a
moderate correlation with speaker height (r = 0.59) (Dusan, 2005). While not the most informative
feature, analyzing F0 in isolation helps contextualize the contribution of additional acoustic features
and supports evaluation of how feature dimensionality affects prediction performance.

It was modelled using the most basic regression technique: simple linear regression. The imple-
mentation was carried out in Python 3.11 using the scikit-learn library and scipy library (see f0 sr.py
in Demo). The mean F0 values extracted were used as the only predictor of speaker height. The
evaluation was based on one key metric: RMSE. The model was trained and tested on the predefined
TIMIT train/test split, with no additional feature engineering or hyperparameter tuning applied. The
script also generated .csv outputs for statistical testing and a heatmap of RMSE values sorted from
lowest to highest for easier interpretation.

The experiment was executed on a MacBook Air with an Apple M3 chip and 24 GB of RAM.
This setup required minimal runtime (under one minute per run).

4.3 Experiment 2: Formants
The second experiment followed a similar structure and included three sub-experiments using for-
mant frequencies as predictors of speaker height (see formants sr.py, formants mr.py, and formants rf.py
in Demo). All experiments were conducted on the same CPU-based machine setup (MacBook Air
with an Apple M3 chip and 24 GB RAM). The runtimes were approximately one to two minutes per
run.

First, I applied simple linear regression using each of the four formants (F1-F4) individually as
predictors. Next, I employed multiple linear regression to model all four formants together as mul-
tivariate input. Finally, I used random forest regression to capture potential non-linear relationships
using all four formants. The scripts saved outputs to .csv files for statistical analysis and generated
RMSE heatmaps for each regression model. In the case of simple linear regression, the heatmap
displayed RMSE values for each of the four formants across all 20 phones, and then for each phone,
the script computed mean RMSE values of F1-F4 for statistical analysis. For the multiple linear

https://github.com/stellasiu/2025thesisdemo
https://github.com/stellasiu/2025thesisdemo
https://github.com/stellasiu/2025thesisdemo
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regression, a single RMSE heatmap was generated across all 20 phones using the four formants as
multivariate input.

The random forest regression was implemented using scikit-learn version 1.3.2. The dataset
structure remained consistent across experiments as in linear regression models. I used a fixed ran-
dom state of 42, 20 estimators, and a maximum depth of 10. A separate heatmap displayed RMSEs
for each phone-formant combination. An additional plot visualized feature importance scores, high-
lighting the relative contribution of each formant to height prediction per phone. Random forest also
computed mean RMSE values across phones for statistical analysis.

4.4 Experiment 3: MFCCs
For the third experiment (see mfcc sr.py, mfcc mr.py, and mfcc rf.py in Demo), it also included
three sub-experiments, with the key difference being the use of 13 MFCCs instead of formants as
predictors of speaker height. All experiments were conducted on the same CPU-based machine
setup (MacBook Air with an Apple M3 chip and 24 GB RAM). The runtimes were approximately
one to two minutes per run.

First, I performed simple linear regression using each of the 13 MFCC coefficients indepen-
dently as predictors of speaker height. This was followed by multiple linear regression, where all 13
MFCCs were simultaneously used as multivariate input to capture joint effects. Lastly, I applied ran-
dom forest regression to explore potential non-linear relationships using the complete MFCC feature
set.

Each model’s output was saved as a .csv file for subsequent statistical analysis, and correspond-
ing RMSE heatmaps were generated to visualize performance. For simple linear regression, the
heatmap illustrated RMSE scores across all 13 MFCCs for each of the 20 phones. Mean RMSE
values across MFCCs were then computed per phone to facilitate comparative statistical testing. In
the multiple regression case, a single heatmap visualized RMSEs across all phones using the multi-
variate MFCC input.

Random forest regression was implemented using scikit-learn (v1.3.2), maintaining consistency
in data structure with the previous experiment. The model was configured with a fixed random seed
of 42, 20 estimators, and a maximum tree depth of 10. A separate heatmap visualized RMSEs for
each phone–MFCC pair, while an additional plot showed feature importance scores, indicating the
relative contribution of each MFCC to height prediction by phone. Mean RMSE values were also
computed for use in statistical validation.

https://github.com/stellasiu/2025thesisdemo
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5 Results
In this chapter, detailed results are presented for all three acoustic feature sets: F0 (5.1.1), for-
mants (5.1.2), and MFCCs (5.1.3). Subsection 5.1 first reports the performance of the regression
models, including tables summarizing the maximum and minimum RMSE values and their corre-
sponding phones for each feature or feature sets, then organized the results by acoustic features, in
the order of F0, formants and MFCCs. Finally, Subsection 5.2 presents the statistical test results,
organized by the hypotheses outlined in Subsection 1.3. It includes summary tables of p-values
and integrates the findings to evaluate all three hypotheses. Full visualizations, including RMSE
heatmaps and feature importance scores heatmaps, are provided in the Appendix.

