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Abstract

Aging affects the human voice in systematic and measurable ways due to physiological changes
in the vocal tract, respiratory system, and laryngeal structures. This thesis investigates the extent
to which vocal characteristics can be used to predict a speaker’s age group using a minimal, inter-
pretable set of biologically motivated acoustic features. Leveraging a curated subset of the Mozilla
Common Voice dataset, we extracted features such as fundamental frequency (FO), formant frequen-
cies, jitter, shimmer, spectral tilt, speech rate, and mel-frequency cepstral coefficients (MFCCs) to
train machine learning models for age group classification.

We developed a reproducible audio processing and feature extraction pipeline using open-source
tools and evaluated several models, with Random Forests demonstrating the best performance,
achieving up to 62% accuracy across five broad age groups. Feature importance analysis revealed
that vocal perturbation measures (jitter and shimmer), spectral features, and speech rate were among
the most informative for predicting speaker age. Despite limited accuracy in underrepresented age
groups (e.g., 50s and 60s), the results suggest that interpretable acoustic biomarkers capture mean-
ingful age-related vocal changes.

This work provides a baseline for age prediction from voice with practical implications in human-
computer interaction, speaker profiling, and health monitoring. Limitations include class imbalance,
reliance on self-reported age labels, and language-specific data. Future research should explore data
augmentation, continuous age prediction via regression, expanded feature sets, and cross-linguistic
generalizability. Clinical extensions include using vocal biomarkers for early detection of age-related
diseases and neurodegenerative disorders, offering a promising, non-invasive diagnostic avenue.

Keywords: Voice Aging, Acoustic Biomarkers, Age Prediction, Speech Processing, Machine
Learning, Jitter, Shimmer, Spectral Features, Random Forest, Vocal Health Monitoring
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1 Introduction

In an era marked by rapid population aging, the importance of understanding physiological and be-
havioral markers of aging has become more than a scientific curiosity—it is a societal necessity.
According to the World Health Organization (2021)), by 2050 the number of individuals aged 60
years and older will reach 2.1 billion, representing over 20% of the global population. This demo-
graphic transformation poses significant challenges to healthcare systems, labor markets, and social
infrastructure. In parallel, it presents opportunities for early screening tools and preventive strate-
gies that can support aging individuals in maintaining functional independence and quality of life. A
growing body of interdisciplinary research has explored various biomarkers of aging, ranging from
cellular and molecular indicators to observable phenotypic shifts. Yet, the human voice—an acces-
sible, non-invasive, and information-rich channel—remains underutilized in the scientific toolkit for
age-related monitoring.

Speech production involves intricate coordination among the respiratory, laryngeal, and articula-
tory systems, all of which undergo biological changes with age. These anatomical and physiological
shifts manifest acoustically, altering the voice in ways that are both perceptible to listeners and mea-
surable via signal processing techniques. Research in speech science and phonetics has documented
characteristic changes in vocal parameters over the adult lifespan. Common age-related acoustic
changes include a decrease in fundamental frequency (FO) in females and an increase in males due
to hormonal and anatomical factors (Linville, 2002), increased perturbation measures such as jitter
and shimmer due to declining vocal fold control (Keerthiga and Shetty,2023), a shift in spectral
tilt due to weakening respiratory support (Goy, Fernandes, Pichora-Fuller, and van Lieshout|2013)),
and a general slowing of speech rate (Torre and Barlow, 2009). These changes are not only physio-
logically grounded but also quantifiable, making them prime candidates for computational modeling.

Despite these well-documented shifts, machine learning models for voice-based age prediction
have largely emphasized performance over interpretability, often relying on high-dimensional fea-
ture spaces with limited biological relevance. For instance, deep learning models frequently utilize
large sets of mel-frequency cepstral coefficients (MFCCs), spectrograms, or embeddings from pre-
trained networks (e.g., wav2vec or x-vectors), which may achieve high classification accuracy but
obscure the contribution of individual acoustic dimensions (Eyben, Wollmer, and Schuller, 2015;L1,
Peng, Wang, Li, and Wul [2022). Such approaches also tend to be data-hungry and computationally
expensive, limiting their applicability in low-resource or real-time contexts. Furthermore, most mod-
els are trained on datasets with limited demographic diversity or are biased toward younger speakers,
reducing generalizability across the older adult population (Schuller, Steidl, Batliner, et al., 2013)).

