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Abstract
This thesis presents an exploratory investigation into the role of prosodic control in cross-lingual
voice conversion between Taiwanese Mandarin and American English. As multilingual communica-
tion becomes more common in speech interfaces, language learning, and accessibility technologies,
producing speech that sounds natural across language boundaries is a growing area of interest. How-
ever, the influence of prosodic features, particularly pitch and energy, on perceived naturalness in
cross-lingual synthesis remains relatively underexplored, especially between typologically distinct
languages such as tonal and non-tonal systems.

To explore this question, a FastSpeech2-based voice conversion model was trained using two
open-source corpora: a subset of the Common Voice corpus containing Taiwanese Mandarin and the
subset of the LJSpeech corpus containing American English. The two datasets were combined and
used to train a single multilingual model. During inference, prosodic features were controlled under
four conditions: baseline (no adjustment), pitch-only, energy-only, and combined pitch and energy
control. The goal was to assess how these adjustments affect the perceived naturalness of synthesized
speech.

A subjective listening test with 50 participants was conducted, in which each version was rated
using a 5-point Likert scale. The results showed that the baseline condition consistently received the
highest naturalness scores, while prosody, controlled versions, particularly the combined condition,
were rated quite lower. This suggests that naive prosodic manipulation, without linguistic adaptation,
may negatively affect the fluency and perceived coherence of synthesized cross-lingual speech.

To confirm that prosodic changes were successfully implemented, average pitch (F0) and RMS
energy were extracted and compared across versions. Additionally, automatic speech recognition
(ASR) metrics such as character error rate (CER) and word error rate (WER) were calculated as
supplementary indicators of acoustic robustness. These scores are not intended to reflect human
intelligibility, but rather to observe how prosody scaling affects system-level recognition.

This study offers initial insights into the limitations of uniform prosody control in cross-lingual
voice conversion. The findings suggest that context-aware, linguistically informed prosody strategies
may be needed to improve naturalness when converting between typologically diverse languages.
Keywords: Voice Conversion, Cross-lingual, FastSpeech2, Prosody Control, Perceived Naturalness,
Pitch and Energy
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1 Introduction
Voice conversion is a technique that adapts the perceived identity of a speaker in an utterance while
preserving the linguistic content. It has attracted greater interest in recent decades because of its
wide applicability in personalized speech synthesis, entertainment (e.g., voice dubbing), speaker
anonymization, and assistive technologies for people with speech impairments (Sisman, Yamagishi,
King, & Li, 2020). The purpose of voice conversion is not to change what is being said but how it
is said, especially to change speakers’ timbre or characteristics so that the speech sounds like it is
spoken by someone else.

The development of voice conversion has evolved significantly over the past two decades. Early
approaches were dominated by statistical methods such as Gaussian Mixture Models (GMMs) and
frequency warping techniques, which relied heavily on parallel corpora and often produced over-
smoothed and unnatural results (Stylianou, Cappé, &Moulines, 1998; Toda, Black, & Tokuda, 2007).
With the growth of deep learning, it has led the voice conversion field to a new page, neural ar-
chitectures like Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and
sequence-to-sequence (seq2seq) models that allowed non-parallel training and more flexible voice
mappings (Hsu, Zhang, &Glass, 2017; Kaneko, Takaki, Kameoka, & Yamagishi, 2017). These mod-
els have outstandingly improved the naturalness and robustness of voice conversion systems through
various applications.

Recent research has increasingly emphasized the goals of higher expressiveness, greater control-
lability, and broader language generalization in voice conversion systems. Several studies have sup-
ported this trend by incorporating prosodic features, particularly pitch and energy, into both training
and inference processes to improve the realism of synthesized speech. For instance, Byun, Moon,
and Visser (2023) demonstrated that frame-level conditioning on pitch and energy in a diffusion-
based voice conversion model significantly enhanced intelligibility and voice quality. Similarly,
Chen and Duan (2022) proposed ControlVC, a zero-shot voice conversion framework that intro-
duced time-varying controls on pitch and speed, resulting in more dynamic and natural-sounding
voice conversion outputs. These findings suggest that modeling prosody at a granular level con-
tributes substantially to the naturalness and emotional expressiveness of converted speech.

Simultaneously, there is mounting interest in multilingual and cross-lingual voice conversion due
to its potential real-world applications and technological advantages. Rather than limiting voice con-
version systems to a single language, training on multilingual datasets enables models to generalize
across a wider range of phonetic and prosodic patterns. This has been shown to be particularly ben-
eficial for applications involving low-resource languages, where synthetic speech can serve as an
effective tool for data augmentation and downstream model training(Baas & Kamper, 2021).

Such systems are also increasingly relevant in global communication contexts. In multilingual
meetings or international conferences, generating synthesized speech with language-specific or fa-
miliar prosodic patterns may improve listener comprehension and engagement. For instance, Geor-
giou (2024); Smith, Holmes-Elliott, Pettinato, andKnight (2014) demonstrated that accent familiarity
plays a significant role in speech perception, suggesting that accent-aware voice conversion could
reduce cognitive load and increase accessibility in cross-linguistic settings.

In addition, multilingual voice conversion systems offer potential in language education, voice-
assisted translation, and cross-cultural media production, where speech needs to sound natural and
intelligible in multiple languages. The ability to generate speech that reflects the phonetic traits of
multiple languages, while simultaneously maintaining prosodic naturalness, represents an important
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step toward more inclusive and effective speech technologies.

1.1 Scientific Motivation
Recent developments in voice conversion have shown remarkable capabilities in transforming speech
across speakers under monolingual conditions. Nonetheless, the exploration of prosody in cross-
lingual voice conversion, especially its influence on perceived naturalness, remains limited. Prosody,
including pitch, intensity, and duration, is essential to conveying natural-sounding speech and directly
shapes how listeners perceive converted voices across different languages.

Du, Zhou, Sisman, and Li (2020) introduced a CycleGAN-based cross-lingual voice conver-
sion framework that modeled pitch trajectories using continuous wavelet transform. Their work
demonstrated improved subjective evaluations when prosody was explicitly modeled, compared to
spectrum-only systems. They explicitly described their method as the first study addressing prosody
in cross-lingual voice conversion. Zhao, Wang, Nguyen, andMa (2021) also addressed prosodic mis-
matches by applying log-scale pitch normalization within a neural voice conversion pipeline. They
reported that this prosodic control significantly improved the perceived naturalness of converted
speech.

This study focuses on voice conversion between Taiwanese Mandarin and American English.
These two languages differ in pitch usage, rhythmic structure, and stress assignment. Taiwanese
Mandarin uses pitch to distinguish lexical tones, while English encodes meaning through intonation
and stress placement. These differences can introduce challenges in prosodic transfer. Converted
speech may appear unnatural or disfluent even if phonetic accuracy is achieved.

In practical applications such as multilingual voice assistants, language learning tools, or cross-
lingual accessibility systems, the perceived naturalness of speech affects listener engagement and
comprehension. Therefore, improving naturalness through prosodic control is both technologically
and socially important.

To address these challenges, this study applies a FastSpeech2-based voice conversion systemwith
pitch and energy control features during inference. Previous studies have shown that prosodic con-
ditioning enhances expressiveness and subjective speech quality in voice conversion systems (Byun
et al., 2023; Chen & Duan, 2022; Wang, Han, Lv, Zhou, & Chu, 2025). Building on this foundation,
the current work aims to investigate how prosodic conditioning influences the perceived naturalness
of cross-lingual speech, especially when converting between typologically different languages.

