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Dr. Joshua K. Schäuble, Assistant Professor (Voice Technology, University of Groningen)

with the second reader being
Supervisor 2’s title and name (Voice Technology, University of Groningen)

Shiran Sun (S5878594)

June 11, 2025



3

Acknowledgements

I would like to extend my deep gratitude to my supervisor at Gerimedica, Dr. Jan-Willem van
Leussen, for his invaluable technical support and access to essential data resources. His insightful
suggestions and innovative ideas throughout the writing process have been instrumental in shaping
the direction and quality of this thesis.

I am also sincerely grateful to Dr. Matt Coler for his early contributions. His support during the
initial stages laid a strong foundation for this research.

My thanks also go to all the teachers in the Voice Technology program, such as Dr. Phat Do, Dr.
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Abstract

Automatic Speech Recognition (ASR) technology is becoming more prevalent in clinical settings,
but the performance of closed- and open-vocabulary ASR models on domain-specific speech in
healthcare is not well studied. In this paper, we present a comparative evaluation of an ASR sys-
tems, operating in closed- and open-vocabulary settings, for the recognition of Dutch clinical ter-
minology. We consider a closed vocabulary Kaldi TDNN model and an open vocabulary Pruned
RNN-Transducer (K2-RNN-T), both trained on more than 1000 hours of Dutch speech, consisting
of 12 hours domain-specific training data. We evaluate both systems on a professionally transcribed
Dutch medical consultation corpus containing over 8000 utterances, using both standard evaluation
metrics (WER, CER), domain-specific evaluation metrics (Medical WER and CER), and term-level
evaluation (precision, recall, F1 score).

We find that in general the closed vocabulary model obtains better recognition results for structured
medical terms, such as diseases and drug names: the precision and F1 score is higher while the
Medical WER and CER is lower. The open vocabulary model, on the other hand, has better recall
and general transcription accuracy and seems more flexible in handling morphologically varied or
unknown terms. Evaluation is performed through SNOMED CT and spaCy-based Named Entity
Recognition (NER) to extract clinical and contextual entities from the transcription.

This study also uncovers notable error types such as phonetic substitutions, semantic approxima-
tions, and truncations, each with distinct clinical implications. Results highlight a trade-off between
lexical accuracy and adaptability: while the closed-vocabulary model ensures stability for structured
content, the open-vocabulary model captures a broader lexical range, including personal and brand
names often missed by fixed lexicons.

This work shows the strengths of ASR approaches in both closed- and open-vocabulary settings
and motivates task-specific optimisation in medical speech applications. The evaluation framework
presented here can be adapted for other low-resource languages and specialised domains.
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1 Introduction

Automatic Speech Recognition (ASR) has gone through significant developments in the recent
decades, advancing from statistical to deep learning-based models. Previous systems utilized fixed,
closed-vocabularies, which hindered their capability in dealing with novel or rare words. The
open-vocabulary methods came into picture as an alternative, especially open-vocabulary modeling
methods such as byte-pair encoding (BPE) and wordpiece segmentation, which build words from
sub-units to handle out-of-vocabulary words more effectively (Sennrich, Haddow, & Birch, 2016).
These methods are widely adopted in modern ASR toolkits and are often integrated into powerful
sequence modeling frameworks, including attention-based encoder-decoder models (Chan, Jaitly,
Le, & Vinyals, 2015) and Transformer architectures (Vaswani et al., 2017). These advances have
significantly improved ASR performance in general speech domains. However, general domain
pre-training model does not always transfer adequately to the clinical domain due to its highly spe-
cialized language (Laparra, Mascio, Velupillai, & Miller, 2021). These issues highlight the need for
models that are better adapted to the linguistic and contextual complexity of clinical speech.

Using the correct medical words is very important for ASR systems in healthcare. It helps keep care
safe, fast, and focused on the patient. For example, if the system hears “no known allergies” but
writes “known allergies,” the patient might get the wrong treatment or feel worried. Even small mis-
takes, like writing the wrong drug name, dose, or test result, can cause problems in communication
between doctors, patients, and hospital staff. Medical reports are important for sharing information.
If there are mistakes in them, it can reduce trust and make doctors look unprofessional. This might
also cause harm to the patient.(Poder, Fisette, & Déry, 2018).

Given its critical role in ensuring safe and effective healthcare delivery, it is essential to understand
how current ASR technologies perform in medical contexts. Most research today tries to make ASR
more accurate using general tests, but it often ignores the special problems of understanding med-
ical speech. Although open-vocabulary models have shown promise in handling out-of-vocabulary
(OOV) terms in broader contexts (Prabhavalkar, Hori, Sainath, Schlüter, & Watanabe, 2023), there
is limited comparative analysis between closed- and open-vocabulary approaches in medical ASR
tasks. This gap is especially important given the high stakes of transcription accuracy in health-
care. Studies report that Word Error Rates (WER) in medical ASR remain significantly higher than
in other domains, ranging from 7.4% to 38.72% for general medical terms and 5.21% to 9% for
specialized vocabulary (Blackley, Huynh, Wang, Korach, & Zhou, 2019). To address the gap in
domain-specific ASR evaluation and the lack of comparative studies on vocabulary approaches in
medical settings, this study investigates Dutch clinical speech data from the healthcare domain. It
systematically compares the performance of closed- and open-vocabulary ASR models across differ-
ent categories of medical terminology, combining quantitative metrics with qualitative error analysis.
The aim is to support the development of ASR systems that are better aligned with the practical needs
of real-world healthcare environments.

Now that the motivation for this research has been presented, the structure of this thesis is as follows:

• Section 1.1 presents the research questions and hypotheses.
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• Section 2 reviews literature on ASR systems in healthcare, Dutch-specific speech challenges,
clinical terminology and NER, and evaluation metrics, highlighting gaps in Dutch medical
ASR research.

• Section 3 describes the methodological approach and technical framework, detailing the ASR
models (Kaldi-TDNN and K2-RNN-T), the use of SNOMED CT and spaCy for term extrac-
tion, and the design of the term-matching and evaluation method.

• Section 4.3 presents and analyzes the results across both general and medical-specific metrics,
with breakdowns by term category and error type.

• Section 5 discusses the implications of the findings in relation to the research questions and
hypothesis, emphasizing the trade-offs between model architectures and evaluating the limita-
tions of the current study.

• Section 6 summarizes the thesis and synthesizes the main contributions, followed by a discus-
sion of future research directions.

1.1 Research Questions and Hypotheses

In light of the preceding discussion, this research addresses the following question:

To what extent do closed- and open-vocabulary ASR models differ in recogniz-
ing clinical terminology and named entities in Dutch medical speech, as evaluated
through multiple quantitative metrics and qualitative error analysis?

This main question can be broken down into the following sub-questions:

• How can clinical terms and named entities be effectively extracted from medical transcripts
for evaluation, and which methods are appropriate for identifying different term categories?

• How do the two ASR models compare in recognizing these terms, based on evaluation metrics
and error patterns, and do they show clear strengths or limitations in specific categories?

Our hypothesis is that while open-vocabulary models generally achieve lower Word Error Rates
(WER) in overall transcription tasks, closed-vocabulary models demonstrate more stable and con-
trollable performance in domain-specific keyword recognition, particularly in terms of a more reli-
able precision-recall tradeoff and overall error control in structured terminology.

This hypothesis is supported by results from (Chiu et al., 2017), where a closed-vocabulary CTC
model achieved 92% precision and 86% recall on medical phrase recognition, although it had a
higher overall WER of 20.1%. In contrast, the open-vocabulary LAS model achieved a lower overall
WER of 18.3% and a recall of 98.2% on drug name recognition (precision was not reported). In
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addition, Chiu et al. also observed that the CTC model performed better on speech from doctors,
which usually contains more structured and term-heavy language. These results suggest that while
open-vocabulary systems may be more flexible, closed-vocabulary models provide higher reliability
in structured medical contexts.
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2 Literature Review

The increasing integration of ASR technologies into clinical workflows has prompted a growing
body of research investigating their effectiveness in domain-specific contexts. This literature review
situates the current study within four key strands of prior work: (1) the comparative development of
closed- and open-vocabulary ASR systems, with a focus on their applicability to healthcare speech;
(2) the unique linguistic and acoustic challenges posed by the Dutch language, including compound-
ing, code-switching, and low-resource constraints; (3) the role of clinical terminology systems and
named entity recognition (NER) in medical transcription accuracy; and (4) the evolution of evalua-
tion metrics tailored to the needs of domain-sensitive ASR, such as Medical WER and entity-level
F1 scores. Together, these dimensions provide a conceptual and methodological foundation for ana-
lyzing how different ASR paradigms perform in capturing critical clinical content in Dutch medical
speech.

2.1 Search Strategy and Selection Criteria

Keywords by Topic:

• Topic 1 – Speech Technology: “automatic speech recognition”, “ASR”

• Topic 2 – Domain Focus: “medical terminology”, “healthcare speech”

• Topic 3 – Vocabulary Modeling: “closed-vocabulary”, “open-vocabulary”, “lexicon-based”,
“subword-based”

Exclusion Criteria:

• Studies without experimental results

• General ASR research unrelated to medical or specialized terminology

• Research focusing on ASR algorithms

2.2 ASR Systems in Healthcare: Closed vs. Open Vocabulary ASR Systems

2.2.1 Closed Vocabulary ASR Systems

Closed-vocabulary ASR systems are traditionally based on a lexicon-driven architecture, where only
a predefined set of words in a fixed vocabulary can be recognized. These systems typically follow a
hybrid design comprising three key components: an acoustic model (AM), a pronunciation lexicon,
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and a statistical language model (LM). The pronunciation lexicon maps each word in the vocabulary
to its corresponding phoneme sequence, enabling accurate decoding through a constrained search
space.

Figure 1: Hybrid ASR architecture1showing feature extraction, acoustic model, lexicon, and lan-
guage model. The AM estimates P(O |W ): the likelihood of features O given word sequence W ; the
LM provides P(W ), the prior probability of W .