5.1 Performance

Feature Max. RMSE Phone Min. RMSE Phone
F0 10.52 /ax-h/ 7.2 /ux/
F1 9.28 /ax-h/ 7.14 /aw/
F2 9.44 /ax-h/ 8.13 /aw/
F3 9.37 /ax-h/ 8.08 /uw/
F4 9.10 /ax-h/ 7.61 /uw/

MFCC1 9.60 /ax-h/ 8.51 /aw/
MFCC2 9.56 /ax-h/ 7.95 /ay/
MFCC3 9.59 /ax-h/ 8.47 /aw/
MFCC4 9.58 /ax-h/ 8.44 /aw/
MFCC5 9.64 /ax-h/ 7.80 /ux/
MFCC6 9.67 /ax-h/ 8.43 /oy/
MFCC7 9.59 /ax-h/ 8.26 /ow/
MFCC8 9.30 /ax-h/ & /uh/ 8.17 /ae/
MFCC9 9.60 /ax-h/ 8.37 /ux/

MFCC10 9.68 /ax-h/ 8.01 /aw/
MFCC11 9.69 /ax-h/ 8.16 /aw/
MFCC12 9.62 /uh/ 8.01 /oy/
MFCC13 9.59 /ax-h/ 8.07 /ux/

Table 7: Overview of Simple Linear Regression Results

Examining Table 7, F0 shows the highest maximum RMSE at 10.52 cm and a low minimum RMSE
at 7.20 cm, indicating the unstable performance across phones. The average maximum RMSE in-
creases with the complexity of acoustic features: 9.30 cm for formants, and 9.59 cm for MFCCs.
In terms of minimum RMSE, formants performed best at 7.74 cm, followed by MFCCs at 8.2 cm.
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These results suggested that increasing feature complexity did not lead to improved prediction per-
formance under simple linear regression. Interesting, assessing the minimum RMSE values, F1, F4,
MFCC2, and MFCC5 each fall below 8 cm. Notably, these features also exhibit relatively high im-
portance scores in the random forest regression model for height prediction. This suggests that they
may be particularly effective for phone-based height estimation compared to other features.

/ax-h/ consistently yields the highest RMSE across nearly all features, indicating it has the least
predictive power and showing a stable trend of poor performance. In contrast, the phones associated
with the minimum RMSE such as /ux/, /uw/, and /aw/, vary considerably across features, suggesting
that high predictive power is not consistently tied to specific phones in simple linear regression. This
variability highlights an instability in which phone yields the best predictions, unlike the consistent
underperformance observed with /ax-h/.

Feature Max. RMSE Phone Min. RMSE Phone
Formants 8.63 /ax-h/ 7.19 /aw/
MFCCs 9.23 /ax-h/ 6.88 /aw/

Table 8: Overview of Multiple Linear Regression Results

Examining Table 8, /ax-h/ consistently corresponds to the maximum RMSE, suggesting it is the
most difficult phone for predicting height, even when using multiple features. Likewise, /aw/ con-
sistently corresponds to the minimum RMSE, indicating strong and stable predictive performance
across all feature sets.

The maximum RMSE increases with the complexity of acoustic features, even when using a
multiple linear regression model. However, all three feature sets show significant improved perfor-
mance compared to their results under simple linear regression. Notably, MFCCs achieve the lowest
minimum RMSE of 6.88 cm among all linear regression models.

Feature Max. RMSE Phone Min. RMSE Phone
Formants 8.93 /ax-h/ 7.45 /ae/
MFCCs 9.16 /ax-h/ 7.18 /aw/

Table 9: Overview of Random Forest Regression Results

Examining Table 9, /ax-h/ consistently corresponds to the maximum RMSE, suggesting its dif-
ficulty in height prediction even when using a non-linear regression model. All feature sets, except
MFCCs, show worse performance compared to the multiple linear regression model, suggesting that
non-linear regression model does not enhance prediction accuracy universally.
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5.1.1 F0 Results

Figure 2: F0 RMSE per Phone for Height Prediction Using Simple Linear Regression Model

In Figure 7, the five phones with the lowest RMSE values are /ux/, /oy/, /uw/, /ih/, and /iy/ respec-
tively, while the five phones with the highest RMSE values are /ax-h/, /uh/, /axr/, /ax/, and /aw/.
These show that close front vowels perform better than open back vowels. Notably, /ax-h/ exhibits
a significantly higher RMSE: 1.81 cm greater than /uh/, which has the second highest RMSE value.
Excluding /ax-h/, the differences in RMSE among the remaining phones are all less than 1 cm, indi-
cating relatively similar performance across those cases.

Close rounded vowels (/ux/, /oy/, /uw/) demonstrate the lowest prediction errors, and close front
unrounded vowels (/ih/, /iy/) also demonstrate low prediction errors, while /ax-h/ shows signifi-
cantly poorer performance, indicating that vowel articulation position influences height prediction
accuracy when using fundamental frequency alone. However, F0 has the highest maximum RMSE
at 10.52 and the second lowest minimum RMSE at 7.2 cm, the wide range of RMSE demonstrates
the unstable predictive power in the most basic acoustic feature set.
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5.1.2 Formant Results

(a) Formants RMSE using Sim-
ple Linear Regression

(b) Formants RMSE using Mul-
tiple Linear Regression

(c) Formants RMSE using Ran-
dom Forest Regression

Figure 3: RMSE Heatmaps of Formants across 20 phones

Figure 4: Formants Feature Importance per Phone per Feature

Full-size versions of the plots are available in A.2.

