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Abstract
Singing Voice Synthesis (SVS) has achieved remarkable progress with diffusion-based models such
as DiffSinger (J. Liu, Li, Ren, Chen, & Zhao, 2022), enabling expressive and high-fidelity singing
generation. However, most existing SVS systems are primarily trained on English and Chinese
datasets, limiting access for musicians or music enthusiast from other linguistic communities. Ex-
tending SVS to more languages could democratize music production and contribute to the preserva-
tion of global cultural diversity. This work explores cross-lingual transfer learning for SVS, using
DiffSinger as the base system and German as the target language. We hypothesize that fine-tuning an
English-trained DiffSinger model on a small amount of German data—leveraging a phoneme map-
ping strategy based on PHOIBLE (Moran & McCloy, 2019)—can achieve comparable performance
to a model trained from scratch on a large-scale monolingual German dataset. Furthermore, we in-
vestigate the influence of training data quality in low-resource scenarios. Given the same limited data
size, we hypothesize that models fine-tuned on higher-quality data—characterized by native accent,
broader vocal range, clean recording conditions—will outperform those trained on lower-quality
datasets. This improvement is attributed to enhanced linguistic clarity and expressive realism. Eval-
uation is conducted using both objective (F0 Frame Error, Mean Cepstral Distortion, Word Error
Rate) and subjective (Comparative Mean Opinion Score, MUSHRA) metrics. Results indicate that
fine-tuned models with as little as 15/30 minutes of data can achieve performance comparable or
even better to those trained on large-scale datasets, and with limited 15mins data, the overall data
quality—including accent, vocal control and recording conditions—can improve synthesis quality
significantly. This study presents a focused analysis of phoneme-mapped cross-lingual transfer for
German SVS and offers practical strategies for adapting SVS systems to underrepresented languages
using minimal data. To the best of our knowledge, this is the first study to investigate cross-lingual
transfer learning in SVS field. We believe that the findings and methodology of this work can be
extended to support cross-lingual SVS development in other low-resource languages as well. We
hereby release both the online demo, available at https://dongjiashu.github.io/DiffSinger/, and the
source code repository at https://github.com/DongJiashu/DiffSinger for public access.

https://dongjiashu.github.io/DiffSinger/
https://github.com/DongJiashu/DiffSinger
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1 Introduction
Singing Voice Synthesis (SVS) aims to automatically generate high-quality singing audio from lyrics
and musical notation (Wu & Luan, 2020). While SVS shares common ground with speech synthesis,
it introduces additional challenges: it must maintain timbral coherence across a wide pitch range,
enhance expressiveness, and accurately follow musical scores (Ardaillon, 2017). In recent years,
deep learning-based singing voice synthesis (SVS) has attracted a lot of attention from both industry
and academic communities.

In the industry, AI-generated music, particularly through end-to-end applications has rapidly
gained traction as a valuable tool for musicians and producers (Gera, 2025). These systems allow
users to input lyrics and melodies and generate professional-quality vocal tracks instantly. For ex-
ample, application like Synthesizer V can be integrated into digital audio workstations, enabling
rapid prototyping and iteration of vocal parts in music production workflows. This integration sig-
nificantly reduces the time and cost associated with traditional recording methods, making SVS
systems increasingly central to modern music creation processes (AudioCipher, 2024).

Academically, many researchers have contributed to advancing SVS technology. Early SVS sys-
tems were based on concatenative (Kenmochi & Ohshita, 2007) and parametric models (Saino, Zen,
Nankaku, Lee, & Tokuda, 2006), which often produced robotic or unnatural results. Neural models,
including RNN-based approaches (Blaauw & Bonada, 2017), offered improved modeling capabil-
ities but struggled with expressiveness. More recent works such as (Chandna, Blaauw, Bonada,
& Gómez, 2019; Chen, Tan, Luan, Qin, & Liu, 2020; Nakamura, Hashimoto, Oura, Nankaku, &
Tokuda, 2019; Shi et al., 2022; Y. Zhang et al., 2022; Zhuang et al., 2021) have further pushed
the boundaries of SVS quality. For instance, FFTsinger (L. Zhang et al., 2022) is a feed-forward
Transformer-based model that generates high-quality singing by leveraging spectral filtering tech-
niques to refine the output mel-spectrogram, achieving better timbral quality compared to earlier
autoregressive models. However, while FFTsinger improves upon previous methods, it still faces
challenges in handling complex melodies and expressive dynamics. The subsequent development
of generative models, particularly GAN-based approaches such as GAN-Singer (Wu & Luan, 2020)
and Singgan (Huang et al., 2022), further enhanced the expressiveness and fidelity of generated
singing voices. These models excel in generating high-frequency details but may suffer from mode
collapse or overly smooth outputs. More recently, diffusion-based methods like DiffSinger (J. Liu et
al., 2022; Y. Zhang, Jiang, et al., 2024) have introduced novel mechanisms that significantly improve
both the fidelity and expressiveness of synthesized singing, positioning them as leading paradigms
in the field.

Despite these advances, most current SVS systems are trained on large-scale datasets in En-
glish and Chinese, leaving musicians from other linguistic communities with limited access to high-
quality synthesis tools. As AI-driven music production continues to grow, ensuring that SVS is
inclusive of underrepresented languages becomes increasingly essential. Extending SVS to more
languages not only democratizes access to music production tools but also contributes to the preser-
vation of global linguistic and cultural diversity. However, most state-of-the-art SVS systems heavily
depend on large-scale annotated datasets. For example, creating a 30-minute singing corpus may re-
quire up to 20 hours of expert labor, highlighting the high annotation cost in this field. As a result,
languages without such datasets are underrepresented in the SVS landscape. Inspired by cross-
lingual transfer strategies in speech synthesis (Do, Coler, Dijkstra, & Klabbers, 2022; Tu, Chen,
Yeh, & Lee, 2019) we investigate how similar approaches can be applied to SVS to bridge the lin-
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guistic data gap.
To achieve that, we adopt DiffSinger as our base model and investigate how to adapt English-

trained models to German using limited training data. Specifically, we implement a phoneme map-
ping strategy based on PHOIBLE (Moran & McCloy, 2019) to align the phoneme sets between
English and German. We hypothesize that fine-tuning an English-trained DiffSinger model on a
small amount of mapped German data can yield performance comparable to a model trained from
scratch on a large-scale German corpus. Moreover, we examine the impact of training data quality in
low-resource conditions. Here, data quality is treated as a multifaceted concept encompassing singer
nativeness, vocal range, recording clarity. To investigate this, we construct multiple 15-minute fine-
tuning subsets that vary in these factors—such as native vs. non-native accents, broad vs. limited
vocal ranges, and varying levels of acoustic cleanliness. This setup allows us to test the hypoth-
esis that such quality-related attributes collectively affect the intelligibility and expressiveness of
synthesized singing.

Through this exploration, our goal is to propose scalable and accessible strategies for extending
SVS technology to more languages worldwide. We hereby release both the online demo, available at
https://dongjiashu.github.io/DiffSinger/, and the code at https://github.com/DongJiashu/DiffSinger
for public access.

Now that the motivation for this research has been presented, the structure of this thesis is as
follows:

• Section 1.1 presents the research questions and hypotheses

• Section 2 reviews relevant literature and positions this work within current research

• Section 3 describes the methodological approach

• Section 4 details the experimental setup

• Section 5 presents and analyzes the results

• Section 6 discusses implications and insights

• Section 7 concludes with key findings and future directions

1.1 Research Questions and Hypotheses
In light of the preceding discussion, this research addresses the following question:

Main Research Question:
How can we effectively adapt singing voice synthesis models to low-resource languages
using phoneme mapping and fine-tuning? Evaluated through both objective metrics
(FFE, MCD, WER) and subjective listener assessments (CMOS and MUSHRA).

RQ1:
Can a DiffSinger model pre-trained on English singing be adapted to German through
phoneme mapping and fine-tuning on limited (30min/15min) German data, such that it
achieves comparable performance to a model trained from scratch on a 3 hours German
dataset?

https://dongjiashu.github.io/DiffSinger/
https://github.com/DongJiashu/DiffSinger
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RQ2:
To what extent does the overall quality of fine-tuning data—including singer accent (na-
tive vs. non-native), vocal range (wide vs. narrow) and recording conditions, affect the
intelligibility and expressiveness of cross-lingually synthesized German singing voices?

Our hypothesis is:

H1:
Prior studies in multilingual speech synthesis (Do et al., 2022) have demonstrated that
phoneme mapping enables effective cross-lingual adaptation. We hypothesize that this
strategy can extend to singing voice synthesis models like DiffSinger (J. Liu et al.,
2022): Fine-tuning a DiffSinger model pre-trained on English singing with only a lim-
ited amount (30min/15min) of phoneme-mapped German data can achieve comparable
performance to training from scratch on a 3 hours German dataset .

H2:
Furthermore, earlier research on TTS (Tomokiyo, Black, & Lenzo, 2005; Vı́t, Hanzlı́ček,
& Matoušek, 2018) shows that the quality of training data—particularly speaker accent
and recording clarity—significantly affects synthesis outcomes. We extend this insight
to singing: The overall quality of the fine-tuning data—encompassing singer native-
ness, vocal range, recording fidelity—has a significant impact on the expressiveness and
intelligibility of synthesized singing in low-resource settings .
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2 Literature Review
This section systematically introduce Search strategy and selection in Section 2.1 and then reviews
in Section 2.2 and Section 2.3 advancements in singing voice synthesis (SVS), in Section 2.4 mul-
tilingual singing datasets, and in Section 2.5 and Section 2.6 cross-lingual transfer learning for low-
resource adaptation. The synthesis of these areas highlights gaps in phoneme-mapped fine-tuning
and singer characteristic preservation, motivating our proposed framework.

2.1 Search Strategy and Selection Criteria
Titles and abstracts were systematically screened for relevance using a predefined set of keywords,
inclusion criteria, and exclusion criteria. After initial filtering, the remaining papers were assessed
for methodological rigor, including reproducibility of training procedures, availability of open-
source code, and datasets. In addition, citations and subsequent references of key papers were
reviewed to ensure comprehensive coverage of the topic.

Keywords are:

1. singing voice synthesis: “singing voice synthesis” OR “SVS”

2. singing dataset: “singing datase”

3. low resource language: “cross-lingual transfer learnin”, “phoneme mapping”, “phonological
features” and “low-resource languages”

These keywords were used in combination across multiple databases (e.g., IEEE Xplore, arXiv,
Google Scholar, ISCA Archive). Variants and related terms (e.g., “cross-language transfer learning”,
“phone mapping”) were also considered to account for different spellings and word forms. Boolean
operators (AND/OR) were applied to combine search terms effectively for each database.

Inclusion criteria are:

1. Published in reputable venues including IEEE Xplore, arXiv, Google Scholar, or the ISCA
Archive.

2. Focused on singing voice synthesis (SVS) or low-resource text-to-speech (TTS) models with
relevance to singing synthesis.