1.2 Social Motivation
Multilingualism is the norm rather than the exception. According to Di Pisa, Pereira Soares, and
Rothman (2021), “over half of the world’s population is at least bilingual, if not multilingual.”
Countries such as India and Singapore are well-known bilingual societies, where individuals com-
monly use different languages across education, work, and social domains. In such environments,
the effectiveness of spoken communication depends not only on linguistic accuracy but also on how
familiar the speech sounds to the listener.

In multilingual and multicultural communication, listeners tend to comprehend and relate more
easily to speech when it aligns with familiar accentual or prosodic patterns. Georgiou (2024) found
that listeners were more successful at understanding speech when it was delivered in an accent they
were familiar with. Similarly, Smith et al. (2014) showed that long term and short term exposure
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to an accent improves comprehension, even under acoustically challenging conditions such as back-
ground noise. These findings underscore the importance of accent familiarity in supporting speech
intelligibility and reducing processing effort.

Voice conversion systems that generate speech with accentual patterns familiar to the listener,
such as American accented Mandarin or Taiwanese accented English, have the potential to enhance
communication across language boundaries. By aligning prosody with listener expectations, such
systems can reduce cognitive load and increase speech clarity. This benefit is especially important in
contexts such as cross cultural education, multilingual user interfaces, and accessibility technologies
that serve linguistically diverse users.

The social motivation for this study is therefore closely connected to its scientific goal. Just as
prosody influences perceived naturalness in cross lingual synthesis, it also determines how socially
and cognitively accessible speech is to the listener. The ability to generate prosodically appropriate
and familiar sounding speech can bridge gaps in cross linguistic interaction and improve real world
usability of voice technologies.

1.3 Research Questions and Hypothesis
This study investigates how prosodic conditioning during inference affects the perceived naturalness
of cross-lingual voice conversion between Taiwanese Mandarin and American English. The focus is
placed on the use of pitch and energy modifications in a FastSpeech2-based voice conversion system.

How does adjusting pitch and energy during inference affect the perceived natu-
ralness of cross-lingual speech produced by a FastSpeech2-based voice conversion
model?

This primary question leads to two subquestions:
1. How does modifying pitch at inference time influence listener ratings of naturalness in con-

verted speech?
2. Do the perceptual effects of pitch and energy adjustment differ depending on the direction of

conversion (Mandarin to English vs. English to Mandarin)?
Based on the research question, the hypothesis of the study is as below:

It is hypothesized that adjusting pitch and energy values during the inference stage of a FastSpeech2-
based voice conversion system can improve the perceived naturalness of cross-lingual speech(Ren
et al., 2020). This expectation is based on the linguistic role of prosodic features such as pitch and
energy, which contribute to the rhythmic and intonational structure of speech. In tonal languages
like Mandarin, pitch conveys lexical information that distinguishes words in the lexicon (Xu, 2005),
while in English it serves to mark stress and intonation. By modifying these features to better align
with the prosodic norms of the target language, the converted speech may sound more natural to
listeners.

In this study, pitch and energy are not included as input features during training. Instead, fixed
or manually adjusted values are applied to the variance adaptor module at inference time to manip-
ulate prosodic characteristics. The study evaluates how these inference-time adjustments influence
subjective ratings of naturalness in synthesized speech.
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Now that the motivation for this research has been presented, the structure of this thesis is as
follows: The structure of this thesis is as follows. Chapter 1 introduces the scientific and social mo-
tivations behind the study and outlines the research questions and Hypothesis. Chapter 2 provides a
literature review covering five key areas: neural speech synthesis and FastSpeech 2, voice conversion
with prosodic and cross-lingual focus, cross-lingual voice conversion with Mandarin-English focus,
and prosodic features in voice conversion. Chapter 3 details the methodology, including dataset
description, model architecture, alignment procedures, data preprocessing and prosodic feature ex-
traction, cross-lingual training strategy and lexicon integration, participants and sampling, and ethical
considerations. Chapter 4 presents the experimental setup, specifying the training process and evalu-
ation methods. Chapter 5 presents the listner background and reports the results from both subjective
and objective evaluations. Chapter 6 discusses the findings in relation to the research questions and
hypothesis and also addresses limitations. Finally, Chapter 7 concludes the thesis and directs future
work.
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2 Literature Review
This chapter reviews existing literature relevant to neural speech synthesis, voice conversion, prosodic
features, and cross-lingual voice conversion. The review is organized into the following sections:
2.1 Neural Speech Synthesis and FastSpeech2, 2.2 voice conversion with prosodic and cross-lingual
focus, 2.3 cross-lingual voice conversion with Mandarin-English focus, and 2.4 prosodic features in
voice conversion.

2.1 Neural Speech Synthesis and FastSpeech 2
Neural speech synthesis has undergone significant advancements over the past decade, transitioning
from autoregressive architectures to more efficient non-autoregressive models. One of the earliest
breakthroughs was WaveNet van den Oord et al. (2016), a deep autoregressive generative model ca-
pable of producing high-fidelity raw audio waveforms. AlthoughWaveNet demonstrated remarkable
improvements in naturalness over conventional parametric or concatenative systems, its sequential
generation process limited its real-time applicability due to high computational costs.

To address the latency issues of autoregressive waveform generation, subsequent works explored
text-to-spectrogram models such as Tacotron (Wang et al., 2017) and Tacotron 2 (Shen et al., 2018).
These models introduced attention-based sequence-to-sequence architectures that could generate
mel-spectrograms from text, which were then fed into vocoders like WaveNet. Tacotron-based mod-
els significantly improved the naturalness and intelligibility of synthesized speech by learning inter-
nal alignments between graphemes and acoustic features. However, they were still autoregressive
and prone to alignment errors, irregular prosody, and mispronunciations, particularly when dealing
with long or noisy inputs.

To overcome these limitations, non-autoregressive models began to emerge. FastSpeech Ren et
al. (2019) introduced a fully parallel architecture that decoupled duration prediction from acoustic
modeling, enabling faster and more stable synthesis. Instead of relying on attention mechanisms
for alignment, FastSpeech utilized duration information extracted from an external aligner to model
temporal structure explicitly. This allowed for a significant speed-up in inference and improved
robustness compared to Tacotron.

FastSpeech 2 (Ren et al., 2020) improves upon its predecessor FastSpeech (Ren et al., 2019) by
incorporating variance predictors for pitch, energy, and duration. This allows the model to explicitly
learn and control prosodic features, leading to more expressive and natural-sounding speech. The
inclusion of pitch and energy significantly enhances both the objective and subjective quality of
synthesized speech. Furthermore, FastSpeech 2’s parallel architecture ensures efficient training and
inference, making it suitable for large-scale or multilingual applications

FastSpeech 2’s flexibility has led to widespread adoption in both monolingual and cross-lingual
TTS research. Its architecture supports conditioning on speaker embeddings, language IDs, and
phoneme-level inputs, whichmakes it adaptable to tasks involving speaker adaptation, code-switching,
and voice conversion. Recent studies have also employed FastSpeech 2 as a backbone for prosody-
sensitive synthesis and cross-lingual experiments, leveraging its controllable structure to explore
accent transfer and pitch manipulation across languages.

The development from autoregressive models like Tacotron to non-autoregressive models like
FastSpeech 2 represents a major shift in the field of neural speech synthesis. FastSpeech 2 strikes
a balance between speed, quality, and controllability, providing a robust foundation for the present
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study, which investigates the role of pitch and energy in cross-lingual voice conversion between
Taiwanese Mandarin and American English.