Simple Linear Regression: F1 achieves the best performance among formants with five phones
showing RMSE below 8 cm, particularly for open vowels. The phone /ax-h/ consistently shows
the worst performance across all formants. These best performed phones, /aa/, /ae/, /ah/, /ao/, and
/aw/, are all open back vowels. This finding contrasts with the results for F0. Conversely, the five
phones with the highest RMSE values for F4 are /ux/, /uw/, /uh/, /oy/, and /ow/, which are all back
rounded vowels. The result particularly reveals an inverse pattern: phones that performed well using
F1 tended to perform poorly using F4, and vice versa. These results suggest that F1 and F4 capture
distinct and potentially complementary articulatory cues relevant to height estimation.

Multiple Linear Regression: The phone /aw/ achieves the lowest RMSE while /ax-h/ remains the
poorest performer. RMSE differences among phones are minimal, suggesting comparable perfor-
mance across most vowels when combining all formants. Unlike the simple regression results, no
clear phone-specific pattern emerged in the multivariate formant analysis.
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Random Forest Regression: Performance is distributed across five ranges with /ae/ showing best
results and /ax-h/ worst. Notable gaps exist between /oy/ and /ax-h/, though no clear phonetic pat-
terns emerge. Feature Importance Score show that F1 and F4 demonstrate high importance scores
while F2 and F3 show minimal contribution. An inverse relationship exists between F1 and F4
importance, suggesting complementary roles in the model.

Phonetic Interpretation: The consistently strong performance of open vowels such as /aa/, /ae/,
and /aw/ may be linked to their open vocal tract configuration, which facilitates a more stable and
unobstructed airflow. This openness may enhance the clarity and consistency of formant frequencies,
especially F1, making them more reliable indicators of vocal tract length, and thus, speaker height.
In contrast, centralized and reduced vowels like /ax-h/ involve shorter, more variable articulatory
gestures and less distinct resonance patterns, which likely leads to degraded predictive performance.
However, attributing this to specific articulatory mechanisms remains speculative, as the method-
ological focus on averaged features fails to account for any theoretical interpretations. Furthermore,
the observed inverse relationship between F1 and F4 effectiveness may reflect a trade-off between
the articulatory space, which influences F1, and laryngeal/posterior resonances, which influences
F4, underscoring how vowel articulation shapes the acoustic cues available for height estimation.

5.1.3 MFCCs Results

(a) MFCCs RMSE using Simple
Linear Regression

(b) MFCCs RMSE using Multi-
ple Linear Regression

(c) MFCCs RMSE using Ran-
dom Forest Regression

Figure 5: RMSE Heatmaps of MFCCs across 20 phones

Figure 6: Formants Feature Importance per Phone per Feature
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Full-size versions of the plots are available in A.3.

Simple Linear Regression: MFCC2 and MFCC5 generally outperform other features in height
prediction while MFCC1 and MFCC3 exhibited poor performance. The phone /aw/ achieved the best
performance across all MFCCs, followed by /oy/ as the second best. Conversely, /ax-h/ performed
the worst across all MFCC features, with /uh/ as the second worst.

Multiple Linear Regression: Except for /ax/ and /ax-h/, all other phones achieved RMSE values
below 8 cm, with /aw/ recording the lowest minimum RMSE at 6.88 cm. MFCCs indicated strong
overall performance when compared to other feature sets using the multiple linear regression model.

Random Forest Regression: /ax-h/ and /aw/ respectively had the maximum and minimum RMSE.
While RMSE of /ax-h/ slightly dropped by 0.07 cm compared to multiple linear regression model,
RMSE of /aw/ increased by 0.3 cm. Same as multiple linear regression model, 18 phones achieved
RMSE values below 8 cm, indicating generally good performance compared to other features and
regression models. The feature importance scores indicate that MFCC2 and MFCC5 contribute
more significantly than other MFCCs, consistent with the performance results from simple linear
regression.

Phonetic Interpretation: The phone /aw/ consistently achieves the lowest RMSE, even with MFCCs.
This may reflect its long duration, dynamic articulatory movement, and rich spectral content as a
diphthong vowel, though further empirical testing is needed to confirm this. The transition from a
low back to a high front rounded position results in substantial changes in the spectral envelope may
be well captured by MFCCs, especially the mid-order coefficients that encode such spectral dynam-
ics. Stable and information-rich patterns may make phones, such as /aw/, highly discriminative for
speaker profiling tasks, though this hypothesis requires acoustic validation. Conversely, /ax-h/ per-
forms poorly across all models, including those using MFCCs. As a reduced and centralized vowel,
/ax-h/ tends to be short, acoustically weak, and variable across speakers and contexts. These traits
may lead to noisy or unstable MFCC representations, and do not reliably reflect speaker-specific
anatomy. This may explain the persistent high RMSE associated with /ax-h/, even in more complex
models.

Unlike formants, MFCCs are more robust across all phones because they summarize spectral
energy over the entire frequency range. This holistic view makes them less sensitive to articulatory
differences between vowels and more capable of capturing speaker-intrinsic characteristics regard-
less of vowel type. As a result, MFCC-based models demonstrate relatively stable performance
across diverse phonemes, including diphthongs, high vowels, and even reduced vowels.

