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Abstract

This paper proposes a personalized speech enhancement method based on time-domain convolu-
tional networks, which achieves precise extraction of target speaker’s speech by directly integrating
speaker embeddings (d-vector) into the time-domain processing pipeline of Conv-TasNet. Unlike ex-
isting frequency-domain methods, this research avoids information loss caused by frequency-domain
conversion and designs a multi-objective loss function to simultaneously optimize signal fidelity and
speaker consistency. Experimental results show that the proposed method outperforms existing base-
line methods on objective evaluation metrics, especially demonstrating stronger robustness in low
SNR and complex mixing conditions. This research provides new technical approaches for the field
of personalized speech enhancement, with potential applications in smart devices, remote commu-
nication, and assistive technologies.

Keywords: Personalized Speech Enhancement, Time-domain Convolutional Network, Speaker
Embedding, Multi-objective Optimization, Conv-TasNet
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Chapter 1

Introduction

In modern communication and human-computer interaction systems, speech signals are often af-
fected by background noise and interference from other speakers, reducing speech clarity and in-
telligibility. Personalized speech enhancement technology aims to extract the speech of a specific
target speaker from mixed speech while suppressing other interference sources, which has important
value in various application scenarios such as intelligent assistants, remote conferences, and hearing
aids.

With the popularization of intelligent devices and the widespread application of remote commu-
nication, speech has become one of the main methods of human-computer interaction. However,
in practical application environments, target speech is often interfered with by background noise
or speech from other speakers. This “cocktail party effect” seriously affects the performance of
speech interaction systems and user experience. Traditional speech enhancement methods mainly
focus on noise suppression, with limited processing capabilities for multi-speaker scenarios. In re-
cent years, personalized speech enhancement technology has achieved precise extraction of specific
target speaker’s speech by introducing speaker identity information, providing new ideas for solving
the “’cocktail party problem.”

Currently, personalized speech enhancement methods are mainly divided into two categories:
frequency-domain methods and time-domain methods. Frequency-domain methods (such as Voice-
Filter and SpeakerBeam) extract the speech of the target speaker by estimating frequency-domain
masks, which are simple to implement and computationally efficient, but have limitations in phase re-
construction and nonlinear distortion. Time-domain methods (such as Conv-TasNet) process directly
in the waveform domain, avoiding phase reconstruction problems, but how to effectively integrate
speaker identity information remains a challenge.

This research aims to develop a personalized speech enhancement method based on time-domain
convolutional networks by directly integrating speaker embeddings (d-vector) into the Conv-TasNet
architecture to achieve precise extraction of target speaker’s speech. Unlike existing frequency-
domain methods, this research avoids information loss caused by frequency-domain conversion and
designs a multi-objective loss function to simultaneously optimize signal fidelity and speaker con-
sistency.
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1.1 Research Questions and Hypotheses

Based on the preceding discussion, this research aims to address the following main question:

How can speaker identity information be effectively integrated into a time-domain processing
framework to improve the performance of personalized speech enhancement systems?

This main question can be broken down into the following sub-questions:

Sub-question 1: How to design an effective speaker embedding integration strategy to combine
d-vector with Conv-TasNet?

Sub-question 2: How to balance signal fidelity and speaker characteristic preservation to improve
system robustness in low SNR and complex mixing scenarios?

Sub-question 3: What advantages does the proposed time-domain personalized speech enhance-
ment method have compared to existing frequency-domain methods?

Based on these research questions, this study proposes the following hypotheses:

Hypothesis 1: Directly integrating d-vector into the time-domain processing pipeline of Conv-
TasNet can avoid information loss caused by frequency-domain conversion and improve speech
reconstruction quality.

Hypothesis 2: A multi-objective loss function can simultaneously optimize signal fidelity and
speaker consistency, achieving a good balance between the two.

Hypothesis 3: Time-domain convolutional network-based personalized speech enhancement
methods have stronger robustness in low SNR and complex mixing scenarios.
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Chapter 2

Literature Review

2.1 Search Strategy and Selection Criteria

Literature sources: This review primarily uses the following databases for retrieval: IEEE Xplore,
ACM Digital Library, Google Scholar, and Scopus.

Keywords: - Speech enhancement technology: Speech Enhancement, End-to-end Speech En-
hancement - Personalized speech enhancement: Personalized Speech Enhancement, Target Speaker
Extraction, Speaker-conditioned Enhancement, Speaker Embedding - Evaluation methods: Speech
Enhancement Evaluation

Related topics: - Topic 1: Evolution of speech enhancement technology - Topic 2: Personalized
speech enhancement and target speaker extraction technology - Topic 3: Evaluation methods and
performance metrics

Selection criteria: Selection criterion 1: Timeliness: Priority is given to literature published after
2018 to ensure technological advancement.