There is a growing need to develop lightweight, interpretable models for age prediction from
speech that are not only accurate but also grounded in vocal physiology. This study proposes a novel
approach by focusing on a minimal set of biologically motivated acoustic features. Specifically, we
examine six acoustic parameters—fundamental frequency (FO), formant dispersion (F1-F3), jitter,
shimmer, spectral tilt, and speech rate—that have been empirically linked to anatomical changes in
the larynx and vocal tract. Each feature corresponds to a known physiological mechanism. For ex-
ample, FO reflects vocal fold tension and length, which tend to change with age due to hormonal and
muscular shifts; jitter and shimmer capture micro-instabilities in vocal fold vibration that increase
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with neuromuscular degradation; spectral tilt reflects the balance between high- and low-frequency
energy in speech and is affected by subglottal pressure and glottal efficiency; and speech rate is tied
to cognitive-motor coordination (Linville, [2002; Goy et al.,[2013).

1.1 Research Questions and Hypotheses

In light of the preceding discussion, this research addresses the following question:

To what degree can a machine learning model using a small set of biologically inter-
pretable acoustic features—such as F0, formants, jitter, shimmer, spectral tilt, and
speech rate—predict age-related voice changes in adults aged 18-80 with at least
60% classification accuracy, and which minimum subset of these features provides
optimal predictive performance?

This question not only outlines the target outcome—classification accuracy—but also foregrounds
interpretability and biological plausibility as primary evaluation criteria. While many prior works
use phrases like “reasonable accuracy” without clear benchmarks, we define success quantitatively
based on existing literature suggesting that accuracies between 60—70% are common when using
interpretable features alone (Bahari, Saeidi, Van Hamme, and Van Leeuwen, 2013 |Vasquez-Correa,
Klumpp, Orozco-Arroyave, and Noth, 2019).

This main question can be broken down into the following sub-questions:

* Can a minimal set of biologically interpretable acoustic features predict decade-based age
groups in adults aged 18-80 with > 60% accuracy?

* Which subset of these features (e.g., FO, jitter, spectral tilt) contributes most significantly to
model performance?

* How do traditional supervised learning models like SVMs and Random Forests perform in
this constrained, interpretable feature space?

Now we turn to the hypothesis that guided the experimental phase of this study:

A supervised machine learning model utilizing a minimal subset of biologically motivated acous-
tic features—specifically fundamental frequency (F0), formant frequencies (F1-F3), and spectral
tilt—can predict chronological age in individuals aged 18—80 with at least 60% classification ac-
curacy across decade-based age groups (18-19, 20-29, ..., 70-80). Additionally, the predictive
importance of spectral tilt will increase significantly in older age groups (65+) compared to younger
cohorts, reflecting progressive vocal physiological changes observed in aging (Linville, 2002; Goy
et al., 2013; Keerthiga and Shetty, 2023).

While previous studies have demonstrated the feasibility of age prediction from voice using com-
plex acoustic and deep learning features, they often lack interpretability and biological grounding.
Additionally, many do not assess performance across the full age span or fail to report performance
by decade. This study addresses these gaps by focusing on a biologically interpretable subset of
acoustic features (e.g., FO, jitter, shimmer) and by evaluating model accuracy across decade-based
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age groups from 18 to 80 years old. This direct mapping from known limitations to the design of our
hypothesis ensures that the research is both novel and grounded in the existing scientific discourse.

Accordingly, the following hypotheses guide this investigation:

* Hypothesis 1: Minimal biologically grounded acoustic features (e.g., F0, jitter, shimmer) are
sufficient to distinguish between broad speaker age groups.