2.2 Voice Conversion with Prosodic and Cross-Lingual Focus
Voice conversion modifies acoustic properties like pitch, energy and duration, while maintaining
linguistic content. Recent work has demonstrated that integrating prosodic features directly into
models enhances naturalness and fluency of the output.

In low-resource scenarios, one-shot and few-shot voice conversion approaches become valuable.
Xie, Yang, Lei, Xie, and Su (2022) proposed a self-supervised one-shot voice conversion framework
using variational autoencoders. Their system includes a speaker-related pitch encoder that directly
models pitch contours and intensity from a single utterance, enabling rapid adaptation with minimal
data while preserving prosodic information.

Prosodic mismatches across languages further complicate cross-lingual voice conversion. Con-
verting between closely related stress-timed, non-tonal languages like English and German is rela-
tively straightforward. However, converting from English to tonal languages like Mandarin intro-
duces greater complexity, because lexical pitch contours in Mandarin significantly alter word mean-
ing. Liu, Wen, Lu, and Chen (2020) identified in bilingual low-resource TTS that tone errors and
prosodic mismatches often occur when training with English-dominant data. Their approach to tone
preservation and data augmentation achieved improved intelligibility and accent metrics.

Some methods address this by explicitly modeling tone. Zhao et al. (2021) proposed FastSpeech-
VC, which adds normalized log-f0 to compensate for prosodic differences between English and
Mandarin. Their cross-lingual conversion achieved naturalness comparable to a professional TTS
baseline on English–Mandarin tasks.

Recent work in voice conversion also explores pitch conditioning and reference-based models.
Zuo et al. (2025) introduced PFlow-VC, which discretizes pitch tokens and uses pitch-conditioned
flow matching, leading to smoother pitch trajectories and improved prosody in cross-domain tasks.
Zhang et al. (2024) proposed RefXVC, that enhances performance by comprehensively leveraging
reference speech information. This includes extracting fine-grained speaker embeddings to capture
timbre changes , and using a pronunciation matching network to relate pronunciation with timbre
across languages. Additionally, RefXVC integrates a multi-reference encoding technique to enrich
content information and capture the full range of a speaker’s voice. To ensure natural prosody in the
converted speech, the system also introduces normalized pitch.

These methods illustrate the importance of explicitly modeling prosody in cross-lingual voice
conversion. They show that when converting to tonal languages, systems must include mechanisms
to reconstruct pitch contours, such as pitch encoders, discrete tokens, tone supervision, and reference-
based embeddings, to preserve intelligibility and natural flow in the absence of tonal cues in the
source speech.

2.3 Cross-lingual Voice Conversion with Mandarin-English Focus
Cross-lingual voice conversion between typologically distinct languages, such as Mandarin Chinese
and American English, presents unique challenges due to differences in prosodic systems, phone-
mic inventories, and linguistic structures. Mandarin is a tonal language in which pitch contours
are integral to lexical meaning, whereas English uses intonation and stress primarily for pragmatic
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or syntactic marking. These fundamental disparities require voice conversion systems to learn and
transfer complex prosodic patterns across languages while preserving linguistic accuracy and output
intelligibility.

Several studies have proposedmethods to address the challenges of converting betweenMandarin
and English. Zhou, Tian, Yılmaz, Das, and Li (2019) introduced a modularized neural network with
language-specific output layers, allowing the model to separate language-dependent and language-
agnostic components. This architecture improved generalization to both languages by isolating their
respective linguistic properties. Zhao et al. (2021) proposed a controllable voice conversion frame-
work that uses phonetic posteriorgrams (PPGs) as linguistic representations. Their system, built on a
TTS decoder, enabled prosody control and achieved improved naturalness in cross-lingual synthesis
by decoupling phonetic content from acoustic realization.

Cycle-consistent adversarial learning has also shown promise in this area. Du et al. (2020) em-
ployed a CycleGAN-based approach to model spectral and prosodic features between Chinese and
English without requiring parallel data. This method allowed for prosodic transformations such as
pitch and duration shifts while maintaining the content structure, even under non-aligned training
conditions.

Another notable development involves the use of multilingual or shared phoneme representa-
tions. These strategies enable cross-lingual systems to generalize across diverse phonological struc-
tures, especially when used in conjunction with prosody-aware architectures. In the FastSpeech 2
framework, prosodic features such as pitch and energy can be explicitly modeled through dedicated
variance predictors. Ren et al. (2020) showed that including these features leads to significant im-
provements in speech naturalness and clarity, particularly in languages with tonal distinctions like
Mandarin.

2.4 Prosodic Features in Voice Conversion
Prosodic features, such as pitch (F0), energy, and duration, are essential elements in achieving natural
and intelligible synthesized speech. In voice conversion systems, accurate modeling of these features
helps convey rhythm, emphasis, and emotional nuances, which contribute directly to the perceived
quality and fluency of the converted output.

Ren et al. (2020) proposed the FastSpeech 2 architecture, which includes variance predictors for
pitch, energy, and duration. This model allows the synthesis system to explicitly represent prosodic
variations, leading to more natural-sounding output across a variety of languages. Their experiments
demonstrated that the inclusion of prosodic predictors significantly improves the perceptual quality
of synthesized speech, especially when compared to systems that rely solely on phoneme and duration
information.

In cross-lingual voice conversion tasks, prosodic mismatches between the source and target lan-
guages present particular difficulties. Mandarin Chinese, for example, encodes lexical meaning
through tonal contours, whereas English uses intonation and stress without lexical tone. Du et al.
(2020) addressed this challenge by designing a system that separates spectral and prosodic modeling
paths. Their use of continuous wavelet transform to model F0 enabled more precise reconstruction
of tonal patterns, which contributed to better perceived naturalness in Mandarin speech generated
from English input.

Prosody modeling has also been explored through representation learning and data augmenta-
tion. Sigurgeirsson and King (2023) examined the limitations of reference-based prosody transfer
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models, concluding that many systems fail to properly disentangle prosodic information from lin-
guistic content. This observation highlights the need for more controlled and interpretable prosody
representations. In response to this limitation, Deng et al. (2023) proposed the PMVC framework,
which augments training data and masks input segments to encourage the model to learn distinct
prosodic features. Their evaluation showed that this strategy produces expressive speech with im-
proved prosodic variation, even in the absence of text supervision.

Across both monolingual and cross-lingual tasks, these studies underscore the importance of
treating prosodic features as core components of the speech signal, rather than as optional enhance-
ments. Accurate modeling of pitch, energy, and duration enables systems to produce speech that
not only sounds more natural but also more closely matches the prosodic expectations of different
linguistic audiences.
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3 Methodology
The methodology includes seven key components. First, Section 3.1 outlines the selection and pre-
processing of two open-source speech corpora: Common Voice Taiwanese Mandarin and LJSpeech
English, carefully matched for duration and demographic consistency. Section 3.2 presents the ar-
chitecture and implementation of FastSpeech 2, highlighting its controllable prosody mechanisms.
Section 3.3 details the use ofMontreal Forced Aligner (MFA) to obtain phoneme-level alignments es-
sential for training. Section 3.4 explains how pitch and energy features were extracted and modified
for experimental synthesis. Section 3.5 introduces a cross-lingual training setup, including bilin-
gual phoneme lexicon integration and speaker conditioning. Section 3.6 describes participants and
evaluation metrics. Finally, Section 3.7 addresses ethical considerations related to data usage and
participant privacy, and Section 3.8 provides the repository and execution.