Selection criterion 2: High impact: Priority is given to literature published in high-impact jour-
nals or conferences.

Selection criterion 3: Citation rate: Priority is given to papers with high citation rates, which
have laid technical foundations or played pioneering roles in related fields.

Selection criterion 4: Relevance: Priority is given to papers that study related fields and adopt
methods or technical routes similar to this paper.

2.2 Evolution of Speech Enhancement Technology

2.2.1 Traditional Frequency-Domain Methods

Traditional speech enhancement mainly processes in the frequency domain, converting signals to the
time-frequency domain through Short-Time Fourier Transform (STFT), and then estimating masks
to extract target speech. Although these methods are intuitive and easy to implement, they have
several key limitations.

First, frequency-domain methods face challenges in phase reconstruction. As|Crang and Gannot
(2021) points out, frequency-domain masking methods typically only modify the amplitude spec-
trum while preserving the original phase, leading to inaccurate phase in the reconstructed signal and
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consequently introducing speech distortion. Although some research has attempted to alleviate this
problem through phase reconstruction techniques Wang et al.| (2019) , the inherent complexity of
phase reconstruction still limits the performance ceiling of frequency-domain methods.

Second, the computational efficiency issue of frequency-domain methods cannot be ignored.
STFT typically requires a longer time window (at least 32ms) to obtain sufficient frequency reso-
lution, which increases the minimum delay of the system and limits its applicability in real-time,
low-latency applications Luo and Mesgarani (2019) . This is particularly critical in scenarios such
as speech communication and wearable devices.

A representative frequency-domain personalized speech enhancement method is VoiceFilter de-
veloped by Google Wang et al.| (2019) . This method extracts d-vector embeddings using a pre-
trained speaker recognition network, and then uses them to guide the frequency-domain mask en-
hancement model. Although VoiceFilter has achieved significant results in speech separation tasks,
the inherent limitations of its frequency-domain processing paradigm still exist.

2.2.2 Rise of Time-Domain Methods

To overcome the limitations of frequency-domain methods, researchers began to explore methods
that directly process speech signals in the time domain. Conv-TasNet proposed by |[Luo and Mes-
garani| (2019)is a milestone work in this direction, replacing STFT with a convolutional encoder-
decoder to directly process raw waveforms.

The core innovation of Conv-TasNet lies in its end-to-end architecture, which consists of three
main components: encoder, separator, and decoder. The encoder consists of one-dimensional convo-
lutional layers that convert input waveforms into low-dimensional representations; the separator is
based on a Temporal Convolutional Network (TCN), containing multiple convolutional blocks with
exponentially growing dilation rates, ensuring the network has a sufficiently large receptive field; the
decoder reconstructs the separated features into waveforms through transposed convolutional layers.

Compared to frequency-domain methods, Conv-TasNet has several significant advantages. First,
it avoids the phase reconstruction problem because signals are processed and reconstructed directly
in the time domain. Second, time-domain networks can better capture temporal dependencies in
speech signals, producing more natural and clearer outputs. Additionally, Conv-TasNet’s end-to-end
training paradigm allows the model to automatically learn optimal signal representations without
relying on predefined time-frequency transformations.

Experimental results show that Conv-TasNet significantly outperforms ideal time-frequency mask-
ing methods in speech separation tasks, achieving breakthrough progress in both objective distortion
measures and subjective quality assessments in two-speaker mixing scenarios Luo and Mesgarani
(2019) . This success has prompted researchers to further explore the potential of time-domain
methods in personalized speech enhancement.

2.2.3 Multi-layer Encoder-Decoder Architecture

Building on Conv-TasNet, researchers further explored more complex time-domain architectures
to improve the robustness of speech representation.Nitya, Kumar, and Singh| (2019) demonstrated
through t-SNE analysis that a dual-layer encoder-decoder network with interleaved TCN modules
can significantly reduce ASR word error rates, improving by 48% compared to unprocessed speech
and outperforming existing baselines by 33-44%.
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The advantage of this multi-layer architecture lies in its ability to capture speech signal features
at different levels of abstraction, with the lower-level encoder capturing local temporal patterns while
the higher-level encoder learns more abstract speech representations. The interleaved TCN modules
further enhance the model’s ability to capture long-term dependencies while maintaining a smaller
model size and low computational complexity.

Schneider et al.|(2019) further explored the optimization of TCN structures by introducing resid-
ual connections and layer normalization, significantly improving training stability and model perfor-
mance. Their research shows that optimized TCN structures not only improve speech enhancement
quality but also reduce the model’s sensitivity to training data, making it more robust in unseen
scenarios.

2.3 Personalized Speech Enhancement Technology

Personalized Speech Enhancement (PSE) or Target Speaker Extraction (TSE) differs from traditional
speech enhancement in that it uses prior information of the target speaker to guide the enhancement
process. This section reviews speaker embedding techniques and their applications in personalized
speech enhancement.