3. Included objective acoustic evaluation metrics such as F0 Frame Error or Mel-Cepstral Dis-
tortion, and/or subjective measures like Mean Opinion Score (MOS).

4. Provided insights into phoneme adaptation, cross-lingual transfer learning, or phonological
feature-based modeling for low-resource languages.

5. Described replicable methodologies with publicly available implementations or datasets, en-
suring transparency and reproducibility.

6. Published between 2018 and 2025 to reflect recent advancements in neural SVS systems.
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Each paper was first evaluated based on its title and abstract. If it passed this initial screening, a
full-text review was conducted to verify that all inclusion criteria were explicitly addressed.

Exclusion criteria are:
1. Relied on HMM-based or concatenative SVS models due to their limited expressiveness and

lower synthesis quality compared to modern neural approaches.

2. Lacked sufficient technical detail on model architecture or training procedure, making repro-
duction difficult or impossible.

3. Published before 2018, as they may not reflect current trends in deep learning-based singing
synthesis.

4. Not written in English or Chinese, which were selected to ensure accessibility and consistency
in interpretation.

2.2 DiffSinger: A Diffusion-Based Baseline
DiffSinger (J. Liu et al., 2022) represents a significant advancement in singing voice synthesis (SVS),
introducing a novel shallow diffusion mechanism that enables high-fidelity and expressive singing
generation directly from musical scores (e.g., lyrics and pitch sequences). Compared to other SVS
models such as GAN-based frameworks (Wu & Luan, 2020) and feed-forward transformer-based
systems like FFT-Singer (L. Zhang et al., 2022), DiffSinger offers several key advantages.

Unlike some earlier SVS models such as FFT-Singer, which may struggle with maintaining har-
monic details in the mid-to-low frequency range, DiffSinger employs a non-autoregressive diffusion
process that better captures global pitch contours and expressive dynamics across entire phrases.
This results in more natural transitions between notes and improved overall expressiveness. Addi-
tionally, thanks to the iterative denoising process inherent to diffusion models, DiffSinger is able
to generate more natural-sounding and emotionally rich vocalizations compared to GAN-based sys-
tems like GAN-Singer. Although GAN-Singer performs well in generating high-frequency details,
it sometimes suffers from mode collapse or produces overly smooth and less dynamic outputs, an
issue that DiffSinger effectively mitigates while preserving both high-quality harmonics and expres-
sive dynamics.

One of the most notable innovations in DiffSinger is the use of a shallow diffusion inference pro-
cess. Instead of starting from pure Gaussian noise, the model initializes the diffusion reversal from a
coarse mel-spectrogram generated by an auxiliary decoder. This significantly reduces computational
cost while maintaining high output quality. In contrast, FFT-Singer relies on feed-forward trans-
formers for mel-spectrogram generation, which can be computationally expensive and less efficient
during inference. Furthermore, DiffSinger introduces a boundary predictor module that dynamically
determines the optimal starting point in the reverse diffusion process. This prevents over-smoothing
and ensures sharper transitions between phonemes and notes, especially in complex melodic struc-
tures—something that GAN-Singer lacks, often leading to timing and articulation issues.

In subjective evaluations using Mean Opinion Score (MOS), DiffSinger outperforms both FFT-
Singer and GAN-Singer, demonstrating its superior perceptual quality. These improvements position
DiffSinger as a representative of the latest generation of SVS systems—moving away from tradi-
tional autoregressive and parametric methods toward diffusion-based modeling, which has become
the dominant paradigm for controllable and high-quality singing synthesis.
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Although the original experiments were conducted primarily on Mandarin datasets, the authors
also demonstrated promising performance on English speech synthesis using the LJSpeech dataset.
This suggests that the architecture is inherently language-agnostic and flexible enough to adapt to dif-
ferent linguistic systems. However, its performance in low-resource settings or cross-lingual transfer
scenarios has not yet been explored in depth.

2.3 TCSinger: Alternative Diffusion Model
In addition to DiffSinger, another recent diffusion-based singing voice synthesis (SVS) model, TC-
Singer (Y. Zhang, Jiang, et al., 2024), has also demonstrated strong performance in expressive
singing generation. TCSinger builds upon the foundation laid by DiffSinger by introducing explicit
modeling of multi-level singing styles—including vocal technique, emotion, rhythm, and pronunci-
ation—through a modular architecture designed for fine-grained control over the synthesis process.

The model introduces three core components that enable this enhanced expressiveness. First,
the Clustering Style Encoder utilizes Clustering Vector Quantization (CVQ) to encode rich style
information into a compact latent space, allowing for efficient representation and manipulation of
expressive features. Second, the Style and Duration Language Model (S&D-LM) jointly predicts
phoneme duration and style features using both audio and text prompts, thereby improving the align-
ment between linguistic content and expressive characteristics. Third, the Style-Adaptive Decoder
(SAD) applies mel-style adaptive normalization during mel-spectrogram generation, ensuring that
expressive qualities are preserved throughout the synthesis pipeline.

TCSinger is reported to achieve superior subjective quality and more accurate reproduction of
expressive singing compared to DiffSinger. It also claims to support what the authors refer to as
“zero-shot cross-lingual style transfer”. However, this capability is made possible by training the
model on large-scale multilingual singing data, primarily from Chinese and English sources. In
other words, the so-called zero-shot ability does not stem from true generalization without target-
language data, but rather from joint bilingual modeling during training. This distinction is important,
as it suggests that TCSinger requires extensive parallel or comparable data across languages in order
to perform effectively in cross-lingual settings.

Moreover, TCSinger’s architecture introduces additional complexity through multiple auxiliary
models and multi-phase training procedures, which rely heavily on detailed style annotations. These
requirements make TCSinger less suitable for low-resource adaptation scenarios where annotated
singing data is limited and system simplicity is essential.

Given our research goal of enabling singing voice synthesis in new languages with minimal an-
notated training data, we ultimately choose DiffSinger as our base model. While TCSinger achieves
higher synthesis quality and offers greater expressive control, its reliance on large-scale multilingual
data and complex training pipelines makes it impractical for our lightweight, low-resource transfer
learning scenario.

2.4 GTSinger: The Only Open Multilingual Singing Corpus
GTSinger (Y. Zhang, Pan, et al., 2024) remains the only publicly available dataset containing singing
data beyond English and Chinese. Its structure and scale make it an essential foundation for cross-
lingual SVS research. Specifically, GTSinger provides several key advantages. It contains over
80 hours of professionally recorded singing data from 20 singers across 9 languages, including
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English, Chinese, German, Spanish, French, Italian, Korean, Russian, and Japanese, offering a level
of linguistic diversity that is unmatched by other existing datasets. Additionally, the dataset includes
phoneme-level alignments, expressive technique labels, and realistic music score annotations. These
detailed annotations facilitate more accurate training and evaluation of SVS models, enabling them
to capture subtle nuances in different singing styles and techniques. Unlike many other datasets
that use simplified or synthesized scores, GTSinger incorporates real-world music scores, which are
crucial for generating high-quality singing voices that closely mimic professional performances.

However, GTSinger also presents some notable limitations. One such issue is the inclusion
of recordings from non-native speakers in several language subsets, which can affect the dataset’s
suitability for evaluating fine-grained phonetic intelligibility and prosody in native singing. Another
limitation lies in the lack of a standardized phoneme format across languages: the dataset uses ARPA
for English, Pinyin for Chinese, and IPA for others. This heterogeneity complicates phoneme-level
transfer learning and necessitates the development of a unified mapping strategy. These limitations
motivated several design choices in our work. To address the inconsistency in phoneme represen-
tations, we apply phoneme mapping using PHOIBLE (Moran & McCloy, 2019) to harmonize the
multilingual phoneme space. Furthermore, we curate supplemental native German recordings to
better assess the impact of data quality in low-resource fine-tuning scenarios.

In conclusion, despite its shortcomings, GTSinger stands out as a critical resource for advancing
cross-lingual SVS research. Its rich annotations and diverse linguistic coverage make it an invalu-
able tool for developing and testing new SVS models. By addressing its limitations through targeted
improvements such as phoneme mapping and native language augmentation, researchers can lever-
age GTSinger to push the boundaries of what is possible in singing voice synthesis, especially in
low-resource settings.

2.5 Phoneme Mapping with PHOIBLE in Cross-Lingual Transfer
With both a capable diffusion-based singing synthesis model (DiffSinger) and a multilingual dataset
(GTSinger) in place, the next question becomes: how can we most effectively adapt trained SVS
models to a new, low-resource language? Inspired by prior work in text-to-speech (TTS) transfer
learning, we investigate phoneme-level adaptation strategies as a lightweight yet powerful mecha-
nism for cross-lingual generalization.

Do et al. (2022) proposed one of the most systematic and scalable phoneme mapping strategies
for under-resourced languages. By leveraging the PHOIBLE database (Moran & McCloy, 2019),
they mapped phonemes across languages based on a 37-dimensional binary vector of articulatory
features (e.g., voicing, nasality, manner/place of articulation). This allowed them to identify close
phoneme pairs and reuse pre-trained phoneme embeddings, improving intelligibility and naturalness
in target languages. Their results demonstrated that PHOIBLE-based mapping outperformed manual
rule-based alignments, particularly when combined with source language selection using Angular
Similarity of Phoneme Frequencies (ASPF).

While their method has shown strong results in TTS adaptation, its effectiveness in the domain
of singing voice synthesis has not yet been validated. Singing imposes additional constraints—such
as expressive dynamics, pitch range, and rhythmic precision—that may interact differently with
phoneme similarity assumptions. Our work extends this research by applying PHOIBLE-guided
phoneme mapping in the SVS domain, and systematically evaluates whether it supports high-quality
cross-lingual singing generation under minimal-data conditions.
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Moreover, based on the ASPF described in (Do et al., 2022) and the multilingual coverage pro-
vided by the GTSinger (Y. Zhang, Pan, et al., 2024) dataset, we selected English as the source
language and German as the target language.

2.6 Data Quality and Singer Attributes in SVS Considerations
In singing voice synthesis (SVS), data quality plays a critical role in determining the final synthesis
performance. While most prior work has focused on model architectures and training strategies,
relatively less attention has been given to how singer attributes—such as native language back-
ground, vocal range, and expressiveness—affect synthesis outcomes. This is particularly relevant
when adapting models across languages or applying transfer learning in low-resource settings.

Research in text-to-speech (TTS) has shown that speaker accent significantly impacts synthe-
sized speech quality. For instance, Tomokiyo et al. (2005) found that TTS systems trained on non-
native accented speech produced outputs with reduced intelligibility and acceptability. Although this
study focused on speech rather than singing, it raises an important question: could similar effects
occur in SVS? Given the phonological and prosodic complexity of singing, we hypothesize that
accent mismatch between training data and target language may also degrade the naturalness and
intelligibility of synthesized singing voices.