MFCC2 and MFCC5, which yield best performance in simple linear regression and show signif-
icant contribution in random forest regression, capture broad spectral envelope patterns in the lower
frequency range, which corresponds to articulatory features like vowel height and frontness that are
indirectly related to VTL. Since these dimensions are more stable and less affected by coarticula-
tion than higher-order coefficients, MFCC2 and MFCC5 provide stronger, more consistent cues for
speaker characteristics like height.



Section 5 RESULTS 42

5.2 Statistical Test Results

Hypothesis Test IV DV p-value Statistically
Significant

H1
Friedman F0, Formants,

MFCCs (from SR)
(Mean) RMSEs of
phones

0.0000012 ✓

Wilcoxon Formants, MFCCs
(from MR)

RMSEs of phones 0.0001335 ✓

H2
Friedman 20 Phones RMSE of SR 0.0000012 ✓

Wilcoxon 20 Phones RMSEs of MR 0.0001335 ✓

Wilcoxon 20 Phones RMSEs of RF 0.0000362 ✓

H3
Wilcoxon SR, MR Mean RMSEs of

Formants
0.0000019 ✓

Wilcoxon SR, MR Mean RMSEs of
MFCCs

0.0000019 ✓

Wilcoxon Formants, MFCCs ∆RMSE 0.0000038 ✓

Table 10: Overview of Statistical Results

Full-size versions of the plots are available in B.

The statistical tests summarized in Table 10 confirm that all observed differences are statisti-
cally significant across hypotheses H1 to H3 as all of them yield p-values well below the standard
threshold (p < 0.05). The validation of hypotheses is presented below.

5.2.1 Validation of Hypothesis 1

H1: High-dimensional acoustic features (MFCCs) will produce lower RMSE values than basic
(F0) and intermediate features (formants) across most phones when using linear regression
models.

Validation criteria: It is considered validated if statistically significant results (p < 0.05) allow
analysis of the conditions under which each feature set predicts height most effectively.

As this hypothesis is based on Dusan (2005), who reported that the correlation between speaker
height and acoustic features increases with the dimensionality of those features using multiple linear
regression model, the correlation showed in the findings is list below:
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Feature Pearson’s r
MFCC(1-10) 0.7426

Formants (F1-F5) 0.7264
F0 0.5880

Table 11: Overview of Dusan (2005)’s Correlations

This hypothesis is accepted since it is statistically significant. As shown in the boxplots, the max-
imum RMSE values generally fall outside the upper whisker—except for formants in the multiple
linear regression model—indicating that these values are outliers relative to the rest of the data and
can be treated accordingly.

The simple linear regression results appear contradictory and challenge the findings of Dusan
(2005) and align more closely with Ganchev et al. (2010), who ranked F0 highly in feature rele-
vance. However, although F0 exhibited the lowest median RMSE in simple linear regression, its
high maximum value (10.52 cm) and wide range indicate unstable performance across phones, call-
ing into question whether it can be considered the best-performing feature overall. On the other
hand, MFCCs clearly outperformed formants in multiple linear regression, supporting the idea that
higher-dimensional features more effectively capture height-related information. This suggests that
more complex regression models may be better suited to uncover meaningful correlations in the data.

Cross-referencing with the heatmaps (A) identifies /ax-h/ as the phone consistently associated
with the highest RMSE values. Its repeated outlier status across all feature sets and regression
models indicates extremely poor predictive reliability. This may stem from its acoustic variability,
reduced articulation as a centralized vowel), or limited height-discriminative cues. These results
highlight the importance of vowel identity and phonetic structure in shaping model performance.

5.2.2 Validation of Hypothesis 2

H2: The phone /ax-h/ will consistently exhibit the highest RMSE across all feature sets (Du-
san, 2005), due to its status as a reduced vowel characterized by high articulatory and acoustic
variability. Open vowels (/aa/, /ae/, /aw/) are expected to yield lower RMSE values, as they
involve greater vocal tract expansion compared to close vowels.

Validation criteria: /ax-h/ consistently yields higher RMSEs, and at least one open vowel (/aa/,
/ae/, /aw/) consistently yields lower RMSEs across all three tests.

As illustrated in the line plots, /ax-h/ not only consistently produces the highest RMSE, but also
exhibits an unusual trend: it is the only vowel where MFCCs yield higher RMSEs than formants
across all regression models. Thus, the hypothesis regarding /ax-h/ is supported. Regarding open
vowels, /aw/ and /aa/ demonstrate stable and strong performance, particularly in multiple linear and
random forest regression. While /ux/ shows the lowest RMSE in the F0-based simple regression,
/aw/ consistently performs well across all three models. Therefore, /aw/ meets the criterion of yield-
ing consistently low RMSE values, supporting the second part of the hypothesis. In summary, H2 is
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accepted based on consistent trends across all evaluations.
Indeed, other diphthongs, such as /ay/ and /ow/, also demonstrate strong performance in more

complex models. Their extended duration and broad articulatory movement likely enhance the clar-
ity of formant transitions and the richness of the spectral envelope, reinforcing their link to speaker-
specific anatomical characteristics and leading to better prediction performance.

5.2.3 Validation of Hypothesis 3

H3: Multiple linear regression will outperform simple linear regression, but the improvement
will be more pronounced for high-dimensional features (MFCCs with 13 dimensions) than for
intermediate features (formants with four dimensions) (Dusan, 2005).