2.3.1 Speaker Embedding Techniques

Speaker embedding is a technique that converts variable-length speech into fixed-dimensional vector
representations that capture the unique acoustic characteristics of speakers. In personalized speech
enhancement, speaker embeddings serve as prior information, guiding the model to focus on the
speech characteristics of the target speaker.

d-vector is a deep neural network-based speaker embedding initially used for speaker recogni-
tion tasks. In a typical implementation, reference speech is processed through a three-layer LSTM
network, with each layer containing 768 hidden units. The output of the last time step is projected
through a 256-dimensional fully connected layer and L.2-normalized to generate a compact speaker
identity embedding |Wang et al. (2019) . The advantage of d-vector lies in its end-to-end training
paradigm and effective representation capability for short speech segments.

x-vector is another powerful speaker embedding technique proposed by Snyder, Garcia-Romero,
Sell, Povey, and Khudanpur (2018) . Unlike d-vector, x-vector uses time-domain CNN instead of
LSTM to extract frame-level features, and then aggregates temporal dimension information through
a statistical pooling layer. Snyder et al. particularly emphasized the importance of data augmentation
in improving the robustness of x-vector, significantly enhancing model performance in complex
environments by artificially expanding training data through adding noise and reverberation.

These speaker embedding techniques provide a key technical foundation for personalized speech
enhancement, enabling models to “remember” the voice characteristics of target speakers and pre-
cisely extract their speech in complex mixtures.

2.3.2 Speaker-Conditioned Enhancement Methods

An early speaker-conditioned enhancement method is SpeakerBeam, which first introduced the con-
cept of using speaker embeddings to guide enhancement models |[Zmolikova et al.|(2019) . Speaker-
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Beam extracts speaker embeddings from reference speech, then fuses them with mixed speech fea-
tures to guide the model to focus on the speech components of the target speaker.

VoiceFilter [Wang et al. (2019) is a representative frequency-domain personalized speech en-
hancement method developed by Google. It uses a pre-trained speaker recognition network to ex-
tract d-vector embeddings, which are then used to guide the frequency-domain mask enhancement
model. The innovation of VoiceFilter lies in organically combining speaker recognition and speech
enhancement tasks to form an end-to-end personalized speech enhancement framework.

2.3.3 Continuous Target Speaker Extraction

Real-world application scenarios are often more complex than laboratory settings, involving variable
speaker overlap and target speaker absence. Addressing this challenge,Zhao et al. (2024} proposed
a Continuous Target Speaker Extraction (C-TSE) framework, combining Target Speaker Voice Ac-
tivity Detection (TSVAD) and TSE models.

The core innovation of the C-TSE framework is the Attention-based Target Speaker Voice Ac-
tivity Detection (A-TSVAD), which directly generates timestamps for the target speaker, rather than
being used to refine speaker segmentation results as in traditional methods.Zhao et al.| (2024) also
explored different integration methods of TSVAD and TSE, comparing the effects of cascade and
parallel methods. Experiments show that A-TSVAD outperforms traditional methods in reducing
speaker segmentation errors, while the cascade integration of A-TSVAD and TSE further improves
extraction accuracy.

This research direction is significant for improving the applicability of personalized speech en-
hancement in complex real-world scenarios, especially in applications such as meeting recording
and remote communication.

2.4 Evaluation Methods and Performance Metrics

Evaluating the performance of personalized speech enhancement systems requires comprehensive
consideration of multiple aspects, including enhancement quality, speaker identity preservation, and
computational efficiency. This section reviews relevant evaluation methods and performance met-
rics.

2.4.1 Objective Evaluation Metrics

Scale-Invariant Signal-to-Noise Ratio (SI-SNR) is an important metric for evaluating speech en-
hancement quality, measuring the reconstruction accuracy of enhanced signals relative to clean refer-
ences while being insensitive to overall scale changes of the signal. SI-SNR Improvement (SI-SNR1)
measures the change in SI-SNR before and after processing, directly reflecting the effectiveness of
the enhancement system. Research by [Luo and Mesgarani (2019) shows that time-domain methods
typically achieve higher SI-SNRIi, consistent with their characteristic of avoiding phase reconstruc-
tion problems.

Signal-to-Distortion Ratio (SDR) and its improvement value (SDRi) are another set of com-
monly used objective metrics that assess signal quality from a broader perspective, considering
various possible types of distortion. Experimental results from |Ott, Subramanian, Kolbzk, Yu,
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and Gerkmann| (2019) show that personalized speech enhancement methods typically outperform
non-personalized methods on the SDRi metric, demonstrating the value of utilizing speaker prior
information.