3.1 Dataset Description
This study uses two open-source speech corpora: the Taiwanese Mandarin subset of Mozilla Com-
mon Voice and LJSpeech.

The Taiwanese Mandarin corpus is a multi-speaker dataset sourced fromMozilla Common Voice
(Ardila et al., 2019). It contains speech samples from male and female speakers aged 20 to 60 years.
For this study, recordings from various female speakers in the age thirties were selected to ensure a
certain amount of demographic consistency. This subdataset consists of approximately 3,000 utter-
ances, and the total length of audio is around 185 minutes. All audio files were originally sampled
at 48 kHz and were afterward downsampled to 22.05 kHz for compatibility with the TTS model.

The English dataset corpus is LJSpeech (Ito & Johnson, 2017), a widely adopted single-speaker
American English corpus spoken by a female speaker. While the full corpus contains over 13,000
utterances, only a subset of around 1,600 utterances (approximately 185 minutes) was randomly
selected using Python code. This sub-selection ensures that the English corpus duration closely
matches the Taiwanese Mandarin subset to assist the progress and balanced training. All selected
samples were also resampled to 22.05 kHz for compatibility with the TTS model, which aligned
with the Mandarin data.

This balanced data setup was designed to support a cross-lingual voice conversion system based
on FastSpeech 2, enabling relevant comparisons between Taiwanese Mandarin to American English
and American English to Taiwanese Mandarin conversion tasks.

3.2 FastSpeech 2 Architecture and Implementation
In this study, I employed FastSpeech 2 as the skeleton model for voice conversion because of its
efficient, high-quality end-to-end and non-autoregressive architecture, which enables parallelized
speech synthesis with controllable prosodic features. Originally proposed by Ren et al. (2020), Fast-
Speech 2 improves upon its predecessor by incorporating additional acoustic features such as pitch,
energy, and duration, allowing for more expressive and natural-sounding synthesized speech. The
model involves a phoneme encoder, variance adaptor, and mel-spectrogram decoder, all of which
are optimized through a multi-task loss that includes mean squared error for duration, pitch, energy,
and mel-spectrogram reconstruction.
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To implement this system, I adopted the open-source implementation of FastSpeech 2 provided
by Chien, Lin, Huang, Hsu, and Lee (2021), which is widely used in academic and industrial research
due to its modular structure and high compatibility with multilingual corpora. This implementation
was selected because it includes well-integrated support for pitch and energy extraction, as well
as phoneme-level duration alignment using preprocessed TextGrid files, which are important for
my voice conversion setup. All training, validation, and inference procedures were based on this
implementation, with customized modules to accommodate cross-lingual phoneme-based input.

While the base model architecture was preserved, specific adjustments were made to support
multilingual phoneme tokenization. For example, inference scripts were extended to allow explicit
control of pitch and energy values, enabling systematic manipulation of these prosodic features dur-
ing synthesis for experimental analysis.

3.3 Forced Alignment using Montreal Forced Aligner
To achieve frame-level phoneme alignments required for duration modeling in FastSpeech 2, I used
the Montreal Forced Aligner (MFA) toolkit (McAuliffe, Socolof, Mihuc, Wagner, & Sonderegger,
2017), a widely used alignment system that contains pronunciation dictionaries and acoustic models
for generating precise temporal boundaries between phonemes and speech signals.

For the Taiwanese Mandarin part of the corpus, I used the official pretrained acoustic model and
pronunciation dictionary provided by MFA under the name ”Mandarin Taiwan mfa” (McAuliffe &
Sonderegger, 2024). The dictionary represents phoneme sequences in International Phonetic Alpha-
bet (IPA) format with tone marks, specifically adapted for Taiwanese Mandarin. For example, a
sentence such as ”他說他晚上會回家吃飯” (He said he would go home for dinner in the evening)
would be turned into: "tʰ a˥ ʂ w o˥ tʰ a˥ w a˨४˦ n ʂ a˥ ŋ xʷ ej˥˩ xʷ ej˧˥ tɕ a˥ ʈʂʰ ʐ̩˥ f a˥˩ n" These de-
tailed tonal and phonemic information is necessary for accurate prosody modeling in tonal languages
like Mandarin.

For the English data, LJSpeech, I used the CMU dict-based English pronunciation dictionary
provided by MFA, referred to its name as ”English MFA” (Gorman, Howell, & Wagner, 2011). This
dictionary uses the ARPAbet phoneme format and is compatible with American English corpora
such as LibriSpeech and LJSpeech. The corresponding pretrained acoustic model ”English MFA”
was used to align phoneme sequences to audio.

The result of TextGrid files from MFA was used to extract phoneme-level duration labels, which
were directly fed into the FastSpeech 2 variance adaptor. These alignments are offered as an impor-
tant supervisory signal for learning pitch, energy, and timing patterns across both Taiwanese Man-
darin and American English domains.

3.4 Data Preprocessing and Prosodic Feature Extraction
To ensure the input consistency and quality required for cross-lingual voice conversion, a unified
preprocessing pipeline was applied to both Taiwanese Mandarin and American English corpora. All
raw waveforms were resampled to 22.05 kHz to match the FastSpeech 2 model configuration. Text
transcriptions were converted into phoneme sequences using a custom lexicon (combined plus.dict),
which merges tone-bearing IPA phonemes for Mandarin and ARPAbet phonemes for English. This
lexicon provided a shared symbol space for bilingual modeling.
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Phoneme durations were extracted throughMontreal ForcedAligner (MFA) as detailed in Section
3.3. These durations aligned each phoneme to corresponding time spans in the waveform and served
as input supervision for the variance adaptor in FastSpeech 2.

Fundamental frequency (F0) and root mean square (RMS) energy were extracted at the frame
level without speaker-wise normalization or interpolation, preserving natural prosodic variation and
allowing unvoiced regions to remain unaltered. These features were aligned with phoneme durations
obtained from forced alignment and served as prosodic supervision during model training.

During inference, pitch and energy values were manipulated using fixed scalar multipliers, for
example, doubling pitch or energy to simulate prosodic exaggeration. Four synthesis conditions were
tested: baseline (1.0 pitch, 1.0 energy), pitch-scaled (2.0 pitch, 1.0 energy), energy-scaled (1.0 pitch,
2.0 energy), and both-scaled (2.0 pitch, 2.0 energy). This allowed for a systematic evaluation of how
prosody affects perceived naturalness across languages.

Audio preprocessingwas configured tomatch themodel’s architecture and vocoder requirements,
including a sampling rate of 22.05 kHz, a short-time Fourier transform (STFT) frame size of 1024
with 256-hop spacing, and 80-dimensional mel-spectrograms spanning 0 to 8000 Hz. A subset of
512 utterances was reserved for validation throughout the training process.

3.5 Cross-lingual Training Strategy and Lexicon Integration
To facilitate cross-lingual voice conversion between Taiwanese Mandarin and American English, a
multilingual FastSpeech 2 model was trained using a joint corpus. Unlike traditional monolingual
synthesis systems, my approach unifies training data across languages and speakers within a single
model. This strategy is essential for learning language-agnostic acoustic mappings and enables the
model to generalize to mixed-lingual inputs.

Each utterance was processed into a phoneme sequence using the merged lexicon described in
Section 3.4. For Mandarin data, phonemes were represented in tone-bearing IPA format using the
Mandarin Taiwan MFA dictionary, while English phonemes followed the ARPAbet convention from
the English MFA dictionary. To prevent symbol collision, each phoneme set was maintained under a
disjoint namespace. For example, Mandarin symbols such as“tʰ”and“ʂ”retained tonal markings,
while English symbols like“T”,“EH1”, and“N”preserved their original ARPAbet encodings.