Validation criteria: MR outperform SR in both tests, and improvement of MFCCs is more pro-
nounced than of formants (∆RMSE = RMSEMultipleRegression −RMSESimpleRegression).

As shown in the boxplots, multiple linear regression consistently yields lower RMSEs than sim-
ple linear regression, validating the superiority of the more complex model. Furthermore, the re-
duction in RMSE for MFCCs is significantly greater than that observed for formants except for one
outlier in ∆RMSE. These results underscore the role of both feature dimensionality and model com-
plexity in improving the accuracy of speaker height estimation.

In particular, these findings emphasize that richer acoustic representations benefit more from
sophisticated modelling techniques, such as multiple regression, which can capture complex in-
terdependencies between features. This supports the idea that both the choice of features and the
regression method used are critical for maximizing predictive performance in speech-based biomet-
ric applications.

In short, the performance evaluation across regression models reveals that feature complexity and
model selection play critical roles in speaker height prediction. In the next chapter, these findings
will be discussed in detail and examined in relation to research questions.
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6 Discussion
After analysing the results presented in Section 5, it becomes clear that the complexity of acoustic
features significantly influences height prediction accuracy at the phone level across linear regression
models. These findings directly address our primary research question: How does acoustic feature
complexity affect height prediction accuracy when comparing basic features (F0), intermediate fea-
tures (formants), and high-dimensional features (MFCCs) across different regression models at the
phone-based level?

Overall, while simple linear regression favoured F0 with unstable performance, high-dimensional
features such as MFCCs demonstrated superior performance under more complex models like mul-
tiple linear regression and random forest regression. Multiple linear regression demonstrates better
ability to capture complementary spectral information than random forest regression when random
forest regression configuration is not optimized. This indicates that the benefits of feature complex-
ity are best realized when paired with models capable of capturing multivariate relationships, and
suggests that linear regression may be more effective than non-optimized non-linear approaches in
this context.

The following discussion interprets these results in relation to the sub-research questions out-
lined in 1.3, with particular consideration of using phones as minimal input for height prediction
and reference to critical literature reviewed in 2. It also reflects on several limitations and then
concludes with suggestions for improving the generalizability and interpretability of acoustic-based
height estimation.

6.1 Impact of Feature Complexity
How does the use of different feature sets (basic, intermediate, high-dimensional) impact RMSE
across phones and regression models? In particular, do high-dimensional features (MFCCs) consis-
tently outperform simpler features?

Although H1 is accepted, the simple linear regression results appear to contradict with Dusan
(2005). While F0 showed the lowest RMSE (7.20 cm), and the F0 of some phones yielded notably
low RMSE values compared to the mean RMSE of formants and MFCCs in simple linear regres-
sion, its high maximum value (10.52 cm) and wide range likely reflect that, although it is a single,
clear feature linked to vocal fold vibration and speaker height—making it easy for a simple model
to fit—it also varies greatly across speech contexts. This variability makes F0 unstable and not an
optimal predictor at the phone level overall. This demonstrates that the simplest regression model
combined with the most basic feature set is not practical for accurately predicting height at the
phone-based level. Moreover, the mean RMSE values of intermediate and high-dimensional feature
sets were worse in simple linear regression overall, indicating that regardless of which feature set is
chosen, simple linear regression is not an effective approach for height prediction.

When focusing specifically on multiple linear regression, the results are in fact aligned with Du-
san (2005) who used multiple linear regression as primary methodology, as high-dimensional fea-
tures demonstrated better prediction accuracy. This suggests that the correlation between acoustic
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features and height can translate into predictive performance, but only under appropriate modelling
conditions.

On the other hand, although random forest regression is a non-linear model, its results do not
align closely with the findings of Ganchev et al. (2010), who identified F0 as a top-ranked acoustic
feature. Instead, simple linear regression showed performance patterns more consistent with that
ranking. This indicates that predictive outcomes are not solely determined by feature relevance but
are also influenced by the regression method applied.

Formants performed particularly well for open vowels like /aw/ and /ae/, and their interpretability
allows specific features such as F1 or F4 to serve as effective minimal input. This makes formants
a potential compromise between simplicity and accuracy. MFCCs using multiple linear regression
achieved a minimum RMSE falling below the 7 cm RMSE value mark typically reported by SOTA
systems noted in Section 2. Therefore, this result should be considered outstanding given that it
is achieved without advanced machine learning architectures. This highlights phone-based MFCCs
combined with multiple linear regression as a strong and practical minimal-input approach for height
prediction.

6.2 Phone-specific Patterns
Are there specific phones for which height can be predicted most or least accurately, and do these
patterns align with articulatory openness (open vs. closed vowels) and phonetic reduction?

The consistent underperformance of /ax-h/ across all feature sets and models, which may reflect
its articulatory feature as a reduced, centralized vowel being produced with minimal articulatory
effort and often appears in unstressed syllables. This may also reflect the shorter duration, weaker
intensity, and highly variable acoustic realizations of /ax-h/. These properties potentially obscure
speaker-specific traits and make height estimation from /ax-h/ particularly unreliable. However, ad-
ditional acoustic analysis is necessary to substantiate this claim as current study only captures mean
values and cannot directly verify the proposed articulatory properties.