Beyond singer attributes, input data quality—including recording fidelity, background noise, and
annotation accuracy—also strongly influences model performance. Vı́t et al. (2018) demonstrated
that even small errors in phoneme alignment or segmentation can significantly degrade the out-
put of WaveNet-based acoustic models. To mitigate such issues, tools like the Montreal Forced
Aligner (MFA) (McAuliffe, Socolof, Mihuc, Wagner, & Sonderegger, 2017) have become standard
for improving alignment consistency. However, in singing data, where pitch variation and vibrato
complicate alignment, manual correction is often still required.

Furthermore, Vı́t et al. (2018) emphasized that noise in training data—whether from background
interference or inaccurate annotations—can degrade synthesis quality, especially under low-resource
conditions. These findings suggest that both the technical quality of recordings and the linguistic
fidelity of annotations are essential for robust SVS modeling.

One dataset that enables investigation into these factors is the GTSinger corpus (Y. Zhang, Pan,
et al., 2024), which includes singing samples in multiple languages, including German. However,
inspection of its German subset reveals that many samples were recorded by non-native singers with
limited vocal range and expressive capabilities. This raises concerns about whether such data is suf-
ficient for high-quality multilingual SVS adaptation. The limitations of the GTSinger German subset
motivate our exploration of alternative fine-tuning strategies using higher-quality native singing data,
which will be detailed in Section 3.

In summary, both singer-related factors and technical data quality aspects—such as vocal expres-
siveness, accent, recording clarity, and annotation precision—should be carefully considered in SVS
system design. These insights inform our experimental approach to cross-lingual transfer learning
and low-resource adaptation.
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Table 1: Summary of Key Literature

Reference Key Findings Theme

DiffSinger
(J. Liu et al., 2022)

Introduces a shallow diffusion model for high-quality expres-
sive SVS; however, cross-lingual adaptation with limited data
remains unexplored.

SVS
model

TCSinger
(Y. Zhang, Jiang,
et al., 2024)

Adds multi-level style control and improves cross-lingual per-
formance, but relies on large-scale multilingual data and com-
plex architecture, thus unsuitable for low-resource scenarios.

SVS
model

GTSinger
(Y. Zhang, Pan, et
al., 2024)

Provides large-scale multilingual singing corpus with
phoneme alignment; lacks standardized phoneme set and
includes non-native German recordings.

Dataset

PHOIBLE map-
ping
(Do et al., 2022;
Moran & McCloy,
2019)

Demonstrates effectiveness of PHOIBLE-based phoneme
mapping in TTS transfer learning; singing adaptation remains
untested.

Phoneme
mapping

Training data
(Vı́t et al., 2018)

Highlights the importance of input quality and alignment ac-
curacy in TTS, supporting careful data curation in SVS exper-
iments.

Data
quality

Foreign accents
(Tomokiyo et al.,
2005)

Shows that non-native accents reduce intelligibility in syn-
thetic speech, motivating the use of native data in SVS adap-
tation.

Accent
impact

In light of recent advances in singing voice synthesis (SVS), particularly models like Diff-
Singer (J. Liu et al., 2022) and TCSinger (Y. Zhang, Jiang, et al., 2024), we observe significant
improvements in synthesis fidelity and expressive control. However, their reliance on large-scale En-
glish and Chinese datasets—and for TCSinger, complex architectures and rich annotations—limits
applicability in low-resource and cross-lingual settings. GTSinger (Y. Zhang, Pan, et al., 2024), the
only open multilingual SVS dataset, begins to address this gap but suffers from inconsistent phoneme
formats and non-native speaker recordings.

To overcome these issues, we adopt DiffSinger as a lightweight base model and use GTSinger
as our primary data source. We apply a PHOIBLE-based phoneme mapping strategy (Moran & Mc-
Cloy, 2019), previously used in speech synthesis (Do et al., 2022), though not yet in SVS. Analysis
of GTSinger’s German subset revealed limitations in vocal range, expressiveness, and pronunciation
due to non-native speakers. Prior work (Tomokiyo et al., 2005; Vı́t et al., 2018) shows such factors
can significantly affect synthesis quality. To assess this impact systematically, we constructed two
fine-tuning subsets with varying accent, vocal range, and recording conditions.

This study investigates two underexplored aspects in SVS: (1) the empirical effectiveness of
phoneme mapping for cross-lingual transfer, and (2) the influence of singer-level data quality in
low-resource adaptation. By combining phoneme-aware fine-tuning with curated, high-quality data,
we aim to enable more robust and scalable SVS transfer to underrepresented languages.
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3 Methodology
This section outlines the methodology adopted to explore phoneme-mapped cross-lingual transfer
learning for Singing Voice Synthesis (SVS), with the goal of addressing our research questions on
transfer strategies (RQ1) and fine-tuning data quality (RQ2). We first present the datasets used in
our experiments in Section 3.1, including both publicly available and custom-curated corpora. Next,
we describe the DiffSinger model and the transfer learning strategies employed, with a focus on
phoneme mapping via PHOIBLE in Section 3.2. We then detail the technical framework in Sec-
tion 3.3, including algorithm utilization and data preprocessing. Finally, we explain the evaluation
methodology used to assess synthesis quality through both objective acoustic measures and subjec-
tive listener ratings in Section 3.4.

3.1 Dataset Description
To investigate cross-lingual transfer learning under low-resource conditions, we constructed a multi-
lingual singing dataset consisting of German and English recordings with varying data sizes, speaker
accents, and vocal ranges. These datasets are designed to evaluate both our research questions: the
effectiveness of phoneme-mapped transfer learning (RQ1) and the role of data quality (RQ2). To
avoid confusion with the term “Ground Truth”, we refer GTSinger corpus as “GTs”

• English-GTs 3H: A high-quality monolingual English singing dataset extracted from GT-
Singer (Y. Zhang, Pan, et al., 2024). It was used to pre-train all base DiffSinger models prior
to cross-lingual fine-tuning experiments.

• German-GTs 3H: A 3-hour subset from the German portion of GT-Singer, recorded under
clean and consistent studio conditions. While the audio quality is high, the singing was per-
formed by a non-native speaker with a noticeable foreign accent and relatively basic expressive
control. This dataset was used to train a from-scratch German model and serves as a perfor-
mance upper bound under monolingual training.

• German-GTs 15min / 30min: Two subsets (15 and 30 minutes) sampled from the German-
Base GTSinger recordings. The selections were curated to maximize consistency in vocal
technique, prosody, and stylistic phrasing. These subsets simulate realistic low-resource sce-
narios for model adaptation.

• German-NativeNarrow 15min: A 15-minute dataset compiled from performances by a na-
tive German speaker with a mid-range vocal range. The recordings were sourced from pub-
licly available platforms YouTube (2024), leading to variability in audio quality and occasional
background noise. Nevertheless, the dataset provides native-level pronunciation and natural
prosody, making it valuable for examining the effect of accent in isolation. Importantly, its
mixed recording conditions reflect the kind of real-world, in-the-wild data that researchers
often have access to when collecting low-resource language resources outside of professional
studios.

• German-ProficientWide 15min: A high-quality dataset recorded by a proficient (non-native)
German singer with near-native pronunciation, extended vocal range, and expressive control.
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The recordings were captured in a quiet home studio using high-fidelity equipment. This
dataset serves as the most acoustically consistent and expressive resource, enabling evaluation
of whether superior vocal and recording characteristics can compensate for the absence of
nativeness.

While GTSinger remains the only open-source dataset with German singing data, its German
subset contains accented performances and lacks cross-lingual phoneme consistency. To address
this, we incorporated custom recordings with varied speaker and acoustic characteristics, better sim-
ulating real-world scenarios of multilingual singing model adaptation.

All audio was downsampled to 44.1 kHz and aligned to phoneme sequences using the Montreal
Forced Aligner (MFA) (McAuliffe et al., 2017), followed by meticulous manual correction to ensure
frame-level accuracy.

These datasets are tailored like this to test our two key hypotheses. By varying only one factor
at a time, we isolate its effect on model performance. The German-GTs subsets evaluate the impact
of limited training duration with phoneme mapping (RQ1), while the Native-Narrow and Proficient-
Wide and GTs-15mins datasets examine how data quality influence the model performance (RQ2).
This hybrid setup provides a controlled yet practical benchmark for evaluating cross-lingual SVS.

3.2 Core Methods and Models
3.2.1 Core Model - DiffSinger

DiffSinger consists of two primary modules: As illustrated in Figure 1, the system includes:

Figure 1: Overview of DiffSinger’s architecture and inference procedure.
Adapted from (J. Liu et al., 2022).

The Encoder Module is responsible for transforming symbolic musical inputs into condition-
ing features that guide the acoustic generation process. It comprises three key submodules: the
phoneme encoder, which converts phoneme sequences into continuous embeddings; the length reg-
ulator, which expands these phoneme embeddings to a frame-level representation based on predicted
phoneme durations; and the pitch encoder, which transforms pitch contours into frame-aligned em-
beddings. These features are then summed together to form the music condition vector, which serves
as the primary conditioning signal for the synthesis stage.
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The second major component is the Auxiliary Decoder and Shallow Diffusion Module, which
follows a two-stage generation strategy. In the first stage, the auxiliary decoder generates a coarse
mel-spectrogram from the music condition vector. This initial estimate is then refined in the sec-
ond stage by the shallow diffusion module through a small number of denoising steps (typically
4–6). The diffusion module includes a denoiser network and step embeddings that model the tem-
poral dynamics of noise removal. Compared to standard diffusion models that require hundreds or
even thousands of steps, this shallow setup drastically reduces inference time while preserving high
synthesis quality. The auxiliary decoder provides a strong prior that guides the diffusion process,
enabling efficient and effective refinement of the output.

In summary, DiffSinger’s modularity, controllability, and efficiency make it a strong candidate
for investigating low-resource and cross-lingual SVS transfer scenarios.

3.2.2 Core Methods - Phoneme Mapping

To enable German synthesis from an English-pretrained DiffSinger model, we adopt a phoneme-
level adaptation framework grounded in the PHOIBLE database (Moran & McCloy, 2019), which
provides language-agnostic 37-dimensional phonological feature vectors. Each German phoneme
is mapped to its most similar English counterpart based on articulatory feature similarity (see fig-
ure 2). This enables direct reuse of the English phoneme embedding layer, avoiding architectural
modifications or full retraining.

Figure 2: Illustration for 17 phonological features from the PHOIBLE data (37 features in real case)
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In cases where multiple English phonemes have comparable similarity scores, we further prior-
itize phonemes that appear more frequently in the source training corpus. This two-stage matching
strategy balances phonetic proximity with statistical coverage, improving the robustness of cross-
lingual inference.

Figure 3: Similarity scores are based on phonological features from PHOIBLE database. Number of
occurrences represent relative occurrence in English. Matches were selected prioritizing similarity
first, then number of occurences for cases with similar similarity scores.