In addition to the phoneme sequence, each sample was tagged with both a speaker ID and an
optional language indicator, enabling the model to implicitly learn language-specific prosodic pat-
terns. During training, both phoneme and speaker/language embeddings were processed through a
shared encoder-decoder structure. The variance adaptor handled duration, pitch, and energy, while
mel-spectrograms served as the final output target. The system was trained using a multi-task loss
function that jointly optimized pitch, energy, duration, and mel-spectrogram reconstruction.

This multilingual training framework enabled inference scenarios where Mandarin speech could
be synthesized using an English speaker’s voice characteristics, and vice versa. Furthermore, the
inclusion of pitch and energy as controllable variables opened up a wide range of expressive possi-
bilities, supporting the core experimental analysis in this study.

3.6 Participants and Sampling
In addition to training a FastSpeech 2-based voice conversion system, this study also incorporated a
subjective evaluation component to assess the naturalness of the synthesized speech. A listening test
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was designed in which participants compared utterances generated under different prosodic settings.
Specifically, pitch (F0) and energy (RMS) features were manipulated during inference to observe
how these prosodic variations influenced perceived naturalness across cross-lingual conversion con-
ditions.

While a detailed explanation of the evaluation stimuli and test design is provided in Chapter 4,
this section introduces the procedures surrounding participant recruitment and the ethical measures
taken during the listening experiments.

Participants were recruited using convenience sampling, primarily through social and academic
networks. A total of 50 valid responses were collected via an online questionnaire platform (Qualtrics
XM). The survey did not collect personal identifiable information such as names, contact details, or
IP addresses in the final dataset. Demographic data collection was limited to language background.

Specifically, participants were asked to indicate their native language and rate their self-perceived
comprehension ability in both Mandarin Chinese and English using a 5-point Likert scale. This
information was used to ensure that the listeners had sufficient understanding of the target languages
to evaluate the synthesized utterances reliably.

The use of convenience sampling, while common in perceptual evaluation studies, limits the
generalizability of the results. However, the collected linguistic background data allows for basic
interpretive contextualization of the ratings, especially in cross-linguistic comparisons.

3.7 Ethical Considerations
This study adhered to the ethical guidelines of the University of Groningen and complied with the
General Data Protection Regulation (GDPR). All participants were informed about the purpose, pro-
cedures, and voluntary nature of the study via an information and consent statement presented at
the beginning of the online questionnaire. No personally identifiable information such as names
or contact details was collected. Responses were anonymized, and data were stored securely in an
institutional research drive. The questionnaire did not involve vulnerable populations and posed
minimal risk. Participants were allowed to withdraw at any point without consequences. All ethical
considerations were documented in the accompanying ethics application.

3.8 Repository and Execution
All code developed for this study is publicly available at the following GitHub repository: https://
github.com/LydonLiang/Thesis_VC Detailed setup and usage instructions are provided in the
README.md file. The dataset used in this study is not included in the repository and must be
downloaded separately from the official Common Voice and LJSpeech sources.

https://github.com/LydonLiang/Thesis_VC
https://github.com/LydonLiang/Thesis_VC
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4 Experimental Setup
This chapter outlines the experimental configuration used to implement and evaluate the proposed
cross-lingual voice conversion system. Section 4.1 describes the architectural parameters, training
procedure, and computing resources involved in training a FastSpeech 2 model capable of prosody-
conditioned synthesis. Section 4.2 details the evaluation framework, combining subjective listening
tests with objective acoustic and ASR-based analysis. The evaluation focuses on measuring how dif-
ferent prosodic manipulations, specifically pitch and energy scaling applied during inference, affect
the perceived naturalness of synthesized speech across Mandarin and English utterances.

4.1 Training Setup
The training process for the voice conversion system was conducted using the FastSpeech 2 architec-
ture based on the open-source implementation provided by Chien et al. (2021). This variant supports
multi-speakermodeling and prosody control, making it well-suited for cross-lingual voice conversion
tasks.

The model employs 4 encoder layers and 6 decoder layers, each with 2 attention heads and a
hidden size of 256 units. The convolutional filter size in the transformer’s feed-forward blocks was
set to 1024, with kernel sizes of [9, 1], and a dropout rate of 0.2 was applied in both encoder and
decoder layers. The variance adaptor includes dedicated pitch and energy predictors, each using a
convolutional filter size of 256 and a kernel size of 3. Linear quantization was applied to both pitch
and energy with 256 bins, and all prosodic features were extracted and modeled at the phoneme level.

The system was trained using a batch size of 16 on 8 NVIDIA A100 GPUs provided by the
Hábrók high-performance computing cluster. The optimizer was Adam with betas of (0.9, 0.98),
an epsilon of 1e-9, and no weight decay. A learning rate schedule with 4000 warm-up steps and
exponential decay was used, with annealing points set at 300k, 400k, and 500k steps. The training
process was configured to run for a total of 50,000 steps, with validation and synthesis performed
every 1,000 steps, and checkpoints saved every 10,000 steps. For waveform reconstruction, HiFi-
GAN (universal version) was used as the neural vocoder. This vocoder was selected for its efficiency
and strong perceptual quality, ensuring that the generatedwaveforms remained natural and expressive
across both source and target languages.

The training included both in-domain and cross-lingual data: TaiwaneseMandarin from the Com-
mon Voice corpus and American English from the LJSpeech dataset. Each language was associated
with a single representative speaker, and speaker embeddings were enabled to distinguish between
them.

Training and validation logs indicate a stable convergence pattern. For instance, the total valida-
tion loss dropped from 3.25 at step 1,000 to around 2.65–2.70 by step 10,000 and remained within
a comparable range through step 20,000. Mel-spectrogram reconstruction losses consistently de-
creased from approximately 0.78 to 0.60, showing improvement in spectral fidelity. Pitch and en-
ergy losses stabilized around 1.0 and 0.36, respectively, while duration loss remained under 0.09,
demonstrating that the model effectively learned to reproduce timing and prosodic features without
severe overfitting.

Notably, pitch loss remained relatively high throughout training, a known challenge in non-
parallel voice conversion settings where accurate pitch modeling is more difficult due to speaker
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mismatch. Nonetheless, the pitch loss trend was relatively flat after the initial drop, suggesting sta-
ble modeling rather than collapse.

4.2 Evaluation
To evaluate the effects of prosodic features on the naturalness of cross-lingual voice conversion,
this study adopts a comprehensive evaluation strategy involving both subjective listening tests and
objective acoustic and ASR-based analyses. The primary goal is to determine how inference-time
pitch and energy manipulations influence the perceived naturalness of speech synthesized using a
FastSpeech2-based voice conversion system between Taiwanese Mandarin and American English.

The selection of evaluation metrics was guided by the nature of the research questions. Since
naturalness is inherently a perceptual quality, a subjective listening test using a 5-point Likert scale
was employed to measure listener judgments. To complement this, an additional Likert-scale ques-
tion was used to evaluate whether listeners could perceive differences in prosody or expressiveness
across versions of the same utterance. These tests directly correspond to the study’s hypothesis
regarding listener perception of pitch and energy variations.