Decoding in these systems is typically performed using a Weighted Finite-State Transducer (WFST)-
based architecture, where individual transducers representing different components are composed
into a single search graph. The decoding graph, known as HCLG, integrates the Hidden Markov
Model (H), context-dependency (C), lexicon (L), and grammar or language model (G), and is con-
structed as follows:

HCLG = min(det(H ◦det(C ◦det(L◦G))))

Here, ◦ denotes composition, det denotes determinization, and min represents minimization to op-
timize the graph size and search efficiency. This precompiled structure allows for highly efficient
decoding, especially in domains with limited vocabulary variability (Garg, 2019).

To estimate the acoustic likelihoods used in decoding, modern closed-vocabulary systems often em-
ploy Time-Delay Neural Networks (TDNNs) as the acoustic model. TDNNs are particularly ef-

1Adapted from: https://medium.com/intel-student-ambassadors/attention-in-end-to-end-automatic
-speech-recognition-9f9e42718d21

https://medium.com/intel-student-ambassadors/attention-in-end-to-end-automatic-speech-recognition-9f9e42718d21
https://medium.com/intel-student-ambassadors/attention-in-end-to-end-automatic-speech-recognition-9f9e42718d21
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fective at modeling long-range temporal dependencies by capturing contextual information across
multiple time frames. Figure 2 illustrates the hierarchical context structure of a typical TDNN archi-
tecture used in this setting.

Figure 2: TDNN architecture2showing how each layer learns from different temporal contexts, en-
abling efficient modeling of long-range dependencies

Systems such as the Kaldi TDNN-HMM pipeline and IBM Watson’s closed-vocabulary ASR are
representative of this architecture. Earlier systems like CMU Sphinx and Google’s hybrid ASR
frameworks also used WFST-based decoding with fixed-vocabulary lexicons. One of the key advan-
tages of this modular structure is its adaptability using only text data. Since the lexicon and language
model are external to the acoustic model, domain-specific terms such as clinical terminology can be
integrated without retraining the entire system. This makes closed-vocabulary ASR a good choice
for organized settings and limited-resource situations.(Khassanov, 2020).

However, a major drawback of closed-vocabulary ASR is its inability to handle OOV terms. This
limitation is particularly problematic in dynamic domains like healthcare, where new drug names,
rare diseases, or proper nouns frequently appear. While closed-vocabulary systems provide high
recognition accuracy for known terms, they inherently lack the flexibility to adapt to novel or evolv-
ing vocabularies.

2(Peddinti, Povey, & Khudanpur, 2015)
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2.2.2 Open Vocabulary ASR Systems

Open-vocabulary ASR systems are designed to recognize words beyond a fixed lexicon, making
them well-suited for domains with frequent OOV terms, such as medical terminology or named
entities. Unlike classical ASR systems that rely on predefined phoneme dictionaries and modular
pipelines, which includes separate acoustic models, lexicons, and language models, open-vocabulary
models typically adopt end-to-end (E2E) architectures that map audio directly to subword units
(Zhou, Zeineldeen, Zheng, Schlüter, & Ney, 2021). This structure removes the need for hand-
crafted pronunciation dictionaries, allowing systems to learn directly from audio-text pairs. As a
result, training and deployment are often simpler and more flexible across domains and languages.

In the context of speech recognition, prominent open-vocabulary architectures include Connection-
ist Temporal Classification (CTC), Attention-based Encoder-Decoder (AED) and Recurrent Neural
Network Transducer (RNN-T) models (Figure 3). These architectures are widely adopted in end-to-
end ASR systems due to their ability to handle subword-level decoding without fixed vocabularies.
These architectures differ in their alignment strategies: CTC and RNN-T use explicit alignment,
while AED uses implicit attention-based alignment, but they all support subword decoding with-
out reliance on fixed lexicons. Representative systems include Wav2Vec2 + CTC (Baevski, Zhou,
Mohamed, & Auli, 2020), Conformer + RNN-T (Gulati et al., 2020), and transformer-based AED
models (Karita et al., 2019). However, it is important to note that CTC’s classification as open-
vocabulary depends on the decoding strategy: while CTC can function in an open-vocabulary setting
with subword or character-based beam search decoding, its traditional use with WFST decoders and
lexicon constraints more closely aligns it with closed-vocabulary models (Prabhavalkar et al., 2023).

On the downside, these systems usually need more training data to achieve good accuracy. Also,
their outputs can sometimes be less stable, especially in noisy environments or when the input is
less structured. This is partly because they don’t use decoding graphs, which normally help guide
the output in more traditional systems. As a result, they may be more likely to make mistakes with
words that sound the same or have tricky spellings.

Furthermore, without fixed lexicons or external language models, open-vocabulary systems can have
trouble staying consistent with special terms in certain fields. This can be problematic in settings like
healthcare, where precise word choice is critical. These systems may also create words that sound
correct but are actually wrong, especially when the speaker has a strong accent, uses rare names,
or speaks technical language. To improve robustness, some approaches combine open-vocabulary
decoding with domain-adapted language models or post-processing filters.

2.2.3 Closed-vocabulary and open-vocabulary ASR for Healthcare Speech

In the context of healthcare speech recognition, closed-vocabulary and open-vocabulary ASR sys-
tems represent two contrasting approaches with complementary strengths. Closed-vocabulary sys-
tems, typically based on TDNNs and implemented via WFST decoders in frameworks like Kaldi,

3(Li, 2022)



Section 2 LITERATURE REVIEW 17

Figure 3: Architectures of CTC, AED, and RNN-T3
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have proven effective in structured medical tasks (Peddinti et al., 2015). These models rely on pre-
defined phoneme-based lexicons, which ensure consistent pronunciation modeling and help reduce
substitution errors for known medical terms (Chu, Chang, & Xiao, 2021). For example, (Popović,
Pakoci, & Pekar, 2020) reported that a TDNN-RNN-LSTM system achieved 97% accuracy on struc-
tured Serbian medical reports, illustrating the precision and reliability of lexicon-based ASR in pre-
dictable clinical documentation scenarios.

However, this controlled precision comes at the cost of adaptability. Closed-vocabulary systems
often struggle with novel or evolving terminology and proper names, such as new pharmaceutical
brands or emerging disease classifications, due to their reliance on manually curated lexicons. This
limits their scalability across different institutions, dialects, or rapidly changing linguistic contexts
(Scharenborg et al., 2020).

By contrast, open-vocabulary systems, such as the K2 Pruned RNN-Transducer (K2-RNN-T) (Kuang
et al., 2022), employ subword tokenization techniques (e.g., BPE) that allow dynamic word con-
struction and improved handling of OOV terms. This design makes them especially well-suited
for spontaneous clinical speech, where domain-specific named entities and foreign terms frequently
occur (Juan, 2024). Open-vocabulary architectures like RNN-T and Wav2Vec2 have shown strong
performance in general-domain ASR, and recent studies have begun to explore their applicabil-
ity to clinical transcription (Zuluaga-Gomez, 2024). Meanwhile, Open-vocabulary systems have
benefitted from self-supervised pretraining and medical-specific fine-tuning strategies. Models like
Whisper and Wav2Vec2, when adapted with domain-aware language models, have shown promise
in zero-shot transcription for unseen medical contexts (Afonja et al., 2024). These models demon-
strate potential for improving transcription quality in noisy, conversational, or low-resource medical
speech.

Even with recent progress, there are still not many studies that clearly compare these ASR sys-
tems in less-studied languages like Dutch. Dutch brings special challenges for ASR because of its
compound morphology, common code-switching with English, and the lack of annotated clinical
corpora. These issues make Dutch a good language for testing how closed- and open-vocabulary
systems work under both language and domain-specific limits. This study therefore aims to as-
sess the trade-off between adaptability and precision in Dutch medical ASR, with a particular focus
on clinical domain related words recognition. The following section explores these Dutch-specific
challenges in greater detail and discusses their implications for clinical ASR system design.

2.3 Dutch Language-Specific Challenges in ASR

2.3.1 Dutch Morphological Complexity and Compounding in ASR

One of the key challenges in Dutch ASR lies in its rich morphological structure and extensive use of
compounding. Dutch is considered a phrasal compounding language, where compounds are often
formed by combining full lexical items into a single word unit (Alexiadou, 2020). Dutch compounds
like boeken-kast (“bookcase”) exhibit syntactic structure and semantic transparency, making bound-
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ary detection and tokenization more difficult for ASR systems. This complexity is further amplified
by the presence of linking elements (e.g., -en-), as shown by (Banga, Hanseen, Neijit, & Schreuder,
2013), which are not merely phonological connectors but carry semantic weight, often interpreted
as plural markers by native speakers. In spontaneous speech, these elements may be reduced or
omitted, increasing the likelihood of recognition errors.

In language-mixing contexts, Dutch compounds often retain their head-final structure even when
combined with foreign elements, such as in vélo-winkel (“bicycle shop”, with a French stem and
Dutch compound structure). While open-vocabulary systems offer flexibility, their reliance on sub-
word units can make it difficult to accurately segment and interpret complex Dutch compounds.
These fixed structures, while systematic, often produce hybrid forms that challenge the model’s
ability to maintain semantic integrity. On the other hand, these compounds are frequently out-of-
vocabulary or non-standard, especially in medical or casual speech, so traditional lexicon-based
decoding approaches may also fail to recognize them correctly. For this reason, compounding
and morphological ambiguity in Dutch add significantly to the lexical and acoustic variability that
ASR models must address, making robust and adaptive modeling strategies particularly important in
Dutch-language medical ASR.

2.3.2 Code-Switching in Dutch-English Medical Speech Recognition

An additional complication in Dutch ASR, particularly within healthcare domains, is the frequent
occurrence of code-switching between Dutch and English. Due to the international nature of medical
terminology, speakers often alternate seamlessly between the two languages, embedding English
terms such as MRI scan, chronic fatigue, or CT angiography within otherwise Dutch utterances.
These code-switching instances are not only common in informal clinical dialogue but are also
present in formal settings like dictations and reports, creating substantial challenges for monolingual
ASR systems trained exclusively on Dutch corpora. This is reflected in our clinical dataset, where
English phrases such as “leg press” and “five-minute walk test” frequently appear in otherwise Dutch
utterances.