3.2.3 Core Methods - Adaptation Strategies

On top of the unified phoneme representation, we implement two adaptation strategies to assess
cross-lingual transferability from English to German singing voices:

• Zero-Shot Inference: We evaluate the English-trained DiffSinger model directly on PHOIBLE-
mapped German phoneme sequences without any German fine-tuning. This serves as a base-
line to assess the model’s ability to generalize across languages purely through phonological
similarity. For example, we synthesize the German sentence “Ich liebe dich” using the English
model, mapped to its closest IPA phonemes.

• Fine-Tuning: We fine-tune the model on German singing data with varying properties to
analyze their influence on synthesis performance. Specifically:
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– Data Size: We use 15-minute and 30-minute subsets of German data to study how data
volume impacts adaptation.

– Accent: We compare performances using recordings from a native German singer and
non-native singers. This allows us to evaluate whether pronunciation accuracy affects
intelligibility in synthesized results.

– Vocal Range: We contrast fine-tuning on singers with different vocal ranges. This lets
us analyze whether the expressive potential of the original data influences the model’s
expressiveness post-transfer.

– Audio quality: We contrast fine-tuning on corpus with different recording set ups. This
lets us analyze whether the audio quality of the original data influences the model’s
performance.

This modular design (details in in 4) allows us to isolate the effects of each factor—phoneme
mapping, data quantity, and data quality—on the cross-lingual performance of SVS models. The
comparative analysis directly addresses hypotheses H1 and H2, providing insight into the feasibility
of low-resource language adaptation.

3.3 Technical Framework
Our experimental pipeline is implemented in Python and integrates the following core components:

• DiffSinger (OpenVPI Fork): We build on the open-source implementation from OpenVPI1,
which refactors the original DiffSinger model for improved modularity and accessibility. We
focus solely on training the acoustic model component. The acoustic model is based on the
Denoising Diffusion Probabilistic Model (DDPM) (Ho, Jain, & Abbeel, 2020), which itera-
tively refines a noisy mel-spectrogram toward a clean target distribution. To improve sampling
efficiency and stability, the author also adopt Rectified Flow (RF) (X. Liu, Gong, & Liu, 2022),
a recent alternative to traditional diffusion processes that replaces stochastic reverse sampling
with a deterministic, flow-based formulation. Waveform reconstruction is conducted using
NSF or HiFi-GAN, while RMVPE is employed for accurate pitch estimation.

• Phoneme Alignment: We evaluate two alignment tools:

– SOFA2 : A customized singing alignment model, we first train the model using GTSinger
annotated data and align our corpus, but its performance was less consistent—likely due
to limited training data or model mismatch.

– Montreal Forced Aligner (MFA) 3: Although not explicitly designed for singing, MFA
provided more stable and accurate alignments on singing data compared to SOFA in our
experiments.

Given the scope of this study, we adopt MFA for all final alignments without further analysis.

1https://github.com/openvpi/DiffSinger
2https://github.com/qiuqiao/SOFA
3https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner

https://github.com/openvpi/DiffSinger
https://github.com/qiuqiao/SOFA
https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner
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• VLabeler4: We used VLabeler as the primary tool for manual alignment correction after
initial phoneme boundaries were obtained using Montreal Forced Aligner (MFA). Compared
to traditional tools like Praat, VLabeler offers a more streamlined and user-friendly interface
tailored for phoneme-level boundary editing, significantly accelerating the annotation process.

• Phoneme Mapping Tool: A custom script aligns German phonemes to English phonemes
using articulatory similarity derived from PHOIBLE’s 37-dimensional feature vectors (Moran
& McCloy, 2019), filtered by phoneme frequency in the English dataset. This mapping is
applied during data preprocessing and inference.

• Music and Pitch Preprocessing:

– SOME5 is used to extract MIDI pitch contours from aligned music scores.

– RMVPE6 (Wei, Cao, Dan, & Chen, 2023) is used for frame-level f0 extraction.

• Monitoring: Training statues is monitored using TensorBoard.

3.4 Evaluation Methodology
We conduct both objective and subjective evaluations to assess synthesis quality across cross-lingual
transfer settings. Each model is evaluated on 23 test samples, including both parallel and non-parallel
utterances, ensuring robustness and diversity in linguistic and musical content.

3.4.1 Objective Evaluation

Object evaluations includes:

• F0 Frame Error (FFE): Measures voicing and pitch accuracy between predicted and refer-
ence pitch. It is defined as:

FFE =
1
T

T

∑
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)
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)∣∣∣∣> θcent
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where T is the total number of frames, and a frame-level error is counted if the voicing decision
is incorrect or the pitch deviates by more than θcent = 50 cents (approximately 20% frequency
deviation).

• Mel-Cepstral Distortion (MCD): Quantifies spectral differences between generated and ref-
erence audio using MFCCs. Based on our implementation:
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where x and y are aligned MFCC sequences of dimension D over N frames.
4https://github.com/sdercolin/vlabeler
5https://github.com/openvpi/SOME
6https://github.com/Dream-High/RMVPE

https://github.com/sdercolin/vlabeler
https://github.com/openvpi/SOME
https://github.com/Dream-High/RMVPE
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• Word Error Rate (WER): Whisper (Radford et al., 2023) is used to transcribe both synthe-
sized and reference utterances. WER is computed as:

WER =
S+D+ I

N

where S, D, and I are the number of substitutions, deletions, and insertions, and N is the
number of words in the reference.

• Statistical significance test To assess the significance of performance differences between
systems, we applied statistical tests based on the distributional properties of the data.

For metrics where data followed a normal distribution and variances were equal (as con-
firmed by the Shapiro–Wilk test (Shapiro & Wilk, 1965)), we used one-way Analysis of Vari-
ance (ANOVA) (Fisher, 1934) to compare group means, followed by Tukey’s HSD post-hoc
test (Tukey, 1949) to identify pairwise differences. ANOVA tests whether any group differs
significantly from the others, and Tukey’s test controls for false positives in multiple compar-
isons.

When variances were unequal or the normality assumption did not hold, we used Welch’s
ANOVA (Welch, 1951), a robust alternative that accommodates unequal variances, and the
non-parametric Kruskal–Wallis test (Kruskal & Wallis, 1952) to compare medians. For pair-
wise comparisons in these cases, we employed the Games–Howell post-hoc test (Games &
Howell, 1976), which does not assume equal variances or sample sizes.

A significance level of α = 0.05 was used in all tests. Normality and variance assumptions
were checked for each metric before selecting the appropriate analysis.

3.4.2 Subjective Evaluation

To complement the objective evaluation, we conducted a subjective listening test with 30 human
raters. Half of the participants are native German speakers, and the other half are intermediate-level
non-native speakers. Considering the number of systems being compared, we split the evaluation
into two questionnaire versions (Set A and Set B) to reduce listener fatigue and ensure high-quality
feedback. All questions are arranged in random sequence to ensure fair evaluation.

We adopted two standard subjective evaluation protocols:

• CMOS (Comparative Mean Opinion Score, (Sector, 1996)): Participants were presented with
pairs of audio samples and asked to rate the relative quality on a 7-point scale ranging from –3
(much worse) to +3 (much better).

• MUSHRA (Multiple Stimuli with Hidden Reference and Anchor, (Series, 2014)): Listeners
rated multiple system outputs for the same utterance on a 0–100 scale, based on overall singing
quality and expressiveness. While a hidden reference was not explicitly embedded, the zero-
shot baseline serves as a consistent lower anchor in our setup.

In order to reduce redundancy and maintain consistency, we replaced traditional intelligibility-
based listening questions with automatic transcription using Whisper (Radford et al., 2023) to com-
pute WER as an objective proxy as described in objective evaluation.
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3.4.3 Baseline Comparisons and Validation Approach

To evaluate RQ1 and test H1, we compare a German model trained from scratch on 3 hours of GT-
Singer data Base GTs 3H against two fine-tuned models trained on only 15 and 30 minutes of data
from the same corpus FT GTs 15min and FT GTs 30min, as well as a Zero-shot model that was pre-
trained on English and applied to German using phoneme mapping without any fine-tuning. This
setup tests whether limited fine-tuning with phonological features can match or surpass large-scale
monolingual training.

To evaluate RQ2 and validate H2, we fix the fine-tuning duration at 15 minutes and vary the
speaker and recording conditions across three models: FT GTs 15min (non-native, narrow-range,
clean recordings), FT NativeNarrow 15min (native speaker, narrow-range , variable audio qual-
ity), and FT ProficientWide 15min(proficient speaker, wide range, clean recordings). The Zero-shot
model is again included as a lower-bound baseline. This design allows us to examine how different
dimensions of data quality—accent, vocal diversity, and recording fidelity—affect synthesis perfor-
mance under low-resource conditions. This setup allows us to isolate the effect of speaker accent,
vocal range, and recording conditions on SVS performance in low-resource scenarios.

3.5 Ethics and Research Integrity
This research was conducted in accordance with institutional ethical guidelines and did not involve
any human subject experimentation requiring formal ethics board review. All data handling, eval-
uation procedures, and dissemination plans were designed to ensure transparency, openness, and
responsible AI development.

3.5.1 Data Ethics and Privacy

All singing data used in this study—such as GT-Singer and our customized datasets—were either
publicly available or self-recorded with informed consent for academic use. To utilize YouTube
(2024) data, we also applied YouTube Researcher Program 7 and use only data with Creative Com-
mons (CC) licence 8. No personal identifiers are included in the dataset, and all singer metadata was
anonymized. Data storage followed university security protocols, with restricted access and regular
backups. No third-party sensitive or proprietary data was used.

3.5.2 FAIR Principles Implementation

We follow the FAIR principles to ensure the long-term usability of our research: We adhere to the
FAIR principles to ensure the long-term usability and accessibility of our research outputs. Our
resources are designed to be findable, with all datasets and model checkpoints indexed in public
repositories accompanied by persistent identifiers such as DOIs and comprehensive metadata de-
scriptions. These materials are made accessible without requiring authentication, hosted on widely
used platforms such as Hugging Face and GitHub. To enhance interoperability, we employ stan-
dard file formats including WAV for audio, JSON for annotations, and CSV for metadata, while
maintaining consistent phoneme annotation protocols across languages. In terms of reusability, all

7https://research.youtube
8https://creativecommons.org

https://research.youtube
https://creativecommons.org
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released resources come with detailed documentation, clear licensing information under the Creative
Commons Attribution 4.0 International License (CC-BY 4.0), and suggested citation guidelines to
facilitate proper attribution and reuse.

3.5.3 Open Science Practices

As part of our commitment to open science, we will publicly release all source code, training config-
urations, pre-trained and fine-tuned DiffSinger model checkpoints, as well as evaluation scripts for
objective metrics such as MCD (Mel-Cepstral Distortion), FFE (Frame-level Feature Error), WER
(Word Error Rate), and subjective evaluation protocols including CMOS (Conversational Mean
Opinion Score) and MUSHRA (MUltiple Stimuli with Hidden Reference and Anchor). All compo-
nents will be version-controlled using Git-based systems and distributed under permissive licensing
terms: MIT License for software code and CC-BY for data and documentation. Repository links,
license details, citation recommendations, and contribution policies will be clearly outlined in the
project documentation to support community engagement and extension.