For the subjective evaluation, participants were recruited via convenience sampling and asked
to complete an online listening test. The test comprised eight sentences (four Mandarin and four
English), each synthesized under four prosodic conditions:

group pitch energy explain
A 1.0 1.0 baseline
B 2.0 1.0 increased pitch only
C 1.0 2.0 increased energy only
D 2.0 2.0 increased both

Table 1: Prosodic conditions

These numeric scaling values correspond to command-line inference-time parameters passed to
the synthesis script. Internally, they operate by multiplying each value in the original pitch or en-
ergy vector by the specified scalar. For example, pitch=2.0 means that every frame-level F0 value
extracted from the input utterance is doubled prior to being passed into the variance adaptor of the
FastSpeech2 model. This does not involve changing the training process or learned parameters but
alters the synthesized prosody by exaggerating or preserving the original contour.

For each sentence, participants rated the naturalness of each audio version on a 5-point scale.
After listening to all four versions, they also rated how much prosodic or expressive difference they
could perceive among them. The presentation order of the audio versions was randomized for each
sentence to minimize order effects. A total of 50 valid responses were collected. Responses were
normalized and reshaped into long-form format to enable group-level statistical analyses based on
version, pitch level, energy level, and language.

On the objective side, mean F0 and RMS energy were selected to verify whether the intended
prosodic manipulations were realized in the acoustic signal. These features are standard indicators of
prosody in speech synthesis research and were extracted at the frame level and averaged across each
utterance. While mean values do not capture temporal dynamics, they provide a concise summary
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of pitch height and energy intensity per sentence, which supports comparison across versions and
conditions. These summary statistics were selected to match the resolution of subjective judgments,
which were collected per sentence.

In addition, a Whisper-based automatic speech recognition (ASR) system was used to transcribe
the synthesized utterances. The resulting transcripts were compared with ground truth references to
calculate character error rate (CER) and word error rate (WER). While these metrics do not directly
measure intelligibility from a human perspective, they serve as indirect indicators of how prosodic
variationmight affect speech recognizability from a system’s standpoint. As such, they provide com-
plementary insights into how pitch and energy adjustments impact machine transcription robustness,
which may loosely correlate with signal clarity but not with listener comprehension per sentence.

All subjective and objective measures were subsequently analyzed and compared. Correlation
analysis was performed to determine whether acoustic measurements (F0, energy) and recogni-
tion scores (WER, CER) aligned with subjective naturalness ratings. In addition, results were seg-
mented by language (Mandarin vs. English) to explore interaction effects between language type
and prosodic manipulation. This multifaceted evaluation framework directly addresses the study’s
research questions by providing converging evidence on how pitch and energy manipulations affect
both perception and signal-based characteristics in cross-lingual TTS systems.
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5 Results
This chapter presents the results of both subjective and objective evaluations conducted to assess
the impact of prosodic manipulation on cross-lingual voice conversion. Section 5.1 summarizes
the linguistic background of participants who took part in the listening test. Section 5.2 reports the
naturalness ratings across different prosodic conditions, supported by statistical analyses to examine
perceptual differences. Section 5.3 visualizes these ratings using boxplots to illustrate distributional
patterns. Finally, Section 5.4 provides objective metrics, including fundamental frequency (F0),
RMS energy, and automatic speech recognition (ASR) error rates, to validate the consistency of
prosodic modifications and their potential effects on signal quality.

5.1 Listener background Summary
A total of 50 valid responses were collected through an online questionnaire distributed via social
media platforms targeting Taiwanese users. Due to ethical considerations, no vulnerable populations,
such as children or elderly individuals were included, and no personally identifiable information was
collected. Although the questionnaire did not include a specific age question, based on the typical
demographic of the social channels used, the majority of participants were estimated to be between
25 and 50 years old.

All participants were native speakers of Mandarin Chinese, and the questionnaire included a self-
assessment of language comprehension abilities in both Mandarin and English on a 5-point Likert
scale. As expected, nearly all respondents reported high comprehension in Mandarin. A smaller
portion indicated high comprehension in English, with only a few reaching the maximum score of
5. Familiarity with speech synthesis or speech technology was not assessed, and this remains a
limitation in the current demographic profile.

5.2 Subjective Naturalness Rating Analysis
To assess how different prosodic conditions affected perceived naturalness, listener ratings for each
of the eight sentences were analyzed individually. As each question utilized a 5-point Likert scale,
the data was treated as ordinal, and thus medians were used instead of means to summarize central
tendencies. The Friedman test, a non-parametric statistical test for related samples, was employed
to determine whether the differences in ratings across the four conditions (A–D) were statistically
significant.

As shown in Table 2, version A (baseline with default pitch and energy) consistently received
the highest or near-highest median scores, while version D (increased pitch and energy) generally
received the lowest. The Friedman test revealed significant differences in perceived naturalness
across the four versions for all sentences (p < .001), except for Sentence 006, which showed a smaller
yet still statistically significant difference (p = .021). These findings indicate that listeners were
sensitive to prosodic modifications and generally preferred more moderate or unaltered prosodic
contours.

Table 2 summarizes the median naturalness ratings per version and the corresponding Friedman
test results for each sentence.
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sentence id A B C D Friedman χ2 p-value
sent001 3.0 2.0 4.0 2.0 71.70 <.001
sent002 3.0 2.0 2.0 2.0 54.78 <.001
sent003 4.0 2.0 3.0 2.0 78.88 <.001
sent004 3.0 2.0 2.0 1.0 84.25 <.001
sent005 3.0 3.0 3.0 2.0 38.01 <.001
sent006 3.0 2.0 3.0 3.0 9.71 0.021
sent007 4.0 3.0 3.0 3.0 29.83 <.001
sent008 3.0 3.0 2.0 2.0 58.43 <.001

Table 2: Median naturalness ratings per version and the corresponding Friedman test results

5.3 Graphical Visualization
Detailed boxplots for each sentence are presented in Appendix B. These visualizations support the
statistical findings and illustrate distributional differences across the four prosodic conditions.Boxplots
showing naturalness ratings for all eight sentences under the four prosodic conditions (A–D). The
boxplots visualize the distribution of listener ratings and highlight version-wise differences in per-
ceived naturalness.

5.4 Oblective Evaluation Result
To supplement the subjective listening test, I conducted an objective evaluation focusing on two
aspects: the realization of prosodic manipulations and the robustness of automatic transcription.
Specifically, I analyzed each synthesized speech sample to verify whether the intended modifications
in pitch and energy were correctly applied, and I assessed how these manipulations might affect
automatic recognition performance.

The first analysis involved extracting the average F0 (fundamental frequency) and RMS energy
from each utterance. These acoustic features were measured using frame-level analysis and averaged
across the duration of each sentence. The results confirmed that the prosody control settings passed at
inference time were reflected in the actual synthesized audio: samples with doubled pitch parameters
exhibited substantially higher mean F0 values, and energy-scaled versions showed corresponding
increases in RMS energy. This step was essential to ensure that the experimental manipulation of
prosody was both effective and consistent across conditions.

In the second analysis, I employed the Whisper ASR system to transcribe each synthesized ut-
terance. I then computed Word Error Rate (WER) and Character Error Rate (CER) by comparing
the ASR outputs to the ground-truth text. These metrics are often used as proxies for acoustic clar-
ity or system-level intelligibility in synthetic speech studies. The baseline condition (version A)
consistently achieved lower error rates across both Mandarin and English samples, while the most
exaggerated prosodic condition (version D) often produced higher WER and CER, particularly in
Mandarin sentences. This suggests that excessive prosodic manipulation can negatively impact the
reliability of automatic decoding.
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However, it is important to emphasize that ASRmetrics do not measure human perception. While
they offer insight into how well a speech signal is preserved for machine recognition, they cannot
substitute for human intelligibility judgments. Therefore, these findings should be interpreted as
indicative of signal robustness rather than perceptual comprehensibility.
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Figure 1: CER by sentence & version

Figure 2: WER by sentence & version
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6 Discussion
This chapter presents the results of the study in relation to the research questions and hypothesis
outlined in Chapter 1. Section 6.1 addresses the main research question and its two sub-research
questions by examining how pitch and energy adjustments affected listener judgments across differ-
ent language directions. Section 6.2 evaluates whether the findings support the initial hypothesis that
prosody manipulation would improve perceived naturalness in cross-lingual synthesis. Section 6.3
reflects on the methodological and modeling limitations encountered during the study and suggests
directions for future research, particularly in terms of more context-aware and linguistically informed
prosody control.