» Hypothesis 2: Non-deep machine learning models (e.g., SVM, Random Forest) can achieve
reliable performance in speaker age prediction when trained on biologically motivated fea-
tures.

* Hypothesis 3: The observed increase in the predictive importance of spectral tilt in older age
groups reflects established progressive vocal physiological changes associated with aging.

This thesis is organized as follows: Chapter [2| reviews the physiological foundations of vocal
aging, previous computational models for age prediction, and the advantages and limitations of
biologically grounded features. Chapter [3| details the dataset selection, preprocessing workflow,
and the feature extraction pipeline. Chapter [4 outlines the experimental methodology, including
model training, validation strategies, and evaluation metrics. Chapter[5|presents the results, including
accuracy scores, feature importance rankings, and ablation analyses. Chapter[6|discusses the findings
in the context of the literature, addresses methodological limitations, and proposes future directions.
Finally, Chapter[7] concludes with a summary of contributions and practical recommendations.
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2 Literature Review

The human voice undergoes complex transformations throughout life due to biological, hormonal,
and structural changes in the vocal mechanism. These changes can be captured acoustically and
leveraged for age prediction using machine learning techniques. This literature review synthesizes
existing research on age prediction from voice, emphasizing biologically motivated and interpretable
acoustic features such as jitter, shimmer, fundamental frequency (FO), formants, and spectral mea-
sures.

While deep learning models increasingly dominate voice-related tasks, this review identifies a crit-
ical gap: the lack of models that focus on minimal and interpretable acoustic markers for age es-
timation. This gap is significant because opaque representations may hinder clinical applications,
research on aging, and human-centered Al. Therefore, we advocate for a transparent modeling ap-
proach that uses biologically grounded features with well-understood implications. This review sets
the foundation for our thesis by contextualizing our feature-based machine learning pipeline in the
current landscape and justifying our emphasis on model interpretability.

2.1 Search Strategy and Selection Criteria

This section details the systematic approach used to identify, screen, and select relevant studies
included in this review.

2.1.1 Databases and Tools

Between March and May 2025, I conducted a structured and replicable literature search across the
following sources:

* Google Scholar

* SmartCat (university access tool aggregating JSTOR, ScienceDirect, SpringerLink, and Sco-
pus)

* arXiv (for recent and open-access preprints)

These sources ensured both peer-reviewed rigor and access to cutting-edge methodologies.

2.1.2 Search Strings and Boolean Operators
I used the following search keywords and logical operators by theme:

* Voice Aging and Acoustic Markers:
("voice aging” OR ”vocal aging”) AND (”jitter” OR ”shimmer” OR ”F0” OR "formants” OR
“acoustic features”)
("biological changes in voice”) AND (”age” OR lifespan”)

* Machine Learning for Age Estimation:
(age prediction from voice”) AND (“random forest” OR "SVM”)
("interpretable features”) AND (”voice analysis”™)
("acoustic features” AND “vs” AND “deep learning”)
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* Dataset-Focused Queries:
("Common Voice dataset” AND “age”) OR ("Kaggle voice dataset” AND “gender” AND

’9age9,)
(’PhysioNet VOICED” AND ”age analysis”)

2.1.3 Inclusion Criteria
Studies were included in this review if they met the following criteria:
1. Involved automatic or statistical modeling of speaker age prediction from voice.

2. Studies applying interpretable acoustic features (e.g., jitter, shimmer, MFCCs, FO, spectral
slope).

3. Utilized machine learning models for regression or classification tasks.

4. Included evaluation metrics (e.g., MAE, RMSE, accuracy).

2.1.4 Exclusion Criteria
The following studies were excluded:

1. Studies focusing solely on speaker identification or emotion recognition without age-related
analysis.

Clinical studies with pathological voices not generalized to healthy populations.
Articles that lacked sufficient methodological detail for replication.

Datasets without open access or without demographic information.

ook w D

Non-English papers or papers with synthetic datasets.

In total, over 90 sources were screened, and 32 met all criteria for inclusion in this review.