Research on multilingual ASR has shown that code-switching significantly increases word error
rates, especially when the acoustic or language model lacks robust language identification capabil-
ities (Sitaram, Chandu, Rallabandi, & Black, 2019). For example, in the FAME! speech corpus of
Frisian-Dutch code-switching, recognition errors typically cluster around language-switch bound-
aries and embedded foreign terms (Yılmaz, 2018). While Frisian and Dutch are typologically closer
than Dutch and English, similar disruptions have been observed in Dutch-English contexts, espe-
cially for specialized terminology. These challenges are further amplified in healthcare, where En-
glish terms often serve as domain-specific named entities critical for downstream tasks like entity
recognition and concept mapping.

Despite extensive sociolinguistic research on Dutch code-switching (Boumans, 1998), there remains
a significant gap in speech recognition research addressing this phenomenon in practical ASR sys-
tems. Most Dutch ASR models rely on single-language training pipelines and struggle with code-
switched inputs, often misrecognizing or omitting critical medical terms. As such, accounting for



Section 2 LITERATURE REVIEW 20

intra-utterance code-switching, particularly at the subword or byte-pair encoding level—may prove
essential for improving model robustness in real-world Dutch medical ASR applications.

2.3.3 Resource Scarcity in Dutch Medical ASR

One of the major obstacles to building robust ASR systems for Dutch in the medical domain is the
limited availability of high-quality, domain-specific speech corpora. Unlike English, which benefits
from large-scale annotated datasets such as MIMIC-CXR or LibriSpeech-med, Dutch remains a low-
resource language in the context of both general and clinical ASR (Mustafa et al., 2022). Publicly
accessible Dutch medical speech datasets are virtually nonexistent, forcing researchers to rely on
general-domain corpora such as CGN (Corpus Gesproken Nederlands), which do not adequately
capture the specialized vocabulary, acoustic variability, or interactional structures characteristic of
healthcare speech.

This scarcity of in-domain data poses multiple challenges. First, acoustic models trained on non-
medical Dutch data often perform poorly when deployed in hospital environments, where speech
is affected by background noise, reverberation, and speaker variability, such as doctors using rapid
or formal speech. Second, the lack of specialized language modeling resources, such as clinical
word embeddings or medical language models in Dutch, limits the ability of open-vocabulary ASR
systems to generate accurate transcriptions of rare or technical terms (Wang, 2023). Moreover,
since Dutch is often spoken alongside English in medical contexts, datasets that capture spontaneous
code-switching phenomena are especially rare, impeding research into multilingual or mixed-lingual
recognition systems (Shen, 2022).

As a result, most Dutch ASR systems struggle to generalize beyond structured, scripted speech
scenarios. This limitation is particularly concerning for applications such as speech-driven medical
documentation, where recognition accuracy of domain-specific terms is critical.

2.4 Clinical Terminology and Named Entity Recognition (NER)

2.4.1 Integration of Clinical Terminology Systems in ASR Research

Among existing standardized medical terminology systems, SNOMED CT (Systematized Nomen-
clature of Medicine – Clinical Terms) stands out for its broad conceptual coverage and rich semantic
structure. It supports compositional reasoning, post-coordination, and synonym resolution, these
features are particularly useful for structuring clinical concepts in ASR and natural language process-
ing (NLP). Rather than manually annotating clinical transcripts, researchers increasingly leverage
SNOMED CT in conjunction with NLP tools to automate terminology extraction and normalization.

SNOMED CT’s structure includes three key components: concepts, descriptions, and relationships.
This makes it both a rich ontology and a semantic graph, supporting advanced capabilities such as
postcoordination and compositional grammar. These features enable the construction of new, com-
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pound concepts from existing terms, allowing more precise and expressive clinical representations.
However, manually encoding free-text clinical notes into SNOMED CT is costly and labor-intensive.
Consequently, NLP approaches are frequently employed to automate the mapping process, particu-
larly in large-scale datasets.

In ASR and NLP contexts, SNOMED CT provides the necessary semantic grounding for medi-
cal entity normalization, synonym disambiguation, and concept-level inference. Prior studies have
demonstrated its utility in evaluating ASR outputs and enabling structured clinical documentation
(Melton et al., 2006), for example, used SNOMED’s internal relationships to compute semantic dis-
tances between ASR hypotheses and ground truth. More recently, (Chang & Sung, 2024) integrated
SNOMED CT knowledge into large language models to improve terminology recognition in conver-
sational speech. In this study, we leverage SNOMED CT as the reference terminology system for
extracting and evaluating clinical concepts from manually transcribed (gold) ASR transcripts. By
aligning ASR hypotheses with SNOMED-defined concepts, we aim to facilitate robust and semanti-
cally informed terminology evaluation in Dutch medical speech contexts.

2.4.2 Named Entity Recognition in Clinical ASR Output

Named Entity Recognition (NER) from ASR-generated clinical transcripts presents unique chal-
lenges due to the compounded effects of transcription errors and domain-specific linguistic variabil-
ity. Medical named entities (MNEs), such as drug names, conditions, procedures, and anatomical
terms, are especially prone to misrecognition in ASR outputs. (Afonja et al., 2024) evaluated a range
of ASR models, including Whisper-large, and found that despite strong overall WER performance,
MNE recall remained low: only 42% for medications (MED), 33% for protected health informa-
tion (PHI), 59% for test and treatment procedures (TTP), and 67% for medical conditions (COND).
Even the best-performing category, anatomy (ANA), achieved just 71% recall, likely due to the high
frequency and lexical familiarity of terms such as “heart,” “brain,” and “liver” in web-scale corpora.
These findings highlight the insufficiency of surface-level transcription accuracy when it comes to
faithfully capturing critical medical terminology in ASR–NER pipelines.

To better quantify semantic recognition performance, Afonja et al. proposed MedTextAlign, a fuzzy
alignment tool that accommodates spelling variation and minor phonetic deviations in ASR out-
put; inspired by this, we adopt a similar fuzzy matching approach using the faster and more flex-
ible “RapidFuzz” library in Python to align gold and hypothesis transcripts. Complementing this,
(Meripo & Konam, 2022) proposed an entailment-based approach to detecting ASR errors in medi-
cal dialogues. By training a multimodal model that jointly encodes audio and text, their system was
able to detect inconsistencies between spoken and transcribed clinical content, especially for medi-
cal terms that were omitted, substituted, or altered. Importantly, they showed that many transcription
errors affecting MNEs went undetected by traditional confidence scoring mechanisms, reinforcing
the value of semantically-informed evaluation strategies. Besides, they also evaluated ASR error
detection across five semantic entity groups, demonstrating that category-specific errors often es-
cape traditional surface-level scoring. Their use of a semantically-informed entailment model and
manual concept alignment with UMLS terminologies showed that both evaluation metrics and align-
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ment strategies must be entity-aware to reflect clinical relevance. Their study highlights the value of
entity-aware evaluation and preprocessing; while we do not adopt their multimodal entailment model
or UMLS-based alignment, we apply similar text cleaning steps and emphasize semantic-level eval-
uation by aligning ASR outputs with SNOMED-defined entity categories using global alignment.

In conclusion, the present study adopts fuzzy matching techniques to do the alignment work, grounded
in SNOMED CT, and applies term-group-based recall reporting to better capture recognition fi-
delity across heterogeneous medical entity types. In doing so, it addresses the critical gap between
surface-level transcription accuracy and domain-specific term fidelity—particularly in low-resource
language contexts where pronunciation variation and term novelty further complicate entity recog-
nition.

2.5 Evaluation Metrics and Error Analysis for ASR

Evaluating the performance of ASR systems, especially in clinical contexts, requires a combination
of general and domain-specific metrics. Traditionally, Word Error Rate (WER) and Character Error
Rate (CER) are the most widely used indicators, capturing substitution, deletion, and insertion errors
at the word or character level. While WER provides a high-level approximation of transcription
accuracy, it fails to account for the clinical importance of specific terms, which can be an issue
particularly critical in healthcare ASR systems.

To address the limitations of general-purpose transcription metrics like WER in clinical contexts, M-
WER and M-CER have emerged as task-specific alternatives that evaluate ASR accuracy based on
medically salient terms. Early motivations for these metrics were discussed by (Liu, Tur, Hakkani-
Tur, & Yu, 2011), who emphasized that clinical misrecognitions often have greater implications than
general transcription errors. More recently, (Afonja et al., 2024) formalized M-WER and M-CER to
assess model performance on specific medical entities (e.g., medications, conditions), revealing that
entity-level recall remained as low as 30–50% even when overall WER was below 10%.

Beyond surface-level transcription metrics, precision, recall, and F1-score are widely adopted in
evaluating downstream NLP tasks, especially NER from ASR transcripts. These metrics assess the
system’s ability to correctly identify and extract clinically relevant entities: precision quantifies the
correctness of predictions, recall measures coverage, and F1-score balances the two. Their relevance
has grown as clinical NLP systems increasingly rely on ASR outputs, where identifying the correct
entity is often more critical than exact word reproduction. Their significance was demonstrated early
on by (Wu, Jiang, Xu, Zhi, & Xu, 2018), who applied them to evaluate deep learning–based clinical
NER models and highlighted that entity type (e.g., diseases vs. tests) affects model performance
asymmetrically, with F1-scores varying notably by category.(Meripo & Konam, 2022) emphasized
the importance of entity-level evaluation in ASR by reporting precision, recall, and F1 across clin-
ically relevant term categories, highlighting that critical misrecognitions may persist even with low
overall WER. A more comprehensive view is offered by (Navarro et al., 2023), who reviewed over
80 studies and confirmed that more than 90% used these metrics as primary evaluation tools. They
further recommended reporting both micro- and macro-averaged F1-scores to better capture per-
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formance on low-frequency entities. These findings reaffirm that precision, recall, and F1 remain
essential and reliable metrics for quantifying model effectiveness in clinical NLP applications, par-
ticularly where accurate and complete identification of medical entities is critical.

In addition, novel task-level metrics such as RadGraph F1 (Huh, Park, Lee, & Ye, 2023) and severity-
weighted accuracy scores (Whetten & Kennington, 2023) have emerged, aiming to quantify the
downstream clinical utility or risk impact of ASR mistakes.