6.1 Answering RQ
This study aimed to examine how prosodic conditioning, specifically pitch and energy manipula-
tion at inference time, affects the perceived naturalness of cross-lingual speech generated using a
FastSpeech2-based voice conversion model. The findings from the subjective evaluation provide
direct insight into the primary research question and its two subcomponents.

For the main research question, the results clearly indicate that adjusting pitch and energy during
inference does have ameasurable impact on listener-perceived naturalness. Across all eight sentences
(four inMandarin and four in English), the baseline version (condition A), which applied no prosodic
scaling, consistently received the highest or near-highest naturalness ratings. In contrast, condition
D, which involved simultaneously increasing both pitch and energy by a factor of two, resulted in
significantly lower ratings. This suggests that while the FastSpeech2 architecture allows for prosody
control, excessive modification of these parameters may degrade the naturalness of the output, likely
due to unnatural rhythm, emphasis, or vocal effort artifacts introduced by the over-scaling.

Regarding sub-question 1, both pitch-only (condition B) and energy-only (condition C)manipula-
tions showed intermediate effects, typically lowering perceived naturalness compared to the baseline
but not to the extent seen in condition D. Statistical analysis (Friedman andWilcoxon tests) confirmed
that these differences were significant in most cases, reinforcing the sensitivity of listeners to even
moderate prosodic variation in synthetic speech.

Sub-question 2 explored whether these effects differ depending on the conversion direction. The
results suggest that conversions from Mandarin to English and from English to Mandarin exhibit
asymmetric sensitivity to prosodic changes. In Mandarin sentences, which are tonal, exaggerated
pitch or energy often led to steeper drops in naturalness, whereas English sentences showed slightly
more tolerance. This highlights the linguistic constraints imposed by tonal systems and underscores
the importance of language-aware prosody design in cross-lingual voice conversion.

In addition to subjective listener ratings, objective acoustic measurements were used to validate
the implementation of prosodic manipulations. Frame-level analysis of F0 and energy confirmed
that the intended adjustments were effectively realized in the synthesized output. Furthermore, auto-
matic transcription results usingWhisper ASR showed increased error rates, particularly inMandarin
sentences under the exaggerated prosody condition (D). While these ASR-based metrics do not di-
rectly reflect listener comprehension, they provide further evidence that extreme prosodic changes
may introduce distortions or irregularities in the signal that affect decoding performance. Together,
these subjective and objective findings suggest that prosody control must be applied with caution,
especially in tonal languages.
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6.2 Validation of the Hypothesis
This study hypothesized that modifying pitch and energy at inference time would enhance the per-
ceived naturalness of cross-lingual speech produced by a FastSpeech2-based voice conversion sys-
tem. The rationale was that prosodic features, particularly pitch and energy, are essential for con-
veying rhythm, emphasis, and intonation. Therefore, aligning these features more closely with the
target language was expected to improve naturalness.

However, the results of the subjective evaluation did not support this hypothesis. The baseline
version (A), which preserved the default prosody without any modifications, consistently received
the highest naturalness scores across all evaluated sentences. In contrast, prosodically manipulated
versions, particularly version D, which applied both pitch and energy scaling, were rated significantly
lower. These differences were statistically confirmed and consistent across both Mandarin and En-
glish utterances. Contrary to the original hypothesis, exaggerated prosodic manipulation appeared
to degrade rather than enhance perceived naturalness.

To further understand the causes of these results, a qualitative listening analysis was conducted
by the researcher. This involved closely listening to the output samples across all prosodic conditions
to detect audible irregularities that may not be captured in numeric scores. Several version D sam-
ples exhibited unnatural buzzing, excessive resonance, and occasional clipping at sentence endings.
In some cases, syllables or final phonemes were dropped altogether. These artifacts were primarily
observed in high-pitched voiced segments, suggesting a mismatch between the scaled prosody and
the waveform generation module. This aligns with Skerry-Ryan et al. (2018)’s observation that their
prosody representation encodes pitch in an absolute manner when transferring prosody from a refer-
ence signal, which can lead to the synthesized speech sounding unnaturally as if the target speaker
is imitating a person with a substantially deeper or higher vocal range. Their findings suggest that
speaker-dependent pitch content is transferred from the reference to the output , highlighting a poten-
tial entanglement of prosodic features with speaker identity that complicates harmonious synthesis
across dissimilar speakers.

Furthermore, in tonal languages such asMandarin, where pitch conveys lexical distinctions, inap-
propriately scaled pitch contours can interfere with both tone perception and sentence-level phrasing.
Shen, Deutsch, and Le (2011) showed that elevating overall pitch height significantly reduced tone
identification accuracy, especially for Tone 3, highlighting how excessive prosodic manipulation can
introduce perceptual dissonance.

Objective ASR-based analysis further supported these observations: version D exhibited the
highest average Character Error Rate (CER = 0.357) and Word Error Rate (WER = 0.670), com-
pared to baseline and intermediate conditions. While CER/WER are not direct measures of human
comprehension, they serve as meaningful proxies for signal clarity and decoding difficulty.

Together, these findings suggest that naïve prosody scaling, implemented without linguistic con-
text or acoustic model adjustments may degrade both perceptual and acoustic quality in cross-lingual
voice conversion. Future systems would benefit from context-aware prosody adaptation to preserve
naturalness and signal stability.

6.3 Limitations
While this study provides valuable insights into the perceptual effects of prosody manipulation in
cross-lingual voice conversion, several limitations must be acknowledged. First, the prosodic adjust-
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ments explored in this work were unidirectional: both pitch and energy were only scaled upwards.
Without testing downward modifications, it remains unclear whether reducing prosodic intensity
might produce inverse effects or lead to similar degradation in naturalness.

Second, the use of a multi-speaker corpus for TaiwaneseMandarin (CommonVoice) and a single-
speaker corpus for English (LJSpeech) introduces variability in speaker representation. This asym-
metry could have influenced listener perception and made it more difficult to isolate the effects of
prosody alone. Additionally, the prosody control mechanism employed was based on global scaling
across entire utterances. This uniform adjustment lacks contextual sensitivity and may have dis-
rupted natural phrasing, particularly in languages like Mandarin where tonal contours interact with
syntactic boundaries.

Lastly, the perceptual evaluation focused solely on naturalness ratings using a Likert scale. Other
dimensions such as intelligibility, listener preference, or comprehension were not measured, limiting
the overall interpretability of user experience. Future studies could address these issues throughmore
fine-grained modeling and multi-dimensional evaluation approaches.
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7 Conclusion
This thesis set out as an exploratory investigation into the role of prosody control in cross-lingual
speech synthesis using a FastSpeech2-based voice conversion system. Specifically, it examined how
inference-time manipulation of pitch and energy affects the perceived naturalness of synthesized ut-
terances in both Mandarin and English. Although the original hypothesis predicted an improvement
in naturalness through prosodic enhancement, the results consistently indicated the opposite: natu-
ralness ratings were highest for baseline speech without any prosody scaling.