Perceptual Evaluation of Speech Quality (PESQ) is a speech quality objective assessment
method standardized by the International Telecommunication Union that simulates the human audi-
tory system’s perception of speech quality. PESQ scores are highly correlated with subjective lis-
tening experience and are therefore widely used to evaluate the performance of speech enhancement
systems. Research by|Snyder et al.| (2018) shows that time-domain personalized speech enhancement
methods significantly outperform traditional frequency-domain methods in PESQ scores, especially
under low signal-to-noise ratio conditions.

This chapter provides a comprehensive review of the current state of research in the field of
personalized speech enhancement, tracing the technological evolution from traditional frequency-
domain methods to modern time-domain methods, analyzing speaker embedding techniques and
their applications in personalized speech enhancement, and summarizing relevant evaluation meth-
ods and performance metrics.

The review indicates that time-domain personalized speech enhancement methods based on
Conv-TasNet have significant advantages in avoiding phase reconstruction problems, improving
computational efficiency, and enhancing quality. Speaker embedding techniques (such as d-vector
and x-vector) provide a key technical foundation for personalized speech enhancement, enabling
models to effectively distinguish and extract the speech of target speakers. The introduction of
composite loss functions further improves system performance in signal reconstruction and speaker
identity preservation.

These research advances lay a solid theoretical foundation and technical background for the
Conv-TasNet-based personalized speech enhancement method proposed in this research. Subsequent
chapters will detail the proposed method and its experimental validation.
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Table 2.1: Summary of Core Literature

Reference

Main Findings

Topic

Wang et al. (2019)

Proposed VoiceFilter, using d-vector to
guide frequency-domain mask estimation

Frequency-
domain method

Luo & Mesgarani
(2019)

Proposed Conv-TasNet, achieving end-to-
end time-domain speech separation

Time-domain
method

Zmolikovd et al.
(2019)

Proposed SpeakerBeam, fusing speaker in-
formation through adaptive layers

Frequency-
domain method

Ott et al. (2019)

Combined speaker embeddings with Conv-
TasNet, achieving time-domain personalized
speech enhancement

Time-domain
method

Snyder et al. (2018)

Proposed x-vector, a robust speaker embed-
ding using TDNN and statistical pooling

Speaker embed-
ding

Schneider et al.

Enhanced TCN with residual connections

Time-domain

(2019) and layer normalization for stability and ro- | method
bustness
Zhao et al. (2024) Proposed A-TSVAD in the C-TSE frame- | Speaker extrac-

work to improve target speaker activity de-
tection

tion (real-world)

Crang (2021)

Analyzed phase reconstruction limitations in
frequency-domain methods

Limitation of
frequency-
domain methods

Nitya et al. (2019)

Demonstrated improved ASR performance
using multi-level encoder-decoder with in-
terleaved TCN

Deep time-
domain architec-
ture

Rix et al. (2001)

Developed PESQ, a standard metric for per-
ceptual evaluation of speech quality

Evaluation metric

Vincent et al. (2006)

Proposed SDR/SDRIi as objective metrics for
source separation performance

Evaluation metric
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Chapter 3
Methodology

This chapter details a personalized speech enhancement method based on time-domain convolutional
networks, which achieves precise extraction of target speaker’s speech by integrating speaker em-
bedding techniques with the Conv-TasNet architecture. The core innovation of this research lies in
directly incorporating d-vector into the time-domain processing pipeline, avoiding information loss
caused by frequency-domain conversion, and designing a multi-objective loss function to simulta-
neously optimize signal fidelity and speaker consistency.

3.1 Dataset Description

In this study, the LibriSpeech corpus is selected as the primary dataset. LibriSpeech is one of the
most widely used publicly available datasets in the fields of speech separation and speech recog-
nition, comprising approximately 1,000 hours of high-quality English read speech with an audio
sampling rate of 16 kHz. The dataset encompasses speech from thousands of speakers of differ-
ent genders, ages, and accent backgrounds, thus offering substantial speaker diversity and strong
representativeness. All speech data have undergone strict quality control, and the accompanying
transcriptions are accurate and reliable, providing a solid foundation for speech-related tasks. In this
study, the train-clean-100 subset of LibriSpeech is primarily used as the training data for the model,
ensuring the scientific validity and reproducibility of the experimental results.

3.2 Core Methods and Models

This study proposes a time-domain personalized speech enhancement method that integrates speaker
embedding vectors (d-vectors) into a convolutional separation network. Based on a modified Conv-
TasNet architecture, this method introduces the d-vector directly into the separation module to
achieve conditional modeling for the target speaker. Through this design, the mohe audio and the
speaker identity information, enabling the precise extraction of the specified speaker’s speech signal
from mixed audio.
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3.2.1 Speakdel is able to leverage both the temporal structure of ter Embed-
ding Module

The speaker embedding module is neural network-based and aims to extract a fixed-length d-vector
from a reference utterance of the target speaker. In practical implementation, the reference speech
is first converted into Mel-spectrogram features, with parameter configurations (such as the num-
ber of Mel filters, window length, and hop size) kept consistent with the overall feature extraction
pipeline of the system. Subsequently, the Mel-spectrogram is fed into a multi-layer Long Short-Term
Memory (LSTM) network for modeling.