/aw/ demonstrated good predictive power. It may reflect dynamic articulatory properties from
a low back to a high front position and a shift from unrounded to rounded articulation, though this
requires further acoustic validation. Other diphthongs, such as /ay/ and /ow/, also yield a better per-
formance in more complex models, but the performance is rather unstable. Lee, Potamianos, and
Narayanan (2014) stated that diphthongs are notably characterized by dynamic formant transitions,
but the rate of change varies across different diphthongs and serves as a key cue for distinguishing
them since the onset and offset portions of diphthongs do not consistently align with the monoph-
thongs typically used to transcribe them phonetically depending on speaker and context.

Therefore, on one hand, this different onset-offset portions of diphthong may be able to include
wide, clear, and unique overall spectral shape, strengthening its association with speaker-specific
anatomical features. On the other hand, the inherent variability and complexity of diphthongs may
lead to distinctive performance patterns for each diphthong individually. Interestingly, this finding
partially contrasts with the correlation results reported by Dusan (2005), where the highest phone-
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based correlation between speaker height and MFCC features was found for /iy/ (r = 0.7254), a
closed front unrounded vowel. This discrepancy suggests that strong feature-height correlations at
the phone level do not always translate into high predictive accuracy in regression models, particu-
larly among non-reduced vowels. Furthermore, while /aw/ consistently achieved the lowest RMSE
values, the current analysis cannot definitively attribute this to specific articulatory properties be-
cause the extraction of mean acoustic values precludes direct measurement of the dynamic spectral
changes characteristic of diphthongs.

Taken together, these findings demonstrate that the performance of individual phone varies. This
highlights the importance of considering vowel identity and articulatory structure when selecting
input units for speaker attribute estimation, and also the need to further examine whether temporal
acoustic dynamics correlate with prediction accuracy to validate these hypothesized mechanisms
when aiming for minimal input. Overall, /aw/ emerges as the most effective candidate. In contrast,
/ax-h/ should be excluded from the input selection due to low predictive value.

6.3 Regression Method Insights
How does the performance (RMSE) of linear regression models (simple and multiple) compare to
that of a non-linear model (random forest regression) in predicting speaker height from acoustic fea-
tures across phones?

Multiple linear regression clearly outperforms simple linear regression, as confirmed by the
validation of H3. The improvement, expressed as ∆RMSE, is especially pronounced for high-
dimensional features such as MFCCs compared to intermediate features like formants. Simple linear
regression’s inability to account for feature interactions or assign differential weights across multiple
predictors and underutilize the richness of complex features, leading to suboptimal RMSE perfor-
mance. This is solely reflected on the phone /aw/. Although the diphthong /aw/ consistently shows
strong predictive performance in more complex models, its performance under simple linear regres-
sion is comparatively less impressive. This can be attributed to the limitations of simple regression
in capturing the spectral features inherent in diphthongs. Simple linear regression, which models
each acoustic feature independently, is suggested to fail to account for this temporal complexity and
the interactions among multiple features.

When comparing multiple linear regression to random forest regression, the results show that
multiple linear regression consistently yields better predictive accuracy. The greater improvement of
MFCCs with multiple linear regression may reflect their ability to capture complementary spectral
information that linear combinations can explore, as MFCCs encode a broader and more nuanced
representation of the spectral envelope, though this requires further investigation.

MFCCs exhibit less stability compared to formants, as reflected by their lower minimum but
higher maximum mean RMSE values. While MFCCs may achieve better performance under cer-
tain conditions, their variability suggests they may be less reliable across all phones. In contrast,
formants appear to offer more consistent performance in non-linear models such as random forest
regression. Notably, feature importance scores from the random forest model clearly capture the
empirically observed complementary relationship between F1 and F4, supporting prior findings and
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highlighting formants may serve as a relatively stable and interpretable input for height prediction.
Nonetheless, further investigation is needed to clarify and validate these patterns.

Although multiple linear regression appears to outperform non-linear regression in this study, no
definitive conclusions can be drawn regarding the overall effectiveness of linear versus non-linear
approaches because the random forest configuration used in this study represents a conservative im-
plementation. For instance, parameters such as random state, number of estimators, and maximum
depth were not systematically tuned, which may have limited its performance. The superior per-
formance of multiple linear regression may reflect either genuine suitability for this task or simply
suboptimal random forest parameters.

6.4 Physiological Insights from Feature Weights
Which acoustic features contribute most significantly to height prediction in the random forest re-
gression model, and how do feature importance patterns relate to the acoustic-physiological mecha-
nisms?

For formants, an inverse relationship between F1 and F4 importance is observed in the random
forest regression, with further support from the simple linear regression results: phones that perform
well using F1 tend to perform poorly with F4, and vice versa. This pattern aligns with the findings
of Lammert and Narayanan (2015) and Barreda (2016) that F4 can act as a complementary cue to
F1—often inversely—for height prediction. Furthermore, the findings of González (2004) found
that the F2 of /e/ (corresponding to /eh/ in this study and the TIMIT dataset) is strongly correlated
with speaker height across sexes. However, both the RMSE values and feature importance scores
for /eh/ across regression models in this study do not support that claim.