Building on these insights, our study adopts both traditional and domain-specific evaluation strate-
gies to better capture the clinical relevance of ASR outputs. In particular, we focus on term-level
evaluation by matching extracted medical terms in the ASR output against a reference terminology
set, allowing more precise measurement of recognition accuracy. This study employs WER, CER,
Medical WER, Medical CER, precision, recall, and F1 score as its primary evaluation metrics.
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3 Methodology

3.1 Dataset Description

The dataset used in this study was provided by Gerimedica, a Dutch healthtech company that de-
velops electronic health record (EHR) systems and clinical decision support tools specifically for
long-term care settings.

The dataset consists of approximately 42.5 hours of Dutch-language healthcare reports transcripts.
The data were collected from eight healthcare organizations across multiple Dutch provinces (Noord-
Holland, Utrecht, Groningen, Noord-Brabant, Overijssel and Gelderland), which means the tran-
scripts may exhibit regional variants of Dutch. It contains 8,595 transcript segments contributed by
a diverse group of healthcare workers, including physicians, psychologists, dietitians, physical ther-
apists, nurses, and speech therapists. The gold transcripts are formatted as structured text files, with
each line consisting of a unique utterance ID and the corresponding transcribed. These transcripts
represent real-world clinical interactions and are transcribed manually to serve as high-quality refer-
ences.

3.2 Core Methods and Models

3.2.1 ASR Models

1. Closed-vocabulary model: Kaldi TDNN
We implement a Time Delay Neural Network (TDNN) (Peddinti et al., 2015) based ASR sys-
tem using the Kaldi toolkit, following the LibriSpeech4 tdnn 1d chain recipe. The acoustic
model consists of 16 TDNN-F layers with bottleneck projections for efficient long-context
modeling, preceded by an LDA dimensionality reduction layer and ReLU-activated batch nor-
malization with scheduled dropout (progressing from 0 to 0.5 during training). The system
utilizes lattice-free Maximum Mutual Information (LF-MMI) optimization with cross-entropy
regularization, trained with a decaying learning rate from 0.00015 to 0.000015 across four
epochs. Input features comprise 40-dimensional MFCCs augmented with 100-dimensional
iVectors for robust speaker adaptation. It is worth mentioning that in this study the Kaldi
TDNN model also uses an external N-gram language model trained on a roughly 6 GB text
corpus (78.5 million lines) from reports of 8 Dutch healthcare organizations which were men-
tioned in the previous section.

2. Open-vocabulary model: Pruned RNN-Transducer (K2-RNN-T)
In this study, the Pruned RNN-Transducer (RNN-T) was adopted (Kuang et al., 2022), specifi-
cally the K25 Stateless variant, as the representative open-vocabulary ASR model. This model

4https://github.com/kaldi-asr/kaldi/tree/master/egs/librispeech/s5
5https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned transducer

stateless7

https://github.com/kaldi-asr/kaldi/tree/master/egs/librispeech/s5
https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless7
https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless7
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is implemented with the Zipformer encoder, which is a hierarchical and efficient variant of
the Conformer model, designed to model long-range acoustic dependencies. The encoder
consists of 12 stacked ZipformerEncoder layers with 80-dimensional fbank input features, at-
tention dimension of 256, and feedforward dimensions up to 2048. The model performs 2D
subsampling for frame rate reduction and applies dropout, layerdrop, and activation balancing
to enhance training stability and robustness.

Same with the Kaldi TDNN model, this model was trained on 1046 hours of Dutch tran-
scribed speech supplemented with 12 hours of domain-specific healthcare audio. Training
used the Adam optimizer with learning rate scheduling and mixed-precision acceleration. No
external language model was used. BPE was applied to generate subword vocabulary units.
This method enables the model to form flexible combinations of characters and morphemes,
making it capable of recognizing previously unseen or rare words. enabling open-vocabulary
recognition and better generalization to rare or unseen terms.

3.2.2 Terminology and Named Entity Processing Methods

To evaluate the performance of ASR systems in recognizing domain-specific language, this study
focuses on two major types of lexical content: clinical terminology and named entities with health-
care relevance. The goal is to identify key terms and entities in the gold standard transcripts that can
serve as targets for evaluating ASR accuracy in healthcare contexts.

1. Clinical Terminology Extraction from SNOMED CT Medical terms, specifically those re-
lated to drugs and clinical findings,,were identified using the SNOMED CT terminology sys-
tem. In this study, we used the March 2025 Netherlands Edition (v1.0) of SNOMED CT6,
published on March 31, 2025. Clinical terms were extracted from the Dutch-language concept
and description files located in the “Snapshot/Terminology/” directory. It contains 535,412 dis-
tinct medical concepts, each associated with one or more descriptions in Dutch and/or English.
These concepts served as the basis for identifying relevant clinical terms in the transcripts.

2. Named Entity Recognition (NER) NER was employed in this study to identify contextually
important entities that fall outside standard clinical terminologies. These entities, including
person names, location names, and product brands, are not strictly medical terms but fre-
quently appear in spoken medical consultations. They provide critical contextual information,
such as individuals involved in care, healthcare facilities, or specific product usage. How-
ever, their inherent variability, local specificity, and absence from predefined vocabularies or
training corpora make them particularly challenging for ASR systems to recognize accurately.
This study aims to improve the capture of such information, which is highly susceptible to
ASR misrecognition. For this purpose, we employed the spaCy “nl core news lg” model, a
pre-trained Dutch-language pipeline that includes part-of-speech tagging, syntactic parsing,
and NER. The model is trained on the “Lassy Large Corpus”, a richly annotated Dutch tree-
bank, and supports recognition of a wide range of general-domain named entities in Dutch.

6https://mlds.ihtsdotools.org/#/viewReleases/viewRelease/128785

https://mlds.ihtsdotools.org/#/viewReleases/viewRelease/128785
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3.3 Technical Framework

This section describes the technical framework developed to support the analysis and evaluation of
ASR outputs within a Dutch healthcare context. Although the gold transcripts and the ASR outputs
were pre-generated and provided by Gerimedica, a structured pipeline was designed to extract clin-
ically relevant terms, match them across the transcripts, and prepare the data for evaluation. The
framework (Figure 4) consists of five major components: input processing, terminology extraction,
matching strategy, structured output generation, and evaluation preparation.

3.3.1 Input Data Preprocessing

The input data comprised these following files: Gold transcript: the reference transcription created
by human annotators. Hypothesis transcripts: one set of transcriptions generated by a Kaldi TDNN
ASR model and one by Pruned RNN-Transducer ASR model. All transcripts were structured line-
by-line, with each line containing a UUID and the corresponding utterance. As preprocessing, text
normalization was applied to remove punctuation, unify lowercase formatting, and tokenize utter-
ances consistently using the “nl core news lg” model from spaCy.

3.3.2 Extraction of Clinical Terms and Named Entities

1. Method Overview
Following the methods outlined in Section 3.2.2, two sources of terms were considered in this
study:

Clinical Terms: Extracted from a subset of the Dutch SNOMED CT terminology, focusing on
clinically relevant concepts.

Named Entity: Identified using a Dutch-language NER model (spaCy: nl core news lg), used
to detect contextually important terms outside formal medical vocabularies.

Term extraction was performed on the gold transcripts using rule-based concept matching and
automatic entity recognition. Each detected term was annotated with its source (SNOMED or
NER) for subsequent comparison with ASR outputs.

2. Clinical Terms Selection and Extraction
To analyze domain-specific terminology in the gold transcripts, a structured extraction process
was applied using the SNOMED CT Netherlands Edition. Three major categories of clinical
terms were selected: diseases, drugs, and clinical findings. These categories were chosen
based on both their empirical frequency in the transcripts and their practical relevance in clin-
ical and healthcare context. Additionally, they represent high-level semantic groups within
the SNOMED ontology and account for a substantial proportion of concepts in the overall
vocabulary.

For each category, high-level SNOMED parent classes or subtypes were used to define the ex-
traction scope. The drug category was derived from two main parent classes: Pharmaceutical
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Figure 4: Diagram of the Technical Framework



Section 3 METHODOLOGY 29

/ Biologic Product (373873005) and Substance (105590001), This grouping reflects common
practices in Dutch clinical language, where chemical substances are often used as proxies for
drug names (e.g., “paracetamol” instead of a brand-specific formulation). The disease category
included selected subtypes such as Infectious Diseases (40733004), Cardiovascular Disorders
(49601007), and Mental Disorders (74732009). These classes represent common and clini-
cally significant diagnostic themes relevant to long-term care. For clinical findings, frequently
observed but non-diagnostic expressions were included using classes like Functional Finding
(118228005) and Mental State or Behavioral Finding (384821006).

To extract terms from each SNOMED category, we used the official RF2 release files. De-
scendant concept IDs were retrieved from the relationship file (typeId = 116680003) using
a recursive “is-a” traversal. These concept IDs were then matched to active Dutch-language
terms in the description file. The resulting terms were labeled by category (e.g., drug, disease),
filtered for duplicates, and saved as structured lexicons for downstream transcript matching.
Additionally, to avoid over-representing overly generic expressions, we removed common
high-frequency terms (e.g., sleep, meat) that may appear in daily conversations but are not
clinically informative. This process resulted in 141,100 disease terms, 20,703 drug terms, and
44,203 clinical finding terms. These lexicons were used for downstream transcript matching.

Although the term categories were initially chosen based on domain knowledge, coverage
analysis confirmed their relevance. Drug and clinical finding terms revealed high lexical vari-
ability and frequency, while disease terms provided strong semantic cues for evaluating diag-
nostic accuracy in ASR systems.

These findings support the selection of all three term types for ASR evaluation, reflecting a
balance between clinical relevance, lexical diversity, and observable frequency in spontaneous
speech. Detailed SNOMED category mappings and full coverage statistics are provided in
Appendix A and B.

3. Named Entities Selection and Extraction
To complement clinical terminology, we extracted additional named entities from the gold
transcripts, including both standard entity types and other medically relevant expressions such
as abbreviations. The initial recognition was performed using the Dutch “nl core news lg”
model in spaCy. To enhance domain alignment, we applied several post-processing steps,
including pattern-based relabeling, rule-based extraction (e.g., for abbreviations, units, brand
names), and dictionary-based lookups for known domain-specific terms.