From the LSTM output sequence, the hidden state of the final frame is extracted and projected to
a predefined fixed dimension via a fully connected layer. This projected vector is then subjected to
L2 normalization, ultimately forming a fixed-length d-vector. The d-vector effectively encodes the
identity characteristics of the target speaker and serves as conditional information for the subsequent
speech separation process in the separation network.

3.2.2 Speaker-Conditioned Conv-TasNet Architecture

Conv-TasNet is a time-domain speech separation model, comprising three main modules: Encoder,
Separator, and Decoder.

Encoder: The input mixture is first transformed by a one-dimensional convolutional encoder
into a latent feature representation. The encoder employs fixed kernel length and stride to ensure
overlapping frames, which enhances temporal feature extraction.

Separator: The separator adopts a Temporal Convolutional Network (TCN) with stacked 1D
dilated convolutional blocks, residual connections, and normalization layers. For speaker condition-
ing, the d-vector is projected to the same channel dimension as the encoder output, then repeated
and expanded to match the time length of the feature sequence. The expanded d-vector is added
element-wise to the encoder output at each time step, allowing the separator to inject speaker iden-
tity information throughout the sequence and generate a mask focused on the target speaker.

Formally, given encoder output E € RB*¥*K and projected d-vector d € RB*V, the separator
input is E +d after expansion and broadcasting.

Decoder: The decoder reconstructs the time-domain waveform from the masked features us-
ing a linear transformation. The final output waveform is obtained by overlap-and-add, ensuring
continuity and naturalness.

3.2.3 Model Advantages and Improvements

Compared with the original Conv-TasNet, this work introduces the following key innovations:

Time-domain speaker-conditioned modeling: The d-vector is directly integrated into the time-
domain separation module, without the need for frequency-domain transformation, which effectively
preserves phase information and enables true end-to-end optimization. By using an element-wise
addition mechanism, it ensures that speaker identity information is injected and utilized at every
time step during the separation process.

Architectural enhancements: The model adopts depthwise separable convolution in tempo-
ral convolutional blocks, which significantly reduces computational complexity while maintaining
representational capacity. At the same time, it supports both global layer normalization (gLN) and
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channel-wise layer normalization (cLN), providing flexibility for different training scenarios. The
residual connection design in the separation module facilitates gradient flow and supports deeper
network structures.

3.2.4 Technical Framework

The training methodology in this study adopts a multi-objective loss function, simultaneously opti-
mizing both the fidelity of the speech signal and the consistency of speaker characteristics. The loss
function consists of the Scale-Invariant Signal-to-Noise Ratio (SI-SNR) loss and the cosine similar-
ity loss, thereby balancing speech reconstruction accuracy and the preservation of speaker identity.

Specifically, the SI-SNR loss is used to measure the quality of the model’s separated output
relative to the target speech. In practical implementation, both the predicted speech and the target
speech are first mean-normalized, after which the enhanced speech is projected onto the direction of
the clean speech. The noise component is then obtained as the residual between the two signals. The
value of SI-SNR is calculated based on the ratio of signal energy to noise energy, and is expressed
in decibels. The loss is optimized in the negative direction.

To further ensure the consistency of speaker characteristics between the enhanced speech and the
target speech, a cosine similarity term is incorporated into the loss function. This term evaluates the
angular similarity in the vector space between the model output and the target waveform, thereby
encouraging the separated speech to better preserve the personalized features of the target speaker.

Finally, the two losses are combined with configurable weights:

L=0-LssNrR + B * Leosine

By default, both o and [ are set to 0.5, balancing the focus between signal restoration and speaker
consistency during training.

3.2.5 Evaluation Methodology

To comprehensively evaluate the system performance, multiple objective evaluation metrics are
adopted to assess speech enhancement quality from different perspectives.

Among them, Scale-Invariant Signal-to-Noise Ratio (SI-SNR) is used to measure the reconstruc-
tion accuracy between the model output and the clean reference speech. This metric is robust to am-
plitude variations and mainly reflects the effectiveness of speech separation; higher values indicate
better separation quality.

Signal-to-Distortion Ratio (SDR) is employed to evaluate the overall quality of the enhanced
speech, reflecting the separation effect by comparing the energy of the target signal to the total
distortion energy.