3.5.4 Bias and Fairness

We also consider potential biases that may arise from dataset composition and algorithmic behavior.
To assess fairness and generalizability, our evaluation includes both male and female listeners, and
we compare responses from native and non-native speakers to investigate possible accent-related
biases. Although the primary focus of this work is on the German language, the methodology is
designed to be transferable to other low-resource languages. We acknowledge limitations related to
singer diversity and genre imbalance and will document these alongside model performance results
to ensure transparency about the system’s scope and constraints.

3.5.5 Environmental Impact

In recognition of the environmental impact associated with large-scale machine learning, we have
taken steps to minimize energy consumption throughout our experimentation. Fine-tuning was con-
ducted on small-scale datasets (15–30 minutes per language), avoiding full retraining from scratch.
Experiments were run on shared university GPU clusters using limited batch sizes and early stopping
to reduce unnecessary computation. We will report the total number of training steps and GPU hours
used in each experiment to provide transparency regarding computational cost and carbon footprint.

3.5.6 Reproducibility and Replicability

To ensure reproducibility and replicability, we follow rigorous development practices. All random
seeds, library versions, and dependencies are fixed and published alongside the codebase. The train-
ing and evaluation pipeline includes detailed logging, standardized output formats, and compre-
hensive evaluation scripts. Additionally, we provide example shell commands to reproduce each
experiment end-to-end. Despite these efforts, known limitations include dependency on specific Py-
Torch versions and the requirement for GPU hardware to perform full inference. These factors are
documented to help users understand the conditions under which results can be reliably reproduced.
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Through these measures, we ensure that our research adheres to the highest standards of ethics,
transparency, and research integrity. Our goal is not only to advance cross-lingual singing synthesis,
but to do so responsibly—with openness, environmental awareness, and broad accessibility in mind.
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4 Experimental Setup
To ensure the full reproducibility of our study, this section provides a comprehensive account of the
implementation pipeline, data preparation, and experimental structure used throughout the research.

We begin by detailing how datasets were preprocessed, split, and annotated to support fine-
tuning and evaluation. This includes phoneme mapping, feature extraction, and alignment processes
in Section 4.1 and in Section 4.2. Next, we outline the design of our comparative experiments in
Section 4.3, specifying the conditions for zero-shot transfer, limited-data fine-tuning, and full-scale
baseline training. All experiments were run using version-controlled configurations and open-source
tools to promote replicability.

All source code, configuration files, are made publicly available via GitHub upon publication,
following the open science and FAIR principles discussed in.

4.1 Data Preparation
Our experiments are based on singing voice recordings in German and English. The data preparation
pipeline was designed to support both fine-tuning and evaluation under various conditions (zero-shot,
low-resource, full-data), with consistent preprocessing across all subsets.

4.1.1 Data Sources and Formats

GT-Singer (Y. Zhang, Pan, et al., 2024) is our primary corpus. It was originally provided in WAV
format sampled at 48kHz. To ensure compatibility with DiffSinger’s preprocessing pipeline, we
resampled all audio to 44.1kHz. As GT-Singer is already segmented and aligned at the phoneme
level, it requires no additional preprocessing. We directly applied phoneme mapping and extracted
pitch and MIDI features for training and evaluation.

Native-Narrow is a custom dataset constructed from publicly available singing videos featuring
a native German singer sourced from YouTube (2024). This dataset required the most extensive
preprocessing among the resources used. We first developed a custom pipeline to download and
convert MP4 video files into WAV audio format. Following this, vocal-accompaniment separation
was carried out using the Demucs library in order to isolate clean singing tracks from the mixed
audio sources. The extracted vocal tracks were then segmented into 5–15 second clips using a cus-
tom script, and each segment was manually annotated with corresponding lyrics in .lab file format.
Despite considerable effort to select clips with consistent tempo and clear vocal quality, the record-
ing conditions varied across video sources. Consequently, the Native-Narrow dataset exhibits vari-
able acoustic quality, but it reflects a practical and realistic approach for collecting native-language
singing data under low-resource constraints.

Proficient-Wide is a self-recorded dataset captured in a quiet home environment using a high-
quality microphone. It was specifically designed to maximize vocal range and signal quality. Like
the Native-Narrow set, we segmented recordings into 5–15 second clips and manually aligned them
with .lab lyric files.

Figure 4 illustrates that the ProficientWide dataset encompasses a broader pitch range compared
to the NativeNarrow dataset, featuring a greater number of both high and low notes. In contrast,
NativeNarrow is concentrated primarily within the mid-range (C4–E4). We compared models fine-
tuned with these two datasets to assess how variations in vocal range affect the synthesis quality and



Section 4 EXPERIMENTAL SETUP 31

overall performance of the singing voice synthesis (SVS) system.

Figure 4: Note distributions for 2 customized datasets
For lyrics alignment, while tools such as LyricFA9 and Whisper10 offer automatic alignment, we
opted for fully manual annotation to reduce the cost of error correction and to ensure the highest
alignment precision.

4.1.2 Phoneme Alignment

To produce frame-level phoneme alignments, we initially applied the Montreal Forced Aligner
(MFA) (McAuliffe et al., 2017), which, despite being designed for speech, demonstrated higher
alignment accuracy than a domain-specific SOFA11 model we trained on GT-Singer.

Figure 5: SOFA Model Training
We believe this discrepancy stems from the limited and variable training data available for SOFA.

For highest precision, all alignment outputs were manually refined using vlabeler 12 , an annotation
tool better suited for singing than traditional Praat.

9https://github.com/wolfgitpr/LyricFA
10https://github.com/openai/whisper
11https://github.com/qiuqiao/SOFA
12https://github.com/sdercolin/vlabeler

https://github.com/wolfgitpr/LyricFA
https://github.com/openai/whisper
https://github.com/qiuqiao/SOFA
https://github.com/sdercolin/vlabeler
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Figure 6: Before Manual Alignment Figure 7: After Manual Alignment

Although the two custom datasets totaled only 30 minutes of audio, the manual alignment process
took approximately 20 hours of human effort, highlighting the labor-intensive nature of curating
high-quality singing data. This further motivates our work, which seeks to guide optimal data usage
under resource-constrained conditions.

4.1.3 Phoneme Mapping

German phonemes were mapped to English using a custom PHOIBLE-based script. We prioritized
37-dimensional phonological feature similarity, and used phoneme frequency in the English dataset
as a secondary tie-breaker to avoid rarely seen phonemes. The resulting mapping ensured compati-
bility with pre-trained English models without altering architecture or retraining embedding layers.

Figure 8: phoneme similarity between English and German

Figure 9: phoneme occurrences in English dataset
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4.1.4 Pitch and MIDI Feature Extraction

We used RMVPE 13 to extract F0 contours and voiced/unvoiced flags. MIDI and musical score
alignment were processed using the SOME toolkit14, with appropriate handling of tempo and note
duration normalization to match input frame rates (hop size = 512).

4.1.5 Data Structuring

For each experiment condition, we prepared training, validation manifests following DiffSinger’s
expected CSV structure. To simulate low-resource conditions, we selected 5 stimulies from each
dataset and prepare 8 stimulies from unseen songs, preserving pitch, tempo, and lyrical diversity. A
fixed random seed (42) was used to ensure reproducibility.

4.1.6 Software and Environment

All preprocessing scripts were implemented in Python 3.9 and run on a high-performance compute
cluster with 4 A100 GPU, and CUDA 11.8. Data handling leveraged librosa for audio loading,
jsonlines for manifest generation, and NumPy/Pandas for analysis.

4.2 Data Splitting
We maintain consistency by using the same train/validation/test set.

4.2.1 Train & Validation & Test Subsets

Given the limited amount of data and the need for controlled comparisons across models under low-
resource conditions, we designed a special test set includes both validation set as parallel stimulus
and out-of-domain samples as non-parallel stimulus.

The test set consists of 17 utterances from the following sources, with approximately equal dis-
tribution from the following sources:

• Parallel (15 short utterances): Five utterances were sampled from each of the three fine-
tuning datasets (GTSinger, ProficientWide, NativeNarrow), serving also as model-aligned par-
allel validation set.

• Non-Parallel (2 long utterances): Compiled from publicly sourced German singing record-
ings, used to assess generalization to out-of-domain data. These utterances were manually
preprocessed and aligned to enable inference.

All systems are validated with parallel validation subsets. The test set contains both parallel
validation subsets and the non-parallel samples. For FFE and MCD in objective evaluation we use
only parallel validation set as test samples, for objective WER and subjective evaluation we use both
parallel and non-parallel samples, this allows us to assess both matched and mismatched adaptation
scenarios.

This evaluation design supports both fair quantitative comparisons and realistic subjective as-
sessments for RQ1 and RQ2.

13https://github.com/Dream-High/RMVPE
14https://github.com/openvpi/SOME

https://github.com/Dream-High/RMVPE
https://github.com/openvpi/SOME
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4.3 Experiments
4.3.1 Training Configuration

Training hyperparameters were configured based on the OpenVPI DiffSinger codebase. Key opti-
mization parameters included:

• Learning rate: 0.0006, with StepLR scheduler (step size = 10k, gamma = 0.75)

• Mixed precision: 16-mixed for faster training and reduced memory usage

• Max updates: 160000; early stopping triggered manually based on loss plateau

• Aux. decoder gradient: 0.1 (lambda aux mel loss=0.2)

4.3.2 Augmentation

To enhance training diversity, random pitch shifting (range: [-5, 5], scale: 0.75) and time-
stretching (range: [0.5, 2.0], scale: 0.75) were enabled during training. After augmenta-
tion, data is expanded to 2.5 times of the original data size.

4.3.3 Training Monitoring:

TensorBoard was used to track training and validation loss. Training was halted manually when no
further improvement was observed across multiple checkpoints (see Figure 10).

Figure 10: Training loss monitoring via TensorBoard.
Model was stopped when loss plateaued.
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4.3.4 Experiment 1: Phoneme-Mapped Transfer with Different Data Sizes (RQ1)

This experiment evaluates whether a DiffSinger model pretrained on English singing data can be
adapted to German using PHOIBLE-based phoneme mapping and a small amount of German train-
ing data. We aim to assess whether such fine-tuned models can reach comparable performance to a
model trained from scratch on a large-scale German dataset. This directly addresses RQ1 and tests
H1. We compare four systems under varying data resource settings:

• Base GTs 3H: Trained from scratch using 3 hours of German GT-Singer data; serves as the
upper-bound baseline.

• FT GTs 30min: English-pretrained model fine-tuned on 30 minutes of phoneme-mapped
German data.

• FT GTs 15min: Same setup with only 15 minutes of fine-tuning data.

• Zero-shot: English-pretrained model evaluated directly on German phoneme input without
fine-tuning, included as a lower-bound baseline.

Valuation was performed on validation set and evaluation was performed on test set comprising
17 stimuli, including both parallel and non-parallel samples across datasets (Section 4.2). This
ensures consistency and comparability across systems.