From the resulting annotations, six categories were defined: PERSON (person name), LOC
(short for location), BRAND (brand name), ABBR (short for abbreviation), CARDINAL UNIT,
and OTHER. A coverage review indicated that PERSON and ABBR terms were not only fre-
quent in transcripts but also carried significant semantic importance in clinical communica-
tion. LOC and BRAND categories, while slightly more context-dependent, were also retained
for their relevance to healthcare documentation and product mentions. In contrast, CARDI-
NAL UNIT terms (e.g., “2 ml”, “drie keer”) mostly captured dosage and time expressions and
lacked semantic depth, while OTHER included miscellaneous or ambiguous content (e.g., lan-
guages, dates) with limited clinical interpretability. As such, CARDINAL UNIT and OTHER
were excluded from subsequent ASR evaluation to ensure focus on meaningful named-entity
content. See Appendix C and D for entity definitions and coverage statistics.
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These refinements enabled a more targeted and domain-informed selection of entities for eval-
uating ASR performance in real-world Dutch healthcare conversations.

3.3.3 Transcript Matching Strategy

1. Method Overview
To evaluate ASR performance at the term level, we developed a two-step matching strategy.
First, each utterance in the gold transcript was aligned with its corresponding ASR output us-
ing unique identifiers to ensure a one-to-one mapping. Then, for each aligned utterance pair,
predicted terms were extracted from the ASR hypothesis using a fuzzy matching approach,
allowing for approximate matches with gold-standard terms. This strategy was applied consis-
tently across all term categories, including clinical concepts and named entities, and provided
structured outputs for downstream evaluation.

2. Global Alignment
To establish a consistent comparison basis, we aligned the gold transcript and ASR outputs
(from both Kaldi TDNN and K2-RNN-T models) using unique utterance IDs. Each tran-
script was formatted line-by-line, where each line contained a UUID and its corresponding
sentence. This ensured a one-to-one correspondence between gold and hypothesis utterances
and avoided issues caused by duplicates or missing entries. The aligned utterance pairs were
merged into a unified dataset, forming the foundation for subsequent term-level comparison.

3. Fuzzy Matching and N-gram Extraction
For each aligned hypothesis utterance, we tokenized the text and generated all possible word
n-grams (up to length 3) to account for fragmented or rephrased expressions commonly found
in ASR outputs. Each gold term was matched against candidate n-grams using the RapidFuzz
(Seiffert, 2021) library, which computes Levenshtein-based similarity scores. These scores
reflect how closely each ASR output segment resembles the reference term, accounting for
surface variations. The resulting gold-hypothesis pairs and similarity scores formed the basis
for subsequent evaluation. Details on thresholding and classification are described in Section
3.4.1.

This process was applied to all target term types (e.g., disease, drug, clinical finding, named
entity). The resulting outputs, each consisting of a gold term, its best-matching phrase, and
similarity score, served as the input for the evaluation described in the next chapter.

3.3.4 Output for Evaluation

Following the fuzzy matching process, each ASR model’s hypothesis transcript was compared
against the gold transcript. For each model, a structured output file was generated for each term
category. Each file contained instance-level records including the utterance ID, gold term, matched
hypothesis phrase, match score, and match type.
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This structured output enables a fine-grained evaluation of ASR performance in recognizing clin-
ically relevant terms, supporting the identification of error types such as substitutions, omissions,
etc. The structured output generated through this framework forms the basis for both quantitative
evaluation and qualitative analysis, as described in the following chapter.

3.4 Evaluation Methodology

To assess ASR model performance in the context of clinical speech transcription, this study em-
ployed a combination of quantitative metrics and qualitative error analysis, with particular emphasis
on the accurate recognition of medically and contextually relevant terms.

3.4.1 Quantitative Metrics

Several metrics were used to evaluate transcription accuracy at both the overall and terminology-
specific levels. These were computed separately for different term types, providing fine-grained
insight into model strengths and weaknesses across terminology categories.

1. Word Error Rate (WER): The standard metric for ASR evaluation is the Word Error Rate
(WER), which is calculated as:

WER =
S+D+ I

N

where S = substitutions, D = deletions, I = insertions, and N = total number of words in the
reference transcript. WER was computed over the entire transcript to assess general model
performance. A lower WER indicates better performance.

2. Medical WER(M-WER): M-WER measures the word-level error rate for medically relevant
terms, particularly the clinical terms and named entities mentioned in previous sections. This
provides a more focused assessment of ASR performance on medically significant content. A
lower M-WER indicates better performance.

3. Character Error Rate (CER): A fine-grained metric for ASR evaluation, calculated at the
character level as:

CER =
S+D+ I

N

where S = substitutions, D = deletions, I = insertions, and N = total number of characters
in the reference transcript. It complements WER by providing more fine-grained insight,
especially useful for short or morphologically complex words. A lower CER indicates better
performance.
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4. Medical CER (M-CER): A domain-specific variant of CER, focusing on character-level ac-
curacy within medically relevant terms, particularly the clinical terms and named entities men-
tioned in previous sections. It offers a more targeted evaluation of ASR performance in clinical
contexts. A lower M-CER indicates better performance.

5. Precision: Precision is defined as the proportion of correctly predicted positive instances
among all instances predicted as positive. In the context of terminology recognition, it reflects
the accuracy of the model’s predictions, i.e., the likelihood that a predicted term is indeed
correct. It is formally defined as:

Precision =
T P

T P+FP

where T P denotes true positives and FP denotes false positives. A higher precision indicates
better performance.

6. Recall: Recall measures the proportion of correctly predicted positive instances among all
actual positive instances. It reflects the model’s ability to capture relevant terms from the
reference. It is defined as:

Recall =
T P

T P+FN
where FN denotes false negatives. A higher recall indicates better performance.

7. F1 Score: F1 Score is the harmonic mean of precision and recall, providing a single metric
that balances both. It is particularly useful in evaluating systems where both false positives
and false negatives carry significant consequences, as is often the case in clinical information
extraction. The formula is:

F1 Score =
2×Precision×Recall

Precision+Recall

A higher F1 score indicates better performance.

In this study, to compute term-level evaluation metrics such as Precision, Recall, and F1-score, we
first categorized each fuzzy match based on its similarity score:

• Correct: similarity = 100 (exact match)

• Substitution: 75 ≤ similarity < 100 (near match)

• Missing: similarity < 75 (no sufficient match)

These match types were then mapped to standard evaluation categories as follows:

• True Positive (TP) = correct

• False Positive (FP) = substitution

• False Negative (FN) = missing
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3.4.2 Qualitative Error Analysis

While quantitative metrics such as WER and F1 Score provide aggregate performance measures,
they do not capture the nuanced ways in which recognition errors affect the semantic integrity of
medical content. In this way, a qualitative error analysis was conducted to characterize common
patterns of ASR misrecognition in clinically relevant terms.

Errors were manually reviewed and categorized into three types, based on surface similarity and
semantic distortion:

1. Substitution errors: e.g., incorrect terms or semantically misleading replacements.

2. Approximate similarity errors: e.g., phonetically similar but incorrect words.

3. Truncation or omission errors: e.g., partially recognized or dropped terms.

Representative examples were selected from the structured matching output described in Section
3.3.4.

3.5 Ethics and Research Integrity

3.5.1 Data Ethics and Privacy

This study uses sensitive healthcare data provided by Gerimedica. To ensure ethical and legal com-
pliance, the researcher has signed a confidentiality agreement and obtained a certificate of conduct,
as required for accessing and processing sensitive patient-related information. The study will not
involve any direct interaction with patients or healthcare workers, no personally identifiable infor-
mation is stored or shared. In line with data protection regulations such as the GDPR, all data used in
this study is processed in a secure, access-restricted environment. The research laptop is encrypted
using BitLocker, and the data is strictly confined to local use.

3.5.2 FAIR Principles Implementation

In accordance with the FAIR principles (Findable, Accessible, Interoperable, Reusable), this study
aims to promote transparency and reusability of research materials where possible. While the pri-
mary data used in this project, sensitive healthcare consultation transcripts provided by Gerimedica,
and the SNOMED Dutch terminology database are subject to confidentiality and licensing restric-
tions and therefore cannot be shared publicly, all supplementary resources will be made openly
available. Specifically, all custom scripts, preprocessing steps, and analysis code developed for this
study will be published in a well-documented GitHub repository. The code will be organized in a



Section 3 METHODOLOGY 34

clear and structured format, with accompanying documentation and example configurations to facil-
itate reuse by other researchers. File naming conventions, folder hierarchies, and dependencies will
follow standard best practices to ensure interoperability across systems and platforms. By doing so,
the project supports the broader FAIR goals to the extent permitted by data privacy and licensing
constraints.

3.5.3 Open Science Practices

To support open science, the analysis code and documentation developed for this project will be
made publicly available via GitHub 7. Although the original data cannot be shared due to confiden-
tiality agreements, the repository will include a clear README file explaining the project structure
and usage, allowing others to understand, reproduce, or adapt the methodology.

3.5.4 Bias and Fairness

This study acknowledges the potential biases inherent in healthcare language data, such as variations
in terminology, spelling, and documentation styles across institutions or practitioners. Efforts will
be made to minimize these biases by designing preprocessing steps carefully and by validating entity
identification results. Any limitations related to data diversity and potential impacts on the findings
will be explicitly discussed.

3.5.5 Environmental Impact

The environmental impact of this study is minimal, as it relies on lightweight computational methods
and small-scale experiments. No large model training is involved; only existing language models
and standard processing tools are used. All experiments are run on a local machine or limited cloud
resources to reduce energy consumption.

3.5.6 Reproducibility and Replicability

To ensure reproducibility, all analysis code, preprocessing scripts, and configuration details will be
made publicly available through a GitHub repository. Although the original healthcare data cannot
be shared, the methodology will be fully documented, enabling others to replicate the workflow with
similar datasets. Key steps and parameters will be clearly described to support consistent replication
of the results.