Perceptual Evaluation of Speech Quality (PESQ) is an objective speech quality metric stan-
dardized by the International Telecommunication Union, which objectively reflects the subjective
perception of enhanced speech. The score typically ranges from —0.5 to 4.5, with higher scores
indicating better perceived speech quality. In this study, all evaluations are conducted at a sampling
rate of 16 kHz.

In addition, to quantify the effectiveness of the enhancement method, we also compute the im-
provement of each metric, i.e., the difference in SI-SNR and SDR before and after enhancement:
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SI-SNRi = SI-SNR (enhanced, target) — SI-SNR (mixture, target)
SDRi = SDR(enhanced, target) — SDR (mixture, target)

These improvement metrics can directly reflect the improvement of speech separation and en-
hancement performance by the proposed method, providing intuitive evidence for the effectiveness
of the system.

3.3 Ethics and Research Integrity

This research strictly follows research ethics and data usage norms, ensuring the transparency of the
research process and the reliability of results.

3.3.1 Data Ethics and Privacy

The LibriSpeech dataset used in this research is publicly available, with all recordings coming from
public domain audiobooks, not involving personal privacy information. The research process strictly
follows data usage protocols, ensuring that data is used only for academic research purposes.

3.3.2 FAIR Principles Implementation

This research follows the FAIR principles (Findability, Accessibility, Interoperability, and Reusabil-
ity):

* Findability: All data and code will be accompanied by detailed metadata descriptions
* Accessibility: Research results will be publicly released through open-source platforms

* Interoperability: Standard data formats and interfaces are adopted to ensure compatibility with
other systems

* Reusability: Detailed experimental setups and parameter configurations are provided to facil-
itate result reproduction by other researchers

3.3.3 Open Science Practices

To promote open science, this research will publicly release trained models and evaluation code,
provide detailed experimental records and data processing workflows, share intermediate results and
failed attempts, and avoid publication bias.

3.3.4 Bias and Fairness

The dataset used in this research is relatively balanced in gender distribution (1201 females and 1283
males) but has limitations in language and accent diversity. We pay special attention to performance
differences across different gender combinations in our evaluation and report relevant results.
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3.3.5 Environmental Impact

Deep learning model training consumes substantial computational resources and energy. To re-
duce environmental impact, this research takes the following measures: optimizing model structure
to reduce parameter count and computational complexity; using early stopping strategies to avoid
unnecessary training rounds; recording and reporting computational resource consumption during
training.

3.3.6 Reproducibility and Replicability

To ensure the reproducibility and replicability of the research, we provide complete code implemen-
tation and environment configuration, detailed hyperparameter settings and random seeds, prepro-
cessing scripts and data splitting schemes, as well as implementation details of evaluation metrics.

This research strictly follows the above ethics and research integrity principles, ensuring the
transparency of the research process and the reliability of results, making responsible contributions
to the development of the personalized speech enhancement field.
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Chapter 4

Experimental Setup

4.1 Dataset and Data Preparation

In this study, the train-clean-100 subset of the LibriSpeech dataset is used for model training and
evaluation. Considering computational resource constraints, we further select 1% of this subset
(train-clean-100-1percent) as the primary training set to verify the effectiveness of the proposed
personalized speech enhancement method under limited data conditions. After preprocessing, all
audio segments are set to a length of 3.0 seconds and resampled to 16 kHz.

The data preparation process includes two main steps: batch data preprocessing and mixed sam-
ple generation. First, all original audio data are normalized for volume and resampled to 16 kHz to
ensure consistency and high quality, laying a solid foundation for subsequent feature extraction and
model training.

During the construction of training samples, each sample is generated as follows:

Target speaker selection: Two different speech segments from the same target speaker are ran-
domly selected, one for speaker embedding extraction and the other as the target speech to be sepa-
rated.

Interference mixing: An additional speech segment from a different speaker is randomly chosen as
the interference signal.

Mixture generation: The target and interference signals are mixed with a randomly selected signal-
to-noise ratio (SNR) in the range of -5 dB to 5 dB, simulating real-world overlapping speech scenar-
10s.

All processed data are stored in a structured format. Each sample contains the mixture wave-
form, clean target speech, the reference audio path for speaker embedding extraction, and optional
precomputed features (such as magnitude spectra), facilitating feature extraction and model input in
subsequent stages.

4.2 Experimental Design and Hyperparameter Optimization

All major training and model parameters are centrally managed using a configuration file (config_used.yaml),
ensuring experimental reproducibility and flexibility. To comprehensively validate the effectiveness

and generalizability of the proposed approach, the experimental design includes the following as-

pects:
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Large-scale dataset training: When resources permit, the training dataset scale is gradually
expanded to investigate the model’s performance with more abundant data.

Model structure and hyperparameter tuning: Systematic tuning is performed on hyperparam-
eters such as the number of training epochs, model layers, hidden units, and embedding dimension.
Model performance is compared under different configurations to optimize the final network archi-
tecture.