For MFCCs, MFCC2 and MFCC5 show comparatively higher importance scores in the random
forest regression model, indicating a stronger contribution to height prediction. MFCC2 appears
to contribute more to open back vowels, while MFCC5 shows greater relevance for close front
vowels, suggesting that different MFCC components may encode vowel-specific spectral cues linked
to speaker height. However, unlike formants, simple linear regression does not clearly reflect this
pattern, as performance varies across phones without highlighting these specific coefficients.

6.5 Limitations
The first limitation concerns methodology. Although both core reference studies—Dusan (2005) and
Ganchev et al. (2010)—also use the TIMIT dataset, making this study comparable, it is important to
note that TIMIT is based on American English. As a result, the findings may not generalize to other
datasets, particularly those in different languages, due to phonological differences.

The second limitation involves the scope of feature extraction. This study focuses only on a
limited set of acoustic features. Although this set includes the most commonly chosen features, they
may not capture all speaker-specific characteristics. The absence of more nuanced or data-driven
representations may have constrained the predictive ceiling of the models used.



Section 6 DISCUSSION 50

The third limitation lies in the rigidity of the statistical framework. Although predefined valida-
tion criteria helped maintain analytical consistency, they may have limited flexibility in interpreting
the results. Future research could adopt a more exploratory perspective to uncover the conditions in
which various acoustic features are most effective.

The fourth limitation includes the conservative implementation of random forest regression con-
figuration. As the model was not extensively tuned or tested across multiple configurations, conclu-
sions regarding the relative performance of linear versus non-linear approaches remain limited. The
apparent superiority of multiple linear regression over random forest regression may reflect subopti-
mal random forest parameters rather than a fundamental limitation of non-linear methods.

In short, the results show that high-dimensional features like MFCCs achieve the best height
prediction when used with multiple linear regression. /aw/ offer the most reliable input while /ax-
h/ perform poorly. Multiple linear regression consistently outperforms simple models, and feature
importance patterns align with known acoustic-physiological cues. These findings highlight the
value of combining appropriate features, models, and phone types for accurate and interpretable
height estimation.
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7 Conclusion
This thesis investigated the research question ”How does acoustic feature complexity affect height
prediction accuracy when comparing basic features (F0), intermediate features (formants),
and high-dimensional features (MFCCs) across different regression models at phone-based
level?”. In this conclusion, I will summarize the main contributions, discuss future research direc-
tions, and reflect on the broader impact of this work.

7.1 Summary of the Main Contributions
This study revealed how acoustic feature complexity, regression model choice, phone-specific char-
acteristics, and individual acoustic features collectively influence speaker height prediction at the
phone level.

First, this study examined the interaction between feature complexity and modelling approach
in relation to height-feature correlation. While F0 produced the lowest RMSE in simple linear re-
gression, it was outperformed by MFCCs in multiple linear regression. This supports the view that
high-dimensional features deliver superior performance when used with models capable of capturing
multivariate relationships. Notably, MFCCs combined with multiple linear regression achieved an
RMSE below 7 cm—comparable to SOTA without relying on advanced machine learning architec-
tures.

Second, it investigated phone-specific reliability in height prediction. /aw/ was identified as the
most reliable phone for height prediction due to its dynamic articulation and rich spectral cues, while
/ax-h/ consistently showed the poorest performance across all features and models. This confirms
H2 and highlights the importance of articulatory openness and vowel reduction in predictive accu-
racy.

Third, it provides insights on regression comparison. Multiple linear regression consistently out-
performed simple linear regression, but limited to prove also outperform random forest regression.
Improvements were especially notable for high-dimensional features, validating H3. This suggests
that the feature-target relationship may be linear, non-linear relationship is recommended to be fur-
ther explored.

Fourth, it explored the physiological interpretability of features. Feature importance analysis
in random forest regression revealed an inverse relationship between F1 and F4, in line with prior
findings, and identified MFCC2 and MFCC5 as key contributors depending on vowel type.

In short, this study contributes to the enhancement of minimal-input height prediction systems.
It demonstrates that carefully selected acoustic features (e.g. MFCCs), combined with informative
phones (e.g. /aw/) and appropriate modelling (e.g. multiple linear regression), can achieve prediction
accuracy comparable to complex architectures used by SOTA. This positions phone-based acoustic
modelling as a viable, interpretable, and conversational privacy-preserving approach to height esti-
mation.
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7.2 Future Work
While the findings of this study offer valuable insights into acoustic-based height prediction, several
limitations must be acknowledged to contextualize the results as in 6.5. Nevertheless, these limita-
tions also suggest several directions for future work:

First, there is a need for cross-linguistic or cross-dataset validation. Future research should
extend the current study to datasets in other languages or beyond the TIMIT corpus to evaluate
the generalizability of the findings. Phonological differences across languages and dialects—such
as vowel inventories and phonotactic constraints—may influence the stability and effectiveness of
phone-based height cues identified in this study.

Second, future work could explore more dynamic and data-driven inputs, such as SOTA em-
beddings at the phone level. This would enable a direct comparison between traditional acoustic
features and modern learned representations, potentially revealing richer patterns in speaker-height
prediction.

Third, the current use of random forest regression was limited to a single configuration and was
not extensively tuned. Further exploration of non-linear models with varying parameters, such as
tree depth, estimators, and random seeds, is necessary to draw firmer conclusions about the com-
parative strengths of linear and non-linear modelling approaches in this context. Other non-linear
regression models can also be employed to compare with random forest regression results.