7https://github.com/SaraSun01/thesis closed and opened ASR comparison

https://github.com/SaraSun01/thesis_closed_and_opened_ASR_comparison
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4 Evaluation Results

This section presents a comprehensive evaluation of the two ASR models, focusing on both overall
transcription performance and their ability to recognize domain-specific terms relevant to health-
care. The analysis is structured in two parts. The first part provides a quantitative comparison of
the overall performance of the two models. The second part delves into a detailed assessment of
how each model handles different types of healthcare-related terminology and named entities, as
previously categorized. This evaluation aims not only to measure recognition accuracy, but also
to reveal the models’ respective strengths and weaknesses in handling specialized vocabulary. By
combining quantitative metrics with qualitative error analysis, this section seeks to offer deeper in-
sights into the challenges of ASR in the medical domain and inform potential strategies for model
improvement.And more detailed data can be found in the Appendix E.

4.1 Overall ASR Performance Comparison

Figure 5

Figure 5 presents a macro comparison of the two models by gathering all recognized terms across
categories and calculating overall precision, recall, and F1 score. These metrics reflect the models’
general recognition tendencies beyond specific term types. Kaldi TDNN achieves higher precision
(88.00%) and F1 score (90.84%) compared to K2-RNN-T (77.35% and 85.59%, respectively), sug-
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gesting stronger reliability in producing correct predictions and maintaining a good balance between
precision and recall. On the other hand, K2-RNN-T achieves a higher Recall (95.80%) compared
to Kaldi (93.87%), indicating that it more frequently identifies relevant terms, even at the risk of in-
cluding more incorrect ones. This behavior may reflect the model’s subword-based decoding, which
allows it to accommodate a wider range of lexical variations. Overall, the distribution of Preci-
sion, Recall, and F1 scores reflects a trade-off between conservativeness and inclusiveness in term
recognition, with each model demonstrating a distinct balance in its classification behavior.

Figure 6

In addition to the precision, recall, and F1 score comparison, Figure 6 presents a comparison of word-
and character-level error rates, including both overall and medical-specific metrics. Kaldi TDNN
demonstrates significantly lower M-WER (16.78% vs.25.16%) and M-CER (6.68% vs. 8.86%),
indicating more consistent and accurate recognition of clinical terms at both the word and charac-
ter levels. These results align with its earlier advantage in precision and F1 score, particularly in
structured medical terminology. For general transcription, however, the performance gap narrows.
K2-RNN-T outperforms Kaldi in overall WER (8.67% vs. 9.82%) and CER (4.03% vs. 4.78%),
suggesting greater flexibility in transcribing diverse or less standardized input. This reflects the
open-vocabulary model’s ability to generalize across broader linguistic variation, especially at the
subword level.

These observations reflect differences in vocabulary coverage, error tolerance, and decoding strate-
gies between the models, which manifest in their respective error rate profiles across domain-specific
and general content.
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4.2 Analysis of Clinical Terminology and Entity Recognition

4.2.1 Metric-wise Comparative Analysis

This section analyzes model performance on different categories of clinical terminology and named
entities, organized by evaluation metric. By examining precision, recall, F1 score, M-WER, and
M-CER separately, we aim to uncover how each model performs across various term types and to
highlight distinct patterns or differences in their recognition behavior. The comparison is based on
the category-level results presented in the follwing evaluation figures.

Figure 7

Precision, as an evaluation metric, reflects the proportion of correctly identified terms among all
terms predicted by the model. High precision indicates a model’s ability to avoid false positives,
making it particularly important in clinical contexts where misidentifying irrelevant or incorrect
terms can lead to misleading interpretations. As shown in Figure 7, the Kaldi TDNN model consis-
tently outperforms the K2-RNN-T model in precision across all term categories. This suggests that
Kaldi adopts a more conservative and stable recognition strategy, favoring accuracy over coverage.
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Its consistently higher precision indicates a reduced tendency to overgenerate or mislabel entities,
which is especially advantageous for structured medical terminology such as diseases and drugs.
These results underscore Kaldi’s strength in precise term identification, particularly in domains re-
quiring high fidelity and trust in entity recognition.

Figure 8

Recall measures a model’s ability to correctly identify all relevant instances, reflecting how well it
captures the full range of target entities. In the context of clinical terminology recognition, high re-
call is particularly desirable when the goal is to avoid missing important terms, especially in applica-
tions like information extraction or clinical decision support. As shown in Figure8, the K2-RNN-T
model demonstrates slightly higher recall than Kaldi TDNN across most term categories, notably
for Location (98.34%), Person Name (97.19%), and Brand Name (97.92%). These categories are
typically characterized by greater lexical variability and less standardization. The superior recall
observed in K2-RNN-T suggests that open-vocabulary models, by design, are more capable of cap-
turing out-of-vocabulary or morphologically diverse terms, aligning with their intended flexibility
and generalization strength. Nevertheless, Kaldi TDNN also maintains consistently high recall val-
ues (e.g., 97.51% for Disease, and 98.02% for Drug), demonstrating that its strong precision does
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not come at the cost of substantial recall reduction.

Figure 9

The F1 score, as the harmonic mean of precision and recall, provides a balanced measure of both cor-
rectness and completeness in recognition tasks. It is particularly informative in evaluating models’
real-world usability, where both false positives and false negatives must be minimized. As illus-
trated in Figure 9, the Kaldi TDNN model achieves consistently higher F1 scores than K2-RNN-T
across all term categories, with especially large margins observed in clinical categories such as Dis-
ease (96.60% vs. 82.41%), Drug (96.80% vs. 88.86%), and Person Name (83.29% vs. 76.31%),
which suggests that Kaldi’s closed-vocabulary design supports more stable and reliable recognition
in domain-specific contexts. While the overall trend favors Kaldi, the performance gap between the
two models narrows in entity types that are more linguistically diverse or loosely defined. For in-
stance, Abbreviation (90.20% vs. 90.05%) and Location (86.67% vs. 86.83%) show nearly identical
F1 scores. This indicates that open-vocabulary systems like K2-RNN-T may be better equipped to
handle more variable or non-standardized entities, reflecting the influence of its broader recognition
tendency combined with precision fluctuations across term types.

Overall, precision, recall, and F1 score are commonly evaluated together, as they offer complemen-
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tary perspectives on model performance: precision reflects correctness, recall captures completeness,
and F1 provides a balanced measure of both. The comparative results reveal that Kaldi TDNN tends
to produce more consistent and higher precision and F1 scores across most clinical term categories,
indicating a stable recognition behavior with fewer false positives. K2-RNN-T, on the other hand,
achieves relatively higher recall in several categories, especially those with greater lexical variabil-
ity, demonstrating broader coverage and a greater ability to detect non-standard or less predictable
entities.

Figure 10

M-WER measures the word-level error rate for medically relevant terms, including substitutions,
deletions, and insertions. A lower M-WER indicates better recognition accuracy, It is particularly
critical in clinical contexts where term integrity is essential. As shown in Figure 10, the Kaldi
TDNN model consistently achieves lower M-WER than K2-RNN-T across all term categories. The
difference is especially pronounced in structured domains such as Disease (6.57% vs. 29.92%) and
Drug (6.21% vs. 20.04%), while in categories like Abbreviation (17.85% vs. 18.06%) and Location
(23.53% vs. 23.28%), the two models perform similarly.

These findings align with the earlier analysis of precision, recall, and F1 score. Kaldi TDNN
shows more stable and balanced performance, particularly in domains with standardized terminol-
ogy, whereas K2-RNN-T achieves broader recall in more variable term types. The correlation be-
tween Kaldi’s high F1 scores and low M-WER values suggests not only metric consistency, but also
greater robustness in preserving term structure and ensuring more consistent word-level outputs.
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Figure 11

M-CER provides a fine-grained measure of recognition accuracy by evaluating character-level tran-
scription fidelity. Unlike word-level metrics, M-CER captures partial recognition errors and is espe-
cially useful for analyzing performance on morphologically diverse or unpredictable term types. As
illustrated in Figure 11, the Kaldi TDNN model shows lower M-CER scores in core clinical terminol-
ogy categories such as Disease (2.57% vs. 11.54%), Drug (2.29% vs. 8.55%), and Clinical Finding
(4.06% vs. 6.87%). These categories typically involve well-standardized and domain-specific terms
with consistent lexical structures. Kaldi’s closed-vocabulary architecture, coupled with strong align-
ment to pre-defined token sequences, likely contributes to its consistent handling of these terms at
the character level. In contrast, K2-RNN-T demonstrates comparatively better M-CER performance
in categories like Location (5.02% vs. 9.52%), Brand Name (5.40% vs. 6.86%), and Person Name
(9.63% vs. 11.85%). These entity types are more lexically variable and context-dependent, which
often involving proper names, place names, or proprietary terms that may not follow standardized
linguistic patterns. The relatively lower M-CER achieved by K2-RNN-T in these cases suggests
that its open-vocabulary design, which allows subword modeling and greater flexibility in decoding
unfamiliar sequences, is better suited to capturing such variability.

These findings point to a nuanced shift: while Kaldi TDNN maintains consistent recognition in
structured medical terms, K2-RNN-T begins to outperform in more variable entity categories when
evaluated at the character level. This shift highlights the advantage of open-vocabulary models in
adapting to linguistic diversity and capturing less predictable lexical items with finer granularity.
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4.2.2 Category-wise Analysis

1. Clinical Terminology
This subsection focuses on model performance in recognizing structured clinical terms, specif-
ically disease, drug, and clinical finding categories. These categories are characterized by rel-
atively standardized and domain-specific vocabulary, making them suitable for evaluating the
models’ ability to handle canonical medical expressions.

Across disease, drug, and clinical finding categories, Kaldi TDNN consistently outperforms
K2-RNN-T in precision, F1, M-WER, and M-CER. For example, in the disease category,
Kaldi achieves an F1 of 96.60% with a M-WER of 6.57% and M-CER of 2.57%, compared
to 82.41%, 29.92%, and 11.54% for K2-RNN-T. Similar patterns are observed for drug and
clinical findings.While K2-RNN-T achieves higher recall, particularly for drug and clinical
finding terms, this improvement often comes at the cost of increased recognition errors. This
trade-off is likely attributable to its open-vocabulary design, which prioritizes term coverage
over precision.