All systems use the same model architecture and training configuration described in Sections 4.3.1
and 4.3.2. PHOIBLE-based phoneme mapping (Section 3.2) was applied consistently. The same
pitch extraction (RMVPE) and MIDI processing pipelines were used across experiments.

All training and inference were conducted on the same compute environment as detailed in Sec-
tion 4.1.6. Convergence was monitored using TensorBoard (see Figure 10) , and early stopping was
triggered manually upon loss plateau. Training configurations are summarized in Table 2.

Table 2: Training Configurations and Runtime for Experiment 1

Model Training Description Steps Batch
Size

Runtime

Base GTs 3H
English

Trained from scratch on 3 hours English
GTSinger data

14k 10∗ 2.5 hours
(4 GPU)

Base GTs 3H
German

Trained from scratch on 3 hours German
GTSinger data

27k 64 3.0 hours
(3 GPU)

FT GTs 30min
German

Fine-tuned on 30 min German GTSinger data,
initialized from Baseline English model

20k 64 1.0 hour
(4 GPU)

FT GTs 15min
German

Fine-tuned on 15 min German GTSinger data,
initialized from Baseline English model

18k 64 40 min
(4 GPU)

∗Reduced due to limited HPC resource availability.

Following the evaluation methodology in Section 3.4, we employ Objective metrics and Subjec-
tive metrics
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4.3.5 Experiment 2: Impact of Fine-Tuning Data Quality on SVS Performance (RQ2)

This experiment explores the influence of overall fine-tuning data quality—covering speaker na-
tiveness, vocal range, audio fidelity—on the perceived quality of synthesized singing in data-scarce
scenarios. This corresponds to RQ2 and empirically evaluates H2. We compare the following four
fine-tuning configurations, each using 15 minutes of German singing data:

• FT GTs 15min: A subset of GT-Singer featuring clean studio recordings but limited pitch
diversity and non-native accent.

• FT NativeNarrow 15min: Data from a native German speaker with moderate vocal range
and variable recording quality, reflecting realistic conditions often found in publicly available
sources.

• FT ProficientWide 15min: Data from a non-native but proficient speaker with a wide vocal
range, recorded in a quiet environment using high-quality equipment. Serves as the upper-
bound reference in low-resource settings.

• Zero-shot: An English-trained model evaluated on mapped German phonemes without any
adaptation. Included as a lower-bound baseline to measure the effect of fine-tuning.

The Native-Narrow and Proficient-Wide datasets were segmented and annotated manually to en-
sure alignment consistency. As discussed in Section 4.1.1, Native-Narrow recordings were sourced
from public YouTube content and exhibit variable recording fidelity, while Proficient-Wide was self-
recorded in a quiet environment with a broader pitch range (see Figure 4).

Valuation was performed on validation set and evaluation was performed on test set comprising
17 stimuli, including both parallel and non-parallel samples across datasets (Section 4.2). This
ensures consistency and comparability across systems.

All models are initialized from the same English-pretrained DiffSinger checkpoint and share
identical architecture and training settings (see Sections 4.3.1 and 4.3.2). Each variant is fine-tuned
on its respective 15-minute dataset for up to 18k steps, using batch size 64 and mixed-precision
training.

Training was conducted in the same environment described in Section 4.1.6. Each 15-minute
model required approximately 40–50 minutes of training on 4 A100 GPUs. Convergence was mon-
itored with TensorBoard (see Figure 10), and early stopping was applied based on validation loss
trends.
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Table 3: Training Configurations and Runtime for Experiment 2

Model Recording
Condition

Accent Vocal
Range

Steps Batch
Size

Runtime

FT GTs 15min
German

clean,
consistent

Strong
accent

Mid 18k 64 40 min
(4 GPU)

FT NativeNarrow
15min German

mixed,
occasional

noise

Native Narrow 20k 64 50 min
(1 GPU)

FT ProficientWide
15min German

clean,
consistent

Near-native Wide 35k 64 40 min
(1 GPU)

We use the same evaluation methodology as in Experiment 1 (see Section 3.4):
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5 Results
This section presents the experimental results that evaluate the effectiveness of the proposed singing
voice synthesis models under different training conditions. Both objective and subjective evalua-
tions were conducted to assess two key hypotheses regarding model fine-tuning and training data
composition in Section 5.1 and in Section 5.2. In Section 5.3 there is a short summary.

5.1 Experiment 1: Phoneme-Mapped Transfer with Different Data Sizes (RQ1)
This section evaluates H1, which investigates whether a DiffSinger model pre-trained on English
singing can be successfully adapted to German using only a small amount of phoneme-mapped Ger-
man data. Specifically, we compare two fine-tuned models (FT GTs 15min is trained on 15min and
FT GTs 30min is trained on 30 minutes of German data, respectively) to two baselines: a model
trained from scratch on three hours of German data (Base GTs 3H), and a zero-shot inference con-
dition with no German fine-tuning. Both objective metrics and subjective listening tests are used
to assess whether limited-data fine-tuning achieves comparable performance to large-scale monolin-
gual training.

5.1.1 Objective Evaluation

Table 4: Objective Evaluation Results

Model MCD (dB) ↓ FFE ↓ WER ↓
FT GTs 30min 12.75* ± 1.49 0.090 ± 0.017 0.315
FT GTs 15min 13.26 ± 1.65 0.088 ± 0.022 0.343
Base GTs 3H 13.30 ± 1.77 0.082 ± 0.018 0.404
Zero-shot 19.81* ± 1.74 0.127* ± 0.027 0.609*

*statistically significant different compare to other models (α = 0.05)
MCD: FT GTs 30min better than all others (p<0.05)
FFE/WER: Zero-shot worse than all fine-tuned models (p<0.001)
No other significant differences detected

Table 4 presents the objective evaluation results for H1. Normality assumptions were verified
using Shapiro-Wilk tests (p=0.15), confirming the suitability of parametric analysis. A one-way
ANOVA followed by Tukey’s HSD post-hoc test revealed significant differences in Mel-Cepstral
Distortion (MCD) across models. Specifically, FT GTs 30min achieved the lowest MCD (12.75
dB), significantly outperforming both the Base GTs 3H model (13.30 dB, p=0.021) and the FT GTs
15min model (13.26 dB, p=0.038). The zero-shot condition performed significantly worse than all
other models (19.81 dB, p< 0.001).

For F0 Frame Error (FFE), no significant differences were observed among the three fine-tuned
models (p=0.23), though all were significantly better than the zero-shot condition (p< 0.001). All
fine-tuned models achieved similar levels of pitch accuracy, suggesting that training duration had
limited impact on pitch tracking consistency within the synthesized audio.
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Word Error Rate (WER) analysis showed that the FT GTs 30min model achieved the lowest aver-
age WER (0.315), followed by FT GTs 15min (0.343) and Base GTs 3H (0.404), with the zero-shot
condition performing worst (0.609). However, statistical analysis revealed no significant differences
in WER among the three fine-tuned models (p=0.42), while all significantly outperformed the zero-
shot condition (p<0.001). This suggests that while acoustic fidelity (e.g., MCD) clearly benefits
from increased training duration, intelligibility improvements may be less sensitive to fine-tuning
duration within this data range.

5.1.2 Subjective Evaluation

To evaluate the perceptual quality of the generated singing voices, two subjective tests were con-
ducted: a MUSHRA-style absolute rating task and a comparative preference (CMOS-style) test.
Each test was analyzed across two listener groups: intermediate and native-level German speakers.

Figure 11 shows the distribution of MUSHRA scores assigned to each model by listeners of
different language proficiency levels. Figure 12 summarizes the relative preference ratios across
models and listener groups.

Figure 11: MUSHRA score distribution by model and language level

As shown in Figure 11, the MUSHRA results reveal three main patterns. First, Native speakers
consistently provided lower ratings than Intermediate speakers, particularly for the Zero-shot model.
While Intermediate listeners rated Zero-shot similarly to other models, Native listeners assigned
significantly lower scores, suggesting that Native speakers are more sensitive to pronunciation clarity
and singing naturalness.

Second, among the German models, the Baseline GTs 3H model—despite being trained on three
hours of data—did not outperform the fine-tuned models trained on significantly less data. This



Section 5 RESULTS 41

highlights that targeted fine-tuning can be more effective than large-scale training from scratch,
provided the data is well matched.

Third, comparing the two fine-tuned conditions, the FT GTs 30min model was generally rated
higher than the FT GTs 15min model by Native listeners. While the medians of the two models
were close, the FT GTs 15min model showed a wider score distribution, indicating inconsistency
across different stimuli. This suggests that although more fine-tuning data improves performance,
data quantity is not the only factor—stability and robustness across varied content also matter.

Figure 12: Preference ratio and heatmap by model and language level.

The CMOS-style evaluation results (Figure 12) support the same overall trend. In this test, lis-
teners compared two samples and selected which one they preferred using a 7-point scale. These
responses were converted into CMOS scores ranging from −3 (strongly prefer B) to +3 (strongly
prefer A), then aggregated into preference ratios for each model. Native listeners overwhelmingly
preferred the FT GTs 30min model, while Intermediate listeners showed more evenly distributed
preferences—including surprisingly frequent selection of the Zero-shot model. This again high-
lights that Native speakers are more linguistically sensitive and more discerning of pronunciation
and expressive nuance. Notably, FT GTs 15min was less stable in its preference performance, with
more variation across different stimuli compared to FT GTs 30min.

5.2 Experiment 2: Impact of Fine-Tuning Data Quality on SVS Performance
(RQ2)

This section evaluates whether fine-tuning data quality affects model performance under low-resource
conditions. We compare three DiffSinger models fine-tuned on 15 minutes of German data with dif-
ferent speaker characteristics with zero-shot model: (1) FT ProficientWide 15min (studio-quality,
proficient speaker, wide vocal range), (2) FT GTs 15min (studio-quality, accented, narrow vocal
range), (3) FT NativeNarrow 15min (variable-quality, native, narrow vocal range), and (4) Zero-shot
baseline.
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Table 5: Corrected Objective Evaluation Results

Model MCD (dB) ↓ FFE ↓ WER ↓
FT ProficientWide 15min 13.10* ± 1.19 0.072* ± 0.016 0.175*
FT GTs 15min 13.26 ± 1.65 0.088 ± 0.022 0.343
FT NativeNarrow 15min 14.61* ± 0.78 0.189* ± 0.034* 0.247*
Zero-shot 19.81* ± 1.74 0.127* ± 0.027 0.609*

*Statistically Significant different vs other models (α = 0.05)
MCD: ProficientWide vs GTs (p<0.01), NativeNarrow vs GTs (p<0.001), Zero-shot worst (p<0.001)
FFE: NativeNarrow worst (p<0.001), Zero-shot worse than ProficientWide/GTs (p<0.01)
WER: All models vs zero-shot significant (p<0.001); ProficientWide/NativeNarrow vs GTs (p<0.01);

Table 5 presents the objective evaluation results for Experiment 2. For acoustic quality measured
by MCD, FT ProficientWide achieved the best performance at 13.10 dB, significantly outperforming
both FT GTs (13.26 dB, p=0.008) and FT NativeNarrow (14.61 dB, p¡0.001). The Zero-shot condi-
tion showed the worst MCD at 19.81 dB, significantly poorer than all fine-tuned models (p¡0.001).