Fourth, this study heavily relied on a hypothesis-driven framework with rigid pre-set validation
criteria. Although it successfully contributes to the understand of speaker height estimation by af-
firming and providing evidence to some prior studies, the strict requirement may have constrained
the opportunity for data-driven insights. Future research could adopt a more exploratory perspective
to examine conditions of height prediction.

Last but not least, a correlation study between temporal acoustic dynamics and prediction accu-
racy is proposed to test the hypothesized mechanisms, especially the difference between monoph-
thongs and diphthongs. This proposed analysis could further clarify whether specific acoustic
changes over time are linked to predictive performance and strengthen the evidence for their role
in height estimation.

7.3 Impact & Relevance
In short, this study contributes to the development of minimal-input height prediction systems by
showing that height can be accurately estimated using only short, phone-level acoustic segments.
This approach offers linguistically impoverished input that protects conversational privacy while
still enabling reliable biometric analysis.

It further positions phone-based acoustic modelling as a viable, interpretable, and conversational
privacy-conscious method for estimating speaker height, particularly valuable in contexts such as
forensic phonetics or biometric authentication where full recordings may be limited or contain sen-
sitive conversations. With further model development, even a brief snippet of speech, such as an
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isolated /aw/ vowel produced by a suspect or victim, could be sufficient to estimate the speaker’s
height and link this information to existing biometric databases for investigative or identification
purposes. Another potential application can be seen in countries such as the Netherlands, where
passports include the holder’s height as part of identity verification. Although the current model is
not yet sufficiently robust for operational deployment in high-stakes scenarios, advancing this ap-
proach will eventually enable reliable use cases such as verifying the claimed identity of suspected
undocumented immigrants by comparing predicted height against official records.

Furthermore, this study demonstrates that phone-based input can deliver predictive performance
comparable to that of current industry frameworks, which predominantly rely on deep learning mod-
els trained on full speech signals. This suggests that phone-level acoustic segments has potential to
replace full speech recordings in certain applications and be integrated with advanced machine learn-
ing techniques to develop efficient height estimation systems that conserve conversational privacy.

However, it is important to acknowledge that while conversational privacy is improved, biometric
privacy concerns remain. This limitation is inherently difficult to avoid, as the acoustic features
required for height estimation inherently capture aspects of vocal tract anatomy that also contribute
to distinctive voice patterns, making individuals potentially identifiable.
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Appendices

A RMSE & Feature Importance Score Heatmaps
A.1 F0

Figure 7: F0 RMSE per Phone for Height Prediction Using Simple Linear Regression Model
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A.2 Formants

Figure 8: Formants RMSE per Phone per feature for Height Prediction Using Simple Linear Regres-
sion Model
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Figure 9: Formants RMSE per Phone for Height Prediction Using Multiple Linear Regression Model
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Figure 10: Formants RMSE per Phone for Height Prediction Using Random Forest Regression
Model
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Figure 11: Formants Feature Importance per Phone per Feature for Height Prediction Using Random
Forest Regression Model
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A.3 MFCCs

Figure 12: MFCCs RMSE per Phone per feature for Height Prediction Using Simple Linear Regres-
sion Model
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Figure 13: MFCCs RMSE per Phone for Height Prediction Using Multiple Linear Regression Model
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Figure 14: MFCCs RMSE per Phone for Height Prediction Using Random Forest Regression Model
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Figure 15: MFCCs Feature Importance per Phone per Feature for Height Prediction Using Random
Forest Regression Model
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B Visual Summary of Statistical Results
B.1 H1

Figure 16: RMSE Comparison Across Formants and MFCC (Simple Linear Regression)



APPENDICES 67

Figure 17: RMSE Comparison Across Formants and MFCC (Multiple Linear Regression)
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B.2 H2

Figure 18: RMSE per Vowel by Feature Set (Simple Linear Regression)

Figure 19: RMSE per Vowel by Feature Set (Multiple Linear Regression)
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Figure 20: RMSE per Vowel by Feature Set (Random Forest Regression)



APPENDICES 70

B.3 H3

Figure 21: Formants: SR vs MR RMSE Comparison (SR vs MR)
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Figure 22: MFCCs: SR vs MR RMSE Comparison (SR vs MR)
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Figure 23: ∆RMSE Comparison: MFCC vs Formants (SR vs MR)
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C Declaration of AI Use
Declaration I hereby affirm that this Master thesis was composed by myself, that the work herein is
my own except where explicitly stated otherwise in the text. This work has not been submitted for
any other degree or professional qualification except as specified, nor has it been published. Where
other people’s work has been used, this has been carefully acknowledged and referenced.

During the preparation of this thesis, I used ChatGPT-4o model for the following purposes:

1. Refining sentence structure, correcting grammar, and providing alternative lexicons across all
chapters.

2. Assisting with LaTeX-compatible multi-row tables in Section 1 and 5, and equation formats
in Section 3.

3. Providing guidance on the selection of statistical tests, including comparisons of alternative
methods.

4. Supporting troubleshooting and debugging of Python code used for feature extraction, regres-
sion modelling, and statistical testing.

All content was subsequently reviewed, verified, and substantially modified by me.
Stella Siu 9 July 2025
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