The superior performance of Kaldi TDNN on these clinical categories may be attributed to
its closed-vocabulary architecture, which is tightly aligned with a predefined lexicon and lan-
guage model constraints. This setup favors accurate, consistent recognition of standardized
terminology, particularly when term forms are relatively stable and appear frequently in train-
ing data. Furthermore, Kaldi’s higher character-level accuracy, as evidenced by lower M-CER,
suggests greater robustness in capturing the internal structure of complex medical terms. In
contrast, K2-RNN-T’s subword-based modeling offers greater flexibility, but this may lead to
fragmented decoding or errors when encountering compound or morphologically rich med-
ical words. As such, although recall is high, the model may face challenges in consistently
preserving the exact structure of domain-specific terms.

2. Named Entities
Compared to clinical terminology, the performance gap between Kaldi TDNN and K2-RNN-
T narrows in named entity categories such as abbreviation, brand name, location, and person
name. While Kaldi generally retains higher precision and F1, K2-RNN-T achieves comparable
or better performance in recall, M-WER and M-CER, indicating more balanced outcomes in
these categories.

In the abbreviation category, both models achieve comparable F1 scores. However, K2 ex-
hibits a higher M-CER, likely because abbreviations are short and character-sensitive by na-
ture. Even minor errors can significantly affect the entire word, thereby reducing the typical
distinction between character-level and word-level accuracy. For brand names and locations,
K2 achieves higher recall and lower M-CER, suggesting better handling of less standardized,
possibly institution-specific terms. In person names, K2 again leads in M-CER, while Kaldi
maintains an advantage in F1 and M-WER, reflecting more stable recognition output.

These patterns reflect the nature of named entities, which often involve greater lexical di-
versity, such as foreign names or non-standard spelling conventions. K2-RNN-T’s open-
vocabulary and subword-based modeling appears better suited to such variability, offering
more flexible recognition and accurate character-level transcription. In contrast, Kaldi’s fixed-
vocabulary structure, while effective in minimizing false positives, may be less adaptive to
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unpredictable or out-of-vocabulary forms.

4.3 Analysis of Error Types

To complement the quantitative evaluation, this section presents a qualitative analysis of recognition
errors.We analyzed the errors and grouped them into three types: substitution (the transcribed word
is different from the ground truth), approximation (the transcribed word differs by a few charac-
ters from the ground truth, but has a similar pronunciation), and truncation (the transcribed word
omits certain characters from the ground truth). These error types were used in the literature (Luo,
Zhou, Adelgais, et al., 2025) to summarize and categorize speech recognition errors.We aim to bet-
ter understand the characteristic patterns and challenges each model encounters during medical term
recognition.

Figure 12: Examples of recognition errors by type for both models

Figure 12 provides representative examples of these error types. In the table, terms in the gold truth
transcript are bolded. In the model outputs (Kaldi and K2), words that correctly match the gold ref-
erence are also bolded, while mistranscribed words are left unformatted. A notable pattern emerges
when comparing the two models. The Kaldi TDNN model, being a closed-vocabulary system, tends
to omit or entirely miss terms that are not present in its lexicon, resulting in silence or unrelated
words. This behavior reflects its dependency on a predefined word list and phonetic dictionary, lim-
iting its flexibility when encountering uncommon or OOV terms. In contrast, the K2 model, based
on an open-vocabulary subword architecture, exhibits more flexible decoding behavior. It attempts
to approximate unfamiliar terms by leveraging subword units or common phoneme patterns. How-
ever, this flexibility sometimes leads to near-homophone errors, or overgeneralizations, as seen in the
example where “Hemiparese” (“Hemiparese” in English) was recognized as “Hemi parijse”(“Hemi
Parisian” in English), introducing both a phonetic distortion and a semantic shift.
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The next six examples in Figure 12 represent approximation errors, where the ASR models transcribe
terms into phonetically similar but semantically different alternatives. While these errors may appear
minor in form, they can carry major clinical implications. For instance, transcribing “Hypertensie”
(high blood pressure) as “Hypotensie” (low blood pressure) or “Hypertonie” (increased muscle tone)
as “Hypotonie” (reduced muscle tone) may completely reverse the intended meaning, potentially af-
fecting diagnosis or treatment decisions. A closer comparison between the two models reveals that
Kaldi TDNN tends to produce more orthographically complete and standardized spellings, espe-
cially for clinical or named entity terms. Even when variations exist, such as “Pantoprozol” vs.
“Pantoprazol”, both referring to “Pantoprazole” in English, Kaldi’s outputs generally align more
closely with expected medical vocabulary entries. In contrast, the K2 model shows greater vari-
ability in spelling, often generating outputs that approximate the correct term based on phonetic
cues but diverge from standardized forms. This behavior is likely due to K2’s open-vocabulary
subword-based architecture, which allows it to reconstruct unfamiliar terms creatively, but not al-
ways accurately. As a result, it is more prone to producing plausible-looking but incorrect medical
terms, especially in cases where the acoustic signal is ambiguous.

The final four examples in Figure 12 illustrate truncation errors, where only part of a term is tran-
scribed, resulting in incomplete or clipped forms. Although these may involve the omission of just
a single character or syllable, the consequences can still be significant, particularly in the medical
domain, where even subtle distortions can impact the clarity or accuracy of documentation. A re-
curring pattern in these examples is the vulnerability of the K2 model to such truncations. As an
open-vocabulary, subword-based system, K2 relies on probabilistic combinations of subword units.
While this enables it to handle unseen words more flexibly, it also makes it more susceptible to gen-
erating incomplete forms, especially for long or compound terms or named entities like locations and
personal names, where variability in spelling and unfamiliarity further increase the risk of early cut-
offs. In contrast, the Kaldi TDNN model demonstrates a relatively more stable transcription pattern
in these cases. Being a closed-vocabulary model, Kaldi tends to either fully recognize a known term
or omit it entirely if it is not in the lexicon, thus avoiding partial outputs. This can be seen as a built-
in filtering mechanism that maintains lexical integrity, albeit at the expense of recall. These findings
highlight another critical trade-off: while K2’s architecture promotes broader coverage, it does so at
the risk of fragmenting complex terms, whereas Kaldi’s rigid structure, though more conservative,
may better preserve term boundaries when recognition succeeds.
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5 Discussion

5.1 Validation of the Hypothesis

The central hypothesis of this study posited that although open-vocabulary ASR models often achieve
lower overall WER in general transcription tasks, closed-vocabulary models may exhibit more stable
and controlled performance in recognizing domain-specific clinical terminology.

The empirical results support this hypothesis. As shown in Figure 6, the open-vocabulary model
(K2 RNN-T) achieved lower overall WER (8.67%) and CER (4.03%) across all terms, indicating
strong general transcription ability. However, the closed-vocabulary model (Kaldi TDNN) showed
lower M-WER (16.78% vs. 25.16%) and M-CER (6.68% vs. 8.86%), suggesting more consistent
recognition of structured clinical terms at both word and character levels.

In terms of evaluation metrics, Kaldi obtained higher precision (88.00%) and F1 score (90.84%),
while K2 achieved higher recall (95.80%). These results reflect two different recognition strategies:
one favoring coverage and flexibility, and the other favoring selectivity and control. The relatively
higher recall of K2 may reflect its subword-based decoding mechanism, which facilitates recognition
of variable and out-of-vocabulary terms. Meanwhile, Kaldi’s performance remains more consistent
in structured terminology, likely due to its fixed vocabulary design.

Together, these results support the hypothesis in structured domains such as medical term recogni-
tion, while also highlighting the complementary strengths of both systems: coverage versus consis-
tency. The findings further justify the use of both word-level and character-level metrics to capture
recognition performance across multiple linguistic dimensions.

5.2 Validation of the First Subquestion

Subquestion 1: How can clinical terms and named entities be effectively extracted from med-
ical transcripts for evaluation, and which methods are appropriate for identifying different
term categories?

This study employed a dual extraction framework combining the SNOMED CT clinical terminology
system and a Dutch-language Named Entity Recognition (NER) model (spaCy’s nl core news lg) to
identify two major lexical content types within medical transcripts: (1) standardized clinical terms
(e.g., diseases, drugs, clinical findings), and (2) semantically relevant named entities (e.g., personal
names, locations, brand names, abbreviations).

To accommodate the variability of ASR outputs, a fuzzy matching strategy was used using Rapid-
Fuzz and n-gram expansion. This approach allowed for approximate string matches, accounting for
common ASR errors such as phonetic variation, spelling inconsistencies, and fragmentary outputs.
A similarity threshold of 75 was adopted to balance between recall and specificity. This method-
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ology successfully enhanced retrieval robustness, as evidenced by increased coverage of drug and
clinical finding terms under fuzzy matching.

5.3 Validation of the Second Subquestion

Subquestion 2: How do the two ASR models compare in recognizing these terms, based on
evaluation metrics and error patterns, and do they show clear strengths or limitations in spe-
cific categories? The comparative evaluation of the two ASR models demonstrated distinct perfor-
mance patterns across term categories and metric dimensions:

The closed-vocabulary Kaldi-TDNN model demonstrated consistently higher precision, F1 scores,
and lower M-WER and M-CER in clinical term categories such as Disease (Precision: 95.72%,
F1: 96.60%, M-WER: 6.57%, M-CER: 2.57%) and Drug (F1: 96.80%, M-WER: 6.21%, M-CER:
2.29%). Similar advantages are observed in Clinical Findings (F1: 93.98%, M-WER: 11.36%, M-
CER: 4.06%). These results indicate that Kaldi’s structured decoding and reliance on a predefined
lexicon offer substantial benefits when transcribing standardized medical terms. However, the model
tends to omit or misrecognize out-of-vocabulary terms, a limitation inherent to its closed-vocabulary
design.

The open-vocabulary K2-RNN-T model, on the other hand, showed higher recall across all cate-
gories, especially in those with greater lexical variability. For instance, in Location (Recall: 98.34%)
and Person Name (Recall: 97.19%), K2 achieved significantly higher recall than Kaldi, alongside
lower M-CER in Person Name (9.63% vs. 11.85%) and Location (5.02% vs. 9.52%). In Brand
Name, both models performed comparably in F1 scores (Kaldi: 92.49% vs. K2: 90.38%), but K2
achieved lower M-CER (5.40% vs. 6.86%). This suggests that K2’s subword-based and flexible
decoding strategies may offer advantages in handling non-standardized or institution-specific terms.
Despite these strengths, K2-RNN-T’s gains in recall often come with elevated word-level error rates.
For example, in Disease, its M-WER (29.92%) and M-CER (11.54%) are considerably higher than
Kaldi’s, pointing to greater substitution or approximation errors. Notably, Person Names yielded
the lowest F1 scores for both models (Kaldi: 83.29%, K2: 76.31%) and the highest M-WER values
(Kaldi: 28.64%, K2: 38.31%), reflecting shared difficulty in recognizing unfamiliar or acoustically
ambiguous names.