In terms of pitch accuracy (FFE), FT NativeNarrow exhibited the highest error rate at 0.189,
significantly worse than both FT ProficientWide (0.072, p¡0.001) and FT GTs (0.088, p¡0.001).
While Zero-shot (0.127) performed better than FT NativeNarrow, it remained significantly worse
than the other two fine-tuned models (p¡0.01).

The WER analysis revealed clear improvements in intelligibility. FT NativeNarrow achieved the
lowest WER at 0.175, representing a 49% relative improvement over FT GTs (0.343, p<0.001) and a
29% improvement over FT ProficientWide (0.247, p=0.007). FT ProficientWide still showed signifi-
cantly better performance than FT GTs (p=0.002). All fine-tuned models significantly outperformed
the Zero-shot condition (0.609, p<0.001).

5.2.1 Subjective Evaluation

Figure 13 presents MUSHRA ratings grouped by listener language level. The Zero-shot model
received consistently low scores across both groups, confirming the importance of target-language
fine-tuning.

Among fine-tuned models, we observe diverging preferences based on listener background. Na-
tive listeners gave notably higher ratings to FT NativeNarrow, despite its objectively lower quality,
likely due to its native accent and prosody. In contrast, intermediate listeners rated FT ProficientWide
highest, reflecting stronger sensitivity to vocal richness and clarity.

These trends suggest that native listeners prioritize accent accuracy and prosodic fluency, while
non-native listeners focus more on acoustic clarity and expressiveness.
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Figure 13: MUSHRA score distribution by model and listener language proficiency.

Figure 14: Pairwise preference ratios (CMOS) by model and listener proficiency.

Figure 14 displays pairwise preference ratios (CMOS) for each model. Both native and interme-
diate listeners showed a strong preference for FT NativeNarrow, especially when contrasted directly
with accented or zero-shot outputs. This confirms the perceptual salience of native pronunciation in
pairwise evaluations, even if the audio quality is inferior.

Interestingly, intermediate listeners preferred FT NativeNarrow over FT ProficientWide in CMOS,
despite the opposite trend in MUSHRA. This suggests that different evaluation formats (absolute vs
comparative) emphasize different perceptual cues: direct comparisons tend to highlight accent and
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articulation, while scale-based judgments reflect broader acoustic impressions.

5.3 Summary of results
The objective evaluation of experiment 1 showed that fine-tuning with limited German data (15-30
minutes) achieved competitive performance compared to training from scratch on three hours of data.
The 30-minute fine-tuned model (FT GTs 30min) performed best in acoustic quality (MCD: 12.75
dB), surprisinging significantly surpassing the baseline (13.30 dB). Pitch accuracy (FFE) was similar
across fine-tuned models, while intelligibility (WER) showed no significant differences between
them. The zero-shot model performed poorly across all metrics, confirming the necessity of fine-
tuning.

Subjectively, native German speakers rated models more critically than intermediate speakers,
particularly penalizing the zero-shot condition. The 30-minute fine-tuned model was preferred over
the 15-minute version, suggesting that even small increases in fine-tuning data improve stability.
However, the baseline (trained on 3 hours) did not outperform fine-tuned models, indicating that
pre-training and targeted adaptation are in some cases more effective than large-scale training from
scratch.

From experiment 2 , objectively we could see the model fine-tuned on studio-quality, proficient
speaker data (FT ProficientWide 15min) achieved the best acoustic and pitch metrics (MCD: 13.10
dB, FFE: 0.072). However, the native-speaker model (FT NativeNarrow 15min) had the lowest WER
(0.175), highlighting that native accent improves intelligibility despite lower recording quality. The
zero-shot model remained the worst performer.

Subjective evaluations revealed a divergence in preferences: native listeners strongly favored the
native-speaker model, even with its lower audio quality, due to better pronunciation and prosody.
Intermediate listeners, however, preferred the studio-quality recordings (FT ProficientWide) in ab-
solute ratings but still chose the native model in direct comparisons. This suggests that while audio
fidelity matters, native accent and articulation are perceptually dominant in pairwise evaluations.
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6 Discussion
This section interprets and contextualizes the findings presented in Section 5, linking them back
to the research questions (RQ1, RQ2) and hypotheses (H1, H2) introduced in Section 1.1. We
synthesize objective and subjective results across both experiments to evaluate the validity of our
assumptions, highlight emerging insights (See Section 6.1 and Section 6.2), and reflect on limitation
in Section 6.3 and broader implications in Section 6.4 for cross-lingual singing voice synthesis in
low-resource settings. A short summary is in Section 6.5.

6.1 Validation of the First Hypothesis
The results provide nuanced support for H1, which posited that fine-tuning a pre-trained English
DiffSinger model with limited phoneme-mapped German data could achieve performance compara-
ble to training from scratch on a larger German dataset.

Objectively, the 30-minute fine-tuned model (FT GTs 30min) not only matched but surprisingly
surpassed the baseline (Base GTs 3H) in Mel-Cepstral Distortion (MCD), achieving 12.75 dB com-
pared to 13.30 dB (p = 0.021). This suggests that the acoustic quality of synthesized singing can
benefit from the knowledge transfer enabled by pre-training, even when fine-tuning data is limited.
However, the 15-minute fine-tuned model (FT GTs 15min) did not show statistically significant
improvements over the baseline, indicating a practical threshold for effective adaptation. The zero-
shot condition performed significantly worse across all metrics, reinforcing the necessity of some
target-language fine-tuning. These findings align with prior work in speech synthesis (Do et al.,
2022), where phoneme mapping facilitated cross-lingual transfer, but extend it to the more complex
domain of singing voice synthesis.

Subjective evaluations further illuminated these trends. Native German listeners consistently
preferred the FT GTs 30min model in both MUSHRA and CMOS tests, while FT GTs 15min showed
more variable performance. This perceptual advantage likely stems from the combination of pre-
trained expressiveness and targeted adaptation. The baseline model, despite being trained on three
hours of German data, suffered from the limitations of the GTSinger German subset, which includes
non-native recordings with accented pronunciation and constrained vocal range. In contrast, the
fine-tuned models built upon a pre-trained English model that was trained on higher-quality, more
expressive data, enabling better preservation of vocal characteristics even with limited German fine-
tuning.

These results affirm that cross-lingual fine-tuning with as little as 30 minutes of target language
data can rival or surpass models trained on larger monolingual datasets. However, they also highlight
the importance of data sufficiency and quality, as extremely limited fine-tuning (e.g., 15 minutes)
may yield inconsistent gains. This insight is particularly relevant for under-resourced languages,
where identifying the minimal viable data for effective adaptation is critical.

6.2 Validation of the Second Hypothesis
The results strongly support H2, which proposed that the quality of fine-tuning data—encompassing
factors such as accent, vocal range, and recording conditions—significantly impacts synthesis per-
formance in low-resource settings.



Section 6 DISCUSSION 47

Objectively, the FT ProficientWide 15min model, trained on studio-quality recordings by a pro-
ficient (though non-native) singer with wide vocal range, achieved the best FFE (0.072) and compet-
itive MCD (13.10 dB). This demonstrates that high recording fidelity and expressive vocal delivery
can compensate for near-native pronunciation. In contrast, the FT NativeNarrow 15min model,
recorded by a native speaker but under variable conditions with narrow vocal range, performed
poorly on pitch accuracy (FFE: 0.189) but excelled in intelligibility (WER: 0.175). This divergence
underscores the multifaceted nature of data quality: while native accent enhances linguistic clarity,
vocal expressiveness and recording conditions independently contribute to acoustic fidelity. The FT
GTs 15min model, trained on the standard GTSinger German subset, lagged behind both in WER
(0.343), further emphasizing the limitations of non-native recordings.

Subjective evaluations revealed a striking divergence shaped by listener background. Native lis-
teners strongly preferred FT NativeNarrow in pairwise tests, prioritizing its native-like intonation
and accent despite its lower acoustic scores. Intermediate listeners, however, favored FT Proficien-
tWide, valuing its expressive dynamics and clarity over accent purity. This dichotomy aligns with
prior findings in speech synthesis (Tomokiyo et al., 2005; Vı́t et al., 2018), where accent significantly
influenced perceived naturalness, but extends them to the singing domain, where additional factors
like vocal range and expressiveness play critical roles.

These findings collectively demonstrate that data quality is as important as quantity in low-
resource SVS adaptation. Enhancing either pronunciation quality or vocal expressiveness can signif-
icantly improve perceived output, even when recording conditions are imperfect. For practical appli-
cations, this suggests that data curation should balance accent clarity, vocal diversity, and recording
quality based on target listener profiles and use cases.

6.3 Limitations
While the results of this study provide valuable insights into cross-lingual fine-tuning for singing
voice synthesis, several limitations should be acknowledged.

First, the scope of the fine-tuning data was constrained by time and availability. Each model
in Experiment 2 was trained on only 15 minutes of singing data, which, although realistic for low-
resource settings, may not fully capture the expressive or phonetic variability required for robust
generalization. Additionally, the datasets differed in multiple dimensions simultaneously (e.g., ac-
cent, vocal range, audio fidelity), making it difficult to isolate the effects of individual factors. Future
work could use more controlled datasets where only one variable differs at a time to better assess
causal effects.

Secondly, subjective evaluations were limited to 30 listeners and the sample size—though suf-
ficient for general trends—may not capture more nuanced listener diversity. Moreover, due to the
large number of models and concerns about survey length, we used Whisper ASR for intelligibil-
ity instead of transcription tasks. However, Whisper is optimized for speech and performs poorly
on singing. Furthermore, as diffusion models produce highly natural results with small differences
between them, we did not guide listeners to focus on specific attributes, which may have led to in-
consistent interpretations. Future studies should include more structured instructions and evaluation
criteria to improve reliability.

Finally, the study was conducted under significant time constraints, limiting the range of experi-
ments (e.g., exploring more fine-tuning durations, speaker combinations, or language pairs). These



Section 6 DISCUSSION 48

trade-offs reflect the realities of working with limited computing resources and thesis timelines, but
they also suggest several clear directions for expansion.

Despite these limitations, the study’s findings remain meaningful within its design scope, and
they lay a foundation for future, more controlled, and larger-scale investigations in low-resource
multilingual singing voice synthesis.

6.4 Practical Implications
The findings of this study have several practical implications for the development of singing voice
synthesis systems, particularly in multilingual and low-resource contexts. First, they demonstrate
that it is feasible to adapt a pre-trained English singing model to German using a small amount
of phoneme-mapped target data. This approach significantly lowers the data barrier for supporting
underrepresented languages in singing synthesis.