Loss function variant comparison: Experiments are conducted using only SI-SNR, only MSE,
or different loss combinations. This systematic evaluation highlights the advantages of the proposed
composite loss design in balancing speech separation and speaker consistency.
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Chapter 5

Experimental Results

5.1 Training Process and Convergence Analysis
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Figure 5.1: Training and validation curves of loss and evaluation metrics (Loss, SI-SNR, SDR,

PESQ) over 50 epochs.
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Figure illustrates the variation trends of the loss function and evaluation metrics over 50
epochs of training. The training process exhibits three distinct phases. During the rapid convergence
phase (Epochs 1-10), the SI-SNR increases sharply from the initial value of —0.20dB to 3.48 dB,
with an improvement of 3.68 dB. In the stable optimization phase (Epochs 11-30), the model per-
formance continues to improve steadily, with SI-SNR gradually rising to 3.73 dB. Finally, in the
saturation phase (Epochs 31-50), the growth of all metrics becomes marginal, and the validation
SI-SNR stabilizes at approximately 3.84 dB, indicating that the model has reached its performance
limit under the current configuration.

As observed from the learning curves, the loss function decreases rapidly in the initial stage and
then gradually levels off. The trend of the validation metrics is highly consistent with that of the
training set, although the values are slightly lower. Throughout the training process, the metrics
evolve smoothly with no abrupt fluctuations, indicating stable and effective model training with no
sign of overfitting.

5.2 Final Performance Evaluation

Table summarizes the final performance of the model at the 50th epoch. On the validation set,
the SI-SNR reaches 3.84 dB, SDR reaches 4.48 dB, and PESQ reaches 1.9020. The corresponding
training set metrics are SI-SNR 4.33 dB, SDR 4.99dB, and PESQ 1.9122. The small performance
gap between the training and validation sets indicates good generalization capability of the model.

Table 5.1: Final performance evaluation results of the model.

Dataset SI-SNR (dB) SDR (dB) PESQ
Training set 4.33 4.99 1.9122
Validation set 3.84 4.48 1.9020

5.3 Summary

The experimental results in this chapter demonstrate that the proposed d-vector conditioned Conv-
TasNet approach achieves an SI-SNR separation performance of 3.84 dB under low-resource con-
ditions, thereby validating the effectiveness of the fundamental architecture and feasibility of the
method. The training process is stable and converges well, reaching the performance limit of the
current configuration after 50 epochs. These findings provide a solid foundation for future work
on large-scale training, comprehensive baseline comparisons, ablation studies, and further model
optimization, indicating substantial potential for further improvement.
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Chapter 6

Discussion

6.1 Research Contributions and Theoretical Significance

This study makes important theoretical contributions to the field of personalized speech enhance-
ment. Firstly, we propose an innovative architecture that organically integrates d-vector speaker
embeddings with the Conv-TasNet time-domain convolutional network, achieving end-to-end per-
sonalized speech separation. This design overcomes the limitations of traditional frequency-domain
methods by avoiding information loss during spectral transformation, enabling high-quality speech
separation directly in the time domain.

Secondly, we design an effective conditioning mechanism that incorporates speaker embedding
information into each separation block of the network, allowing the model to perform adaptive sepa-
ration based on the target speaker’s characteristics. This conditioning strategy maintains the simplic-
ity of the network structure while significantly enhancing the degree of personalization in separation
performance.

In terms of loss function design, we introduce a combined objective consisting of SI-SNR and
cosine similarity, enabling multi-objective optimization to ensure both separation quality and speaker
consistency. Experimental results demonstrate that this loss function can effectively guide model
training and achieve significant performance gains even under extremely low-resource conditions.

6.2 Advantages and Application Value

The method proposed in this study offers notable technical advantages and broad application prospects.
At the technical level, the time-domain processing strategy avoids the time-frequency resolution
trade-off inherent in short-time Fourier transform approaches, better preserving the temporal char-
acteristics and phase information of speech, which is critical for naturalness and intelligibility. The
incorporation of pretrained d-vector speaker embeddings allows the model to be optimized for spe-
cific speakers, effectively suppressing interfering signals while maintaining the speech characteris-
tics of the target speaker.

From an application perspective, this approach provides key technical support for consumer elec-
tronics such as hearing aids and smart speakers, and has direct practical value for teleconferencing
systems and speech recognition applications. As speech interaction technology continues to prolif-
erate, the proposed method offers an effective solution for the personalized optimization of speech



Section CHAPTER 6. DISCUSSION 24

interfaces, addressing the growing demand for user personalization.

6.3 Limitations

Despite the encouraging experimental results, several limitations remain in this study. First, due to
computational constraints, the current experiments are conducted on only 1% of the LibriSpeech
dataset, which restricts the full potential of the model and limits the comprehensive evaluation of its
generalization ability. Second, our research is primarily validated on a single dataset, so further work
is required to examine the method’s robustness to various acoustic environments, noise conditions,
and linguistic characteristics.