These findings suggest that naïve manipulation of prosodic parameters, without linguistic con-
textualization or phonological awareness, can disrupt the perceived coherence and fluidity of speech.
Subjective ratings, auditory artifact inspection, andASR-based error rates all pointed to a degradation
of quality when pitch and energy were aggressively increased. The asymmetry between Mandarin
and English responses further underscores the need to treat tonal and non-tonal languages differently
in prosody design. Rather than generalizing prosody as a universal enhancement strategy, this study
highlights the intricacies of cross-lingual rhythm, stress, and tone interactions.

As an exploratory study, this work did not aim to provide a fully optimized system, but rather to
map out potential challenges and sensitivities that arise from prosody-driven modifications. The use
of transparent, interpretable controls, though intentionally limited, helped isolate specific variables
and provided a clear picture of their perceptual consequences.

7.1 Futurework
Building on these insights, future research could explore more context-sensitive forms of prosody
manipulation. For example, prosody could be conditioned on syntactic boundaries, discourse cues,
or semantic focus, rather than applying global scaling across entire utterances. This would allow
synthesized speech to better reflect natural speech dynamics and avoid the artifacts associated with
uniform scaling.

Additionally, data-driven approaches such as prosody prediction models trained on bilingual or
code-switched corpora may help achieve more natural and adaptive prosodic contour shaping. The
integration of language-specific phonological knowledge, such as tone sandhi patterns in Mandarin
or stress-timed rhythm in English, could further improve the fluency and authenticity of generated
speech across languages.

Beyond the modeling itself, future work could also enhance the evaluation framework. Expand-
ing listener tests to include preference judgments, comprehension accuracy, or emotion appropriate-
ness may provide a more holistic understanding of synthesis quality. As cross-lingual TTS systems
continue to mature, bridging the gap between phonological theory and neural synthesis remains a
promising and underexplored direction. This study contributes a first step by identifying perceptu-
ally sensitive variables and outlining concrete areas for refinement.
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Appendices

A Questionnaire Survey
The Role of Prosodic Features in Voice Conversion between Taiwanese Mandarin and American En-
glish
音韻特徵對臺灣中文與美式英語語音轉換自然度之影響研究

Dear participant,

Thank you for participating in this study. This research investigates the role of prosodic features,
specifically pitch and energy, in a cross-lingual voice conversion text-to-speech (TTS) system be-
tween Taiwanese Mandarin and American English. The study aims to evaluate how different speech
versions affect the perception of naturalness and prosodic variation.
You will listen to several sets of speech samples, each consisting of four versions. After each set,
you will be asked to answer two short questions.
Estimated time to complete: 5–10 minutes No prior knowledge of linguistics is required All data
will be recorded anonymously and used solely for academic research. No personally identifiable
information will be collected.
Participation is entirely voluntary. You may withdraw at any time without any consequences. Your
data will be processed in accordance with the General Data Protection Regulation (GDPR). You have
the right to access, rectify, or erase your data at any point before anonymization.
If you have any questions, please contact the researcher:
Researcher: Hao-Wei Liang
MSc in Voice Technology, University of Groningen
Email: h.w.liang@student.rug.nl
Supervisor: Dr. V. Verkhodanova

親愛的參與者您好：

感謝您參與本研究。本研究旨在探討音韻特徵（例如音高 pitch 與能量 energy）在台灣
中文與美式英語的語音轉換語音合成系統中的影響，評估不同語音版本在自然度與語調表
達上的變化與感知差異。您將會聆聽多組語音樣本，每組包含四個不同版本。每聽完一組
語音後，請回答兩個簡短問題。
填答時間：約 5–10分鐘
參與資格：無需語言學背景或任何專業知識
資料使用：所有資料將匿名記錄，僅供學術研究分析使用，不會收集任何個人識別資訊。

參與完全為自願性，您可隨時中止作答，且不會有任何不利影響。您的資料將依據歐盟
《一般資料保護規範（GDPR）》處理。在資料匿名化之前，您有權查詢、更正或刪除您的資
料。
如您對本研究有任何疑問，歡迎聯繫
研究生：梁浩維 (Hao-Wei Liang)
荷蘭格羅寧根大學語音科技碩士班
電子郵件：h.w.liang@student.rug.nl
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指導教授：Dr. V. Verkhodanova

If you agree to participate, please click“Agree”to begin. If you do not wish to participate, you
may simply close this page.
若您願意參與本研究，請點選「同意」開始問卷。若您不同意參與，請關閉此頁面。

Which version of the speech sounds the most natural to you?
以下哪個版本的語音聽起來最自然？
(1=very unnatural, 2=somewhat natural, 3=Neither natural nor unnatural, 4=somewhat natural, 5=very
natural)
(1=非常不自然, 2=有點不自然, 3=普通, 4=稍微自然, 5=非常自然)

Can you perceive differences in intonation or expressive quality across the different versions?
你能感受到不同版本之間在語調或語音表達上的差異嗎？
(1=No difference at all完全沒有差異, 5=Very clear difference差異非常明顯)

0https://rug.eu.qualtrics.com/jfe/preview/previewId/8058c298-0198-4709-93f9
-b7072843beb4/SV_1Y22P9SOICVUIw6?Q_CHL=preview&Q_SurveyVersionID=current

https://rug.eu.qualtrics.com/jfe/preview/previewId/8058c298-0198-4709-93f9-b7072843beb4/SV_1Y22P9SOICVUIw6?Q_CHL=preview&Q_SurveyVersionID=current
https://rug.eu.qualtrics.com/jfe/preview/previewId/8058c298-0198-4709-93f9-b7072843beb4/SV_1Y22P9SOICVUIw6?Q_CHL=preview&Q_SurveyVersionID=current
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B Boxplots

Figure 3: Naturalness Ratings
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C AI Declaration
I hereby declare that I am the only author of this Master’s thesis and that, to all the best of my
knowledge, all work presented herein is my own, except where explicit reference is made to the
work of others.

This work has not been submitted for any other degree or professional qualification, unless ex-
plicitly stated. All sources of information, including printed materials, online resources, or other
forms of work by others, have been properly acknowledged and referenced throughout the thesis.

During the preparation of this thesis, I used ChatGPT (OpenAI, GPT-4, accessed between April
and June 2025) for the following purposes:

For Chapters 1 and 2, I used the tool to assist in summarizing and explaining reference studies.
The chapters were written by myself, with ChatGPT (OpenAI, GPT-4) support limited to grammar
correction and writing refinement.

For Chapter 3, I independently designed the methodology and wrote the full chapter in Mandarin
Chinese. I used ChatGPT (OpenAI, GPT-4) for English translation. The final version was fully
reviewed and edited by me.

For Section 4.1, I used ChatGPT (OpenAI, GPT-4) to assist with troubleshooting and debugging,
and to help describe the hardware of Hábrók. All technical descriptions and content were reviewed
and edited by myself.

For Sections 5.2 to 5.4, I used ChatGPT (OpenAI, GPT-4) to generate code for visualizing re-
sults using boxplots. The analysis of the results and conclusion were written by myself in both Man-
darin Chinese and English and let ChatGPT (OpenAI, GPT-4) translate and check with grammar and
spelling.

All content was afterward reviewed, verified, and substantially modified by me.
Date: Jun 11th 2025 Name: Hao-Wei Liang
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