Second, the results show that careful selection of fine-tuning data—prioritizing speaker clarity,
expressiveness, and recording quality—can have a greater impact than simply increasing the amount
of data. This insight is crucial for practitioners working with limited corpora, such as in voicebank
creation or personalized voice synthesis.

From an industrial perspective, these findings support the development of more accessible and
cost-effective music production tools. By reducing the reliance on large-scale, language-specific
datasets, our approach enables faster deployment of SVS models across different linguistic com-
munities. This can benefit independent musicians who seek for a replacement of expensive human
demo recording sessions.

Finally, the work contributes to broader societal goals by promoting inclusivity and cultural
preservation. Enabling high-quality singing synthesis in underrepresented languages helps preserve
linguistic diversity and musical expressions. It also opens opportunities for individuals with speech
impairments or limited access to vocal training, offering them creative outlets through synthesized
voices.

6.5 Discussion Summary
In summary, The results support H1, showing that fine-tuning a pre-trained English model with just
30 minutes of German data can match or even surpass a model trained from scratch on 3 hours of
German data, though smaller adaptations (15 minutes) yield inconsistent gains. H2 was also vali-
dated, confirming that data quality (accent, vocal range, recording conditions) significantly impacts
performance—expressive vocals compensate for non-native pronunciation, while native accent im-
proves intelligibility. Despite limitations in data scope and evaluation, the findings highlight the
feasibility of efficient cross-lingual adaptation, reducing barriers for low-resource singing synthesis
and enabling broader applications in music and accessibility.
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7 Conclusion
This thesis investigated the feasibility of adapting a singing voice synthesis (SVS) model pre-trained
on English to German through phoneme mapping and low-resource fine-tuning. Our work specif-
ically examined how both the duration and quality of fine-tuning data influence synthesis perfor-
mance in cross-lingual settings. The findings demonstrate that strategic adaptation can overcome
data scarcity while revealing important trade-offs between acoustic quality, intelligibility, and lis-
tener perception. This conclusion synthesizes the key contributions in Section 7.1, outlines future
research directions in Section 7.2, and reflects on the broader implications of this work in Section
7.3.

7.1 Summary of the Main Contributions
The experimental results provide compelling evidence that cross-lingual fine-tuning with limited
German data can achieve performance comparable to or exceeding models trained from scratch on
larger datasets. Our 30-minute fine-tuned model not only matched but surpassed the baseline German
model in objective metrics (12.75 dB MCD vs. 13.30 dB), while subjective evaluations revealed na-
tive listeners’ strong preference for the adapted model. This success confirms that knowledge trans-
fer from English pre-training can effectively compensate for limited target-language data, though
we identified a practical threshold—15 minutes of fine-tuning yielded inconsistent improvements,
suggesting a minimum data requirement for reliable adaptation.

The study’s second major finding concerns the critical role of data quality in low-resource set-
tings. We observed that different aspects of quality—accent purity, vocal range, and recording
conditions—each contribute distinct advantages. Studio-quality recordings by a proficient (though
non-native) singer achieved the best acoustic metrics (FFE: 0.072), while native-speaker record-
ings excelled in intelligibility (WER: 0.175). This divergence was particularly evident in subjective
evaluations, where native listeners prioritized accent purity while intermediate listeners favored ex-
pressive vocal delivery. These results suggest that practitioners can strategically prioritize different
quality dimensions based on their target application and audience.

Methodologically, we developed a practical cross-lingual adaptation pipeline that combines phoneme
mapping with minimal fine-tuning—an approach that could be generalized to other language pairs
and low-resource scenarios. The consistent performance across objective and subjective measures
validates this methodology while highlighting the importance of perceptually-aligned evaluation in
singing synthesis.

7.2 Future Work
Several promising directions emerge from this research. First, controlled experiments isolating in-
dividual quality factors (accent vs. recording fidelity vs. vocal range) would help establish clearer
guidelines for data curation. Our current findings suggest these dimensions interact in complex ways,
and targeted studies could quantify their relative importance under different adaptation scenarios.

The methodology should also be tested with more diverse language pairs, particularly those with
greater phonological divergence than English and German. Such extensions would reveal whether
the current phoneme-mapping approach scales to more challenging cross-lingual transfers or re-
quires modifications for optimal performance.
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Evaluation protocols present another important avenue for improvement. Future work should
develop perceptually-motivated objective metrics that better align with human judgments, as our re-
sults revealed notable discrepancies between traditional acoustic measures and listener preferences.
Expanding listener panels to include more diverse demographics and expertise levels would also
strengthen findings, particularly for applications targeting specific user groups.

Finally, the practical constraints encountered in this study—limited computing resources and
dataset availability—suggest opportunities for community efforts. Curated multilingual singing
datasets with controlled variability factors would enable more rigorous comparisons, while stan-
dardized evaluation protocols could facilitate cross-study comparisons. Such resources would signif-
icantly advance research in this emerging field while lowering barriers to entry for under-resourced
languages.

7.3 Impact & Relevance
Beyond technical contributions, this work has important implications for music technology and dig-
ital creativity. By demonstrating effective cross-lingual adaptation with minimal data, we lower the
barriers for developing singing synthesis in underrepresented languages. This advancement sup-
ports cultural preservation efforts and expands creative possibilities for musicians working with less
commonly supported languages.

The findings also inform industrial applications, suggesting more cost-effective pathways for de-
veloping multilingual SVS systems. Music production tools could leverage our adaptation approach
to quickly support new languages without requiring extensive data collection campaigns. For voice
banking and assistive technologies, the quality trade-offs we identified provide practical guidance
for optimizing limited recording sessions with clients.

At its core, this research speaks to a broader ideal: that creativity and expression should not be
limited by language or data availability. Through thoughtful adaptation and design, it is possible
to bring expressive, intelligible, and inclusive singing synthesis to more communities, voices, and
cultures. This work is one small step in that direction.
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A Subjective Evaluation
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Consent Form

Consent Form

What this is about: 
You are invited to participate in a listening study as part of my
master’s thesis.
The purpose of this study is to evaluate the perceived
naturalness, clarity, and quality of AI-generated singing voices
trained with different datasets and fine-tuning strategies.

What you will do:
You will be asked to listen to a small number of short audio clips
(5–20 seconds each) and answer questions. The full survey is
consist of 2 parts, 10 questions and it will take about 10-15
minutes.

Consent:
Your participation is completely voluntary. No personal data is
collected. Your responses will be used solely for academic
research purposes and may be included anonymously in the

25-05-2025 23:44Qualtrics Survey Software

第2/8⻚https://rug.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyP…tSurveyID=SV_blbqPXoAmiWzP82&ContextLibraryID=UR_cMTeNCFxO0tE4AK

final thesis report.

By typing “I agree” below, you confirm that:
• You are 18 years or older.
• You have read and understood the information above.
• You consent to participate in this study.  

Q1: What is your level of German proficiency? 

Part3 CMOS Test 

Q2: Please rate how much you prefer Audio A over Audio B.
Song A 
Song B 

 

0:00 -0:09

0:00 -0:09

Native speaker / near-native proficiency

Advanced / Intermediate

Beginner* (We prefer at least intermediate German speakers. For beginners,
you are welcome to join but the result might be not/partially adopted)

Strongly prefer A

Moderately prefer A
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Q3: Please rate how much you prefer Audio A over Audio B.
Song A  
Song B 
 

Q4: Please rate how much you prefer Audio A over Audio B.
Song A   
Song B  
 

0:00 -0:05

0:00 -0:05

0:00 -0:03

0:00 -0:03

Slightly prefer A

About the same

Slightly prefer B

Moderately prefer B

Strongly prefer B

Strongly prefer A

Moderately prefer A

Slightly prefer A

About the same

Slightly prefer B

Moderately prefer B

Strongly prefer B

Strongly prefer A

Moderately prefer A

Slightly prefer A
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Q5: Please rate how much you prefer Audio A over Audio B.
Song A   
Song B  
 

Q6: Please rate how much you prefer Audio A over Audio B.
Song A  
Song B  

 

0:00 -0:12

0:00 -0:12

0:00 -0:06

0:00 -0:06

About the same

Slightly prefer B

Moderately prefer B

Strongly prefer B

Strongly prefer A

Moderately prefer A

Slightly prefer A

About the same

Slightly prefer B

Moderately prefer B

Strongly prefer B

Strongly prefer A

Moderately prefer A

Slightly prefer A
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Q7: Please rate how much you prefer Audio A over Audio B.
Song A  
Song B  

 

Q8: Please rate how much you prefer Audio A over Audio B.
Song A   
Song B  
 

0:00 -0:06

0:00 -0:06

--:--

0:00 -0:08

About the same

Slightly prefer B

Moderately prefer B

Strongly prefer B

Strongly prefer A

Moderately prefer A

Slightly prefer A

About the same

Slightly prefer B

Moderately prefer B

Strongly prefer B

Strongly prefer A

Moderately prefer A

Slightly prefer A
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Block 4 MUSHRA Test

Q9: Please evaluate the overall quality of the following singing
voice samples compared to the reference.  You will hear a
reference recording from professional singer and 6 AI model-
generated versions of the same musical phrase. Please rate
each system’s output on a scale from 0 (very poor) to 100
(excellent). Instructions:
 • You can play each clip multiple times.
 • Try to use the full range of the scale.
 • The reference is not included in the scoring.

Reference  
Song 1  
Song 2  
Song 3  
Song 4  
Song 5  
Song 6  
 

0:00 -0:18

0:00 -0:19

--:--

--:--

0:00 -0:19

0:00 -0:19

--:--

About the same

Slightly prefer B

Moderately prefer B

Strongly prefer B
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Block 5

Q10: Can you tell which factor influences you the most when you
did this survey?  You can choose multiple answers 

All done!

 

song 1                    

song 2                    

song 3                    

song 4                    

song 5                    

song 6                    

 0 10 20 30 40 50 60 70 80 90 100

Intelligibility

Naturalness

Expressiveness

Timber

Native/Accent speaker

Accurate Pitch

I don't know, just a feeling

Something else, can write in the next comment part
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Powered by Qualtrics

But before you finish this survey, is there any other comments
you'd like to share? 
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B Declaration of AI Use
This work was supported by the use of Deepsee and ChatGPT in the following capacities:

• Facilitating Python code development for training diffusion models, which involved refining
dependencies and troubleshooting issues.

• Providing insights on both objective and subjective evaluation methodologies, including rec-
ommending suitable approaches and assisting with the structuring of the evaluation scripts.

• Enhancing the analysis of results by identifying significant patterns and organizing data into
clear tables and charts.

• Elevating the quality of academic writing through improvements in grammar, clarity, and over-
all tone across all sections of the document.

All suggestions generated by AI tools were thoroughly reviewed and modified as necessary by
me. The experimental design, interpretation of findings, and ultimate conclusions presented in this
thesis are entirely my own. I take full responsibility for the content and accuracy of this work.

Name: Jiashu Dong

Date: 11.06.2025
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