Qualitative error analysis further corroborated these findings: Kaldi-TDNN tended to fully omit
unknown terms, whereas K2-RNN-T often generated near-miss approximations or truncated out-
puts. These differences highlight a core trade-off: Kaldi-TDNN prioritizes lexical integrity at the
expense of coverage, whereas K2-RNN-T sacrifices standardization for recall. In conclusion, both
models exhibit complementary strengths. Kaldi-TDNN is more suited for high-precision tasks in-
volving standardized terminology, while K2-RNN-T excels in recognizing lexically diverse or spon-
taneously expressed terms. These findings suggest that future ASR development in the clinical do-
main may benefit from hybrid or task-adaptive strategies that leverage the strengths of both modeling
paradigms.
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5.4 Limitations

While this study presents a comprehensive evaluation of closed- and open-vocabulary ASR sys-
tems in the context of Dutch medical speech, several limitations should be acknowledged that may
influence the generalizability and scope of the findings.

1. Data Scope and Representativeness
The dataset used in this study, although rich in authentic Dutch clinical dialogue and profes-
sionally transcribed, was drawn exclusively from long-term care institutions using Gerimed-
ica’s platform. As such, it may not fully represent the linguistic diversity, acoustic conditions,
and interactional styles found in other healthcare settings such as emergency rooms, surgical
units, or outpatient clinics. Furthermore, the dataset contains relatively structured and formal
speech, which may limit insights into more spontaneous or noisy clinical interactions.

2. Domain and Language Constraints
The dataset used in this study, although rich in authentic Dutch clinical dialogue and profes-
sionally transcribed, was drawn exclusively from long-term care institutions using Gerimed-
ica’s platform. As such, it may not fully represent the linguistic diversity, acoustic conditions,
and interactional styles found in other healthcare settings such as emergency rooms, surgical
units, or outpatient clinics. Furthermore, the dataset contains relatively structured and formal
speech, which may limit insights into more spontaneous or noisy clinical interactions.

3. Model Design and Decoding Constraints
The closed-vocabulary and open-vocabulary systems evaluated in this study differ not only
in their lexical design (lexicon-based vs. subword-based) but also in decoding behavior. For
example, the open-vocabulary model (K2-RNN-T) encountered instability when processing
longer audio files, leading to decoder crashes and incomplete transcript generation. This af-
fected transcript alignment: while the gold standard reference set contained 8595 utterances,
only 8160 hypothesis transcripts were generated by the K2 model. This discrepancy may bias
comparative metrics and underrepresent errors in longer or more complex inputs.

4. Level of Evaluation and Entity Coverage
Although the study employed fine-grained metrics (e.g., M-WER, entity-specific F1 scores)
and fuzzy matching for approximate recognition, certain semantic errors may still evade detec-
tion, particularly those involving paraphrased or partially expressed concepts that fall outside
strict term boundaries. Moreover, the entity extraction process was limited to selected cat-
egories (e.g., SNOMED-based terms and named entities such as PERSON, LOC, BRAND,
ABBR), and did not include all clinically relevant types such as temporal expressions, nu-
meric quantities, or nested multi-entity constructs. This selection, while practical, introduces
some bias in error attribution and recall estimation.

5. Occurrence of Code-switching
Some transcripts in the dataset include English terms that appear within otherwise Dutch sen-
tences. These terms often relate to physiotherapy exercises or medications, such as leg press,
range of motion. This shows that intra-utterance code-switching does occur in real-world
Dutch clinical speech.
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While this study did not focus on analyzing or evaluating code-switched utterances in detail,
a small number of English terms were identified in the data, as shown in Figure 13. These
examples confirm the presence of mixed-language usage in this domain. Future work may
explore this further, especially in more spontaneous or complex cases of code-switching. It
may also be valuable to compare how different ASR models handle such code-switched inputs
and to assess their relative strengths in mixed-language conditions.

Figure 13: Instances of Intra-utterance Code-switching in the Dataset

In summary, while the methodological rigor and focused design of this study provide valuable in-
sights into ASR performance in Dutch medical contexts, future work should address these limitations
by incorporating more diverse clinical datasets, multilingual evaluation frameworks, code-switching
and broader semantic coverage to enhance both internal validity and external generalizability.
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6 Conclusion

6.1 Summary of the Main Contributions

This study provides a detailed comparative analysis of closed- and open-vocabulary automatic speech
recognition (ASR) systems in the clinical domain, specifically targeting Dutch healthcare speech.
Several core contributions can be highlighted:

1. Use of Real-World Clinical Speech Data
Unlike prior studies that rely heavily on benchmark datasets, this research utilized profession-
ally transcribed Dutch medical consultation data from Gerimedica. This real-world source en-
hances the ecological validity and practical relevance of the findings, contributing to evidence-
based evaluation of ASR deployment in actual healthcare environments.

2. Recognition Challenges of Clinical and Named Entities
The study moves beyond aggregate WER metrics and focuses on the recognition accuracy of
medically salient terms, such as diseases, drugs, brand names, and personal identifiers. This
term-level granularity offers critical insight for downstream clinical NLP applications, where
recognition fidelity of domain-specific vocabulary is paramount.

3. Closed- vs. Open-Vocabulary Modeling Comparison
A direct performance comparison between a lexicon-based closed-vocabulary model (Kaldi-
TDNN) and a subword-based open-vocabulary model (K2 RNN-T) was conducted. The anal-
ysis reveals complementary strengths—Kaldi demonstrated greater precision and lower M-
WER and M-CER, while K2 offered broader lexical recall, overall WER and CER underscor-
ing theoretical trade-offs and guiding practical system selection for medical ASR tasks.

4. Customized Evaluation Metrics and Error Categorization
This study adopts a comprehensive suite of evaluation metrics to assess ASR performance,
extending beyond standard WER and CER to include domain-specific measures such as M-
WER, M-CER, and entity-level F1 scores. This multi-metric approach offers a more granular
and clinically meaningful evaluation than relying on surface-level scores alone. In addition to
these quantitative metrics, the study incorporates a qualitative analysis of recognition errors,
categorizing them into substitution, approximation, and truncation types. This layered ap-
proach not only reveals surface-level performance differences but also provides deeper insights
into the models’ behavior in real-world clinical contexts, highlighting practical implications
for downstream healthcare applications.

5. Multi-Source Terminology Recognition Design
A multi-step extraction pipeline was developed, integrating SNOMED CT, spaCy-based NER,
and rule-based filters. This ensured high recall and semantic precision for both clinical terms
and named entities, and demonstrates methodological innovation in domain-specific ASR
evaluation.



Section 6 CONCLUSION 53

6.2 Future Work

Building upon the contributions of this study, several directions are proposed for future research
to further enhance the robustness, adaptability, and clinical relevance of ASR systems in medical
settings:

1. Clinical Domain Fine-Tuning and Model Fusion
Future work should explore domain-specific fine-tuning of open-vocabulary models using
Dutch medical corpora, including unsupervised and self-supervised learning techniques. Ad-
ditionally, hybrid or ensemble models that combine lexicon-constrained and subword-based
architectures may better balance the precision of closed-vocabulary models with the flexibility
of open-vocabulary systems.

2. Broader Entity and Ontology Integration
The current evaluation focuses on a subset of medical and named entity types. Future ex-
tensions may include temporal expressions, dosage instructions, institutional identifiers, and
complex nested entities. Integration with additional ontologies such as ICD, LOINC, or UMLS
could enable richer semantic evaluation and cross-domain interoperability.

3. Downstream Task Evaluation and Clinical Impact Analysis
While this study emphasizes ASR term recognition, future research should examine how
recognition errors affect downstream clinical NLP tasks, such as automatic diagnosis cod-
ing, decision support, or summarization. Measuring the semantic and practical consequences
of misrecognitions will help contextualize ASR performance within clinical workflows.

In sum, future work should aim not only to improve model performance in isolation, but also to
expand the ecological scope and translational value of clinical ASR systems. This includes designing
context-aware, terminology-sensitive, and institution-scalable models capable of supporting real-
world healthcare delivery.
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Appendices

A SNOMED Category Definitions

Figure 14: SNOMED Category Definitions

B Clinical Terminology Coverage Tables (Variety&Frequency)

Figure 15: Clinical Terminology Coverage Analysis–Variety

Figure 16: Clinical Terminology Coverage Analysis–Frequency
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C Definitions of Named Entities

Figure 17: Definitions of Named Entities

D Named Entities Coverage Tables (Variety&Frequency)

Figure 18: Named Entities Coverage Analysis – Frequency

Figure 19: Named Entities Coverage Analysis–Variety
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E Evaluation and Comparision of Kaidi TDNN and K2-RNN-T Recognition
Results

Figure 20: Evaluation and Comparision of Kaidi TDNN and K2-RNN-T Recognition Results (Blue
fonts represent better performance)
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During the preparation of this thesis, I used ChatGPT (OpenAI, GPT-4, 2025) to support the devel-
opment and presentation of this work in the following ways:

• Improving academic writing quality by refining grammar, clarity, and formal tone across all
chapters.

• Helping format and generate LaTeX-compatible figures.

• Assisting with Python-based term extraction workflows using the spaCy model, and offering
guidance with the use of RapidFuzz for fuzzy matching tasks, including restructuring scripts
to reduce memory usage and improve reproducibility.

• Providing support on how to use concept relationships in SNOMED CT for extracting relevant
categories of clinical terms.

• Offering guidance on the interpretation of ASR metrics such as M-WER and M-CER, includ-
ing how to apply them meaningfully and report them consistently.

All AI-generated suggestions were critically reviewed and revised by me. The design of the experi-
ments, interpretation of the results, and final conclusions reflect my own work and judgment. I take
full responsibility for the content presented in this thesis.
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