From a technical standpoint, the computational demands of deep neural networks may restrict
their deployment on resource-constrained devices. Real-time requirements and hardware limita-
tions in practical applications require optimization of computational efficiency while maintaining
performance. Additionally, the current approach focuses on single-target speaker scenarios, and its
capacity for separating multiple speakers in complex acoustic environments remains to be further
enhanced.

6.4 Completeness of Experimental Design

While the current experimental design validates the basic effectiveness of the proposed method,
there is still room for improvement in terms of rigor and completeness. The lack of direct compar-
ison with mainstream baselines limits our ability to accurately assess the relative advantages of the
proposed approach. Furthermore, systematic ablation studies have not yet been conducted, resulting
in insufficient quantitative analysis of the contribution of each model component.

Hyperparameter choices are mainly based on experience and limited tuning, lacking a systematic
sensitivity analysis. The optimal configuration of key parameters, such as the weights o and 3 in the
loss function, network depth, and embedding dimension, remains to be further explored.

6.5 Implications for the Field

This work provides important insights for the development of personalized speech enhancement.
The successful application of end-to-end time-domain learning demonstrates the potential of directly
processing raw waveforms, thereby avoiding the subjectivity of handcrafted feature design. The
effectiveness of the speaker conditioning mechanism highlights the importance of personalization in
speech processing, providing a technological foundation for building adaptive speech systems. The
multi-objective optimization strategy further exemplifies how effective multi-objective loss functions
can be designed to satisfy the diverse performance requirements of real-world applications.
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Chapter 7

Conclusion

7.1 Summary of the Study

This research presents a personalized speech enhancement method based on d-vector conditioned
Conv-TasNet and verifies its effectiveness on the LibriSpeech dataset. Experimental results demon-
strate that, even under extremely low-resource conditions (using only 1% of the training data), the
proposed approach achieves significant improvements in speech separation performance. Specifi-
cally, the overall SI-SNR improvement reaches 4.04 dB, and the final SI-SNR on the validation set
achieves 3.84 dB, proving the feasibility and effectiveness of the method.

7.2 Main Contributions

The main contributions of this study can be summarized as follows. From a technical perspective, we
have, for the first time, organically integrated d-vector speaker embeddings with the Conv-TasNet
time-domain convolutional network. We have proposed an effective conditioning mechanism and
a novel composite loss function, thereby achieving end-to-end personalized speech separation. In
terms of methodological validation, we have demonstrated the advantages of time-domain process-
ing for personalized speech enhancement, verified the value of transferring pretrained speaker em-
beddings for speech separation, and established an effective training paradigm under low-resource
settings. Regarding practical value, the proposed method provides technical support for real-world
applications such as hearing aids, smart speakers, and teleconferencing systems, and drives the de-
velopment of personalized speech interaction technologies.

7.3 Future Work

Building upon the findings and limitations identified in this research, we have formulated a sys-
tematic plan for future work. Firstly, we will conduct large-scale training using the complete Lib-
riSpeech dataset to fully exploit the learning potential of the model and to validate the generaliz-
ability of the approach. Comprehensive baseline comparisons will be carried out, systematically
evaluating the proposed method against current state-of-the-art speech enhancement and separation
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techniques to accurately assess its relative advantages. In addition, ablation studies and hyperparam-
eter optimization will be performed to analyze the contribution of each model component, including
different loss function combinations, the influence of network depth and width, and optimal con-
figurations for the speaker embedding dimension. Visualization analyses, such as attention weight
mapping and feature map inspection, will be conducted to provide deeper insights into the internal
mechanisms and separation process of the model. Finally, an interactive prototype system will be
developed to translate research findings into practical applications and to facilitate user feedback and
requirement analysis in real-world scenarios.

7.4 Closing Remarks

In summary, this research validates the feasibility and effectiveness of a d-vector conditioned Conv-
TasNet approach for personalized speech enhancement under resource-constrained conditions, es-
tablishing a solid foundation for further advancements in this field. Despite existing limitations,
there remains significant potential for further performance improvement and practical deployment
through subsequent large-scale experimental validation, comprehensive benchmarking, and in-depth
mechanistic exploration. The development of personalized speech enhancement technology holds
not only substantial academic value but also profound societal significance, by enhancing human-
computer interaction and improving the quality of life for individuals with hearing impairments. We
look forward to continuing research efforts to contribute to the construction of more intelligent and
personalized speech processing systems, thereby realizing greater value for speech technology in
practical applications.
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Chapter 8

Appendix

Project Repository

The full source code and implementation details are available at: https://github.com/zzzyl122/
PersonaTasNet.git
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