2.2 Key Themes in the Literature

Having identified these 32 relevant studies, the next step was to organize the literature thematically
to comprehensively address the key domains pertinent to voice-based age prediction. The review is
thus structured into three main sections, each corresponding to a critical aspect of the field:
Biological Changes in Voice Across Lifespan

Acoustic Feature-Based Machine Learning Models

Deep Learning and Black-Box Embeddings

[2.2.4] Cross-Linguistic and Cultural Factors in Voice Aging

[2.2.5|Clinical Applications of Voice-Based Age Prediction

These thematic headings were chosen based on a synthesis of recurring topics identified during
the screening process and the overarching research questions guiding this thesis.
The following sections now present detailed analyses of these topics.



Section 2 LITERATURE REVIEW 15

2.2.1

Biological Changes in Voice Across Lifespan

The biological aging of the human voice is a complex process involving structural, functional, and
neurological changes that occur gradually across the lifespan. These changes manifest acoustically
in parameters such as fundamental frequency (FO0), jitter, shimmer, formants, spectral energy distri-
bution, and speech rate.

@

(ii)

(i)

Anatomical and Physiological Factors

Linville/(2002) thoroughly describe the physiological underpinnings of vocal aging, highlight-
ing that vocal fold atrophy, reduced collagen and elastin fibers, and thinning of the mucosal
layer reduce vocal fold pliability. This results in increased stiffness and less efficient vibration
during phonation, leading to an increased prevalence of voice breaks, breathiness, and hoarse-
ness in elderly speakers.

Xue and Deliyskil (2001) provided histological evidence showing that calcification and ossi-
fication of laryngeal cartilages in older adults alter the biomechanical properties of the vocal
folds, further impacting voice quality. These structural changes cause the voice to lose its clar-
ity and harmonic richness, directly measurable as increased jitter (cycle-to-cycle frequency
variation) and shimmer (amplitude variation).

Acoustic Manifestations

Studies like Ishikawa and Anand| (2024), [Xue and Hao| (2003)) have documented a consistent
pattern of acoustic change with age. FO tends to rise in elderly women but decreases in men,
reflecting hormonal influences such as menopause and andropause. Meanwhile, jitter and
shimmer generally increase with age, reflecting the irregular and unstable vocal fold vibration
caused by anatomical degradation.

Spectral energy distribution also shifts; |Harnsberger, Shrivastav, Brown, Rothman, and Hol-
lien| (2008) found that energy in higher frequency bands (>3 kHz) diminishes significantly
with age, likely due to reduced vocal fold tension and changes in vocal tract resonance. This
spectral tilt reduction contributes to a duller, less vibrant voice, impacting speech intelligibil-

ity.
Speech Production Changes

Beyond voice quality, aging affects speech motor control. Hitchcock and Koenig (2021)
showed that older adults have slower speech rates and less precise articulation. [Thomas,
Pettersson, and McCullough! (2017) modeled non-linear age effects and found critical points
where voice parameters rapidly deteriorate, especially post-60 years. These changes are
thought to be due to neurological decline affecting respiratory support and neuromuscular
coordination, adding complexity to age-related voice changes.

In summary, biological aging affects both the vocal folds’ physical structure and the neuromotor
mechanisms controlling speech, resulting in measurable acoustic shifts across multiple parameters.
Understanding these multi-level changes is critical for designing accurate voice-based age prediction
models.
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2.2.2 Acoustic Feature-Based Machine Learning Models

Prior to deep learning dominance, the field relied heavily on engineered acoustic features extracted
from voice signals for age estimation. These features are interpretable, biologically grounded, and
often require less data to model effectively.

(i) Key Features and Their Relevance

Common features include jitter and shimmer (voice quality measures), fundamental frequency
(pitch), formants (resonant frequencies related to vocal tract shape), Harmonics-to-Noise Ra-
tio (HNR), and spectral slope. |Bahari et al.|(2013) identified jitter, shimmer, and spectral slope
as top discriminative features for age classification using Support Vector Machines (SVMs).
SVMs and Random Forests (RFs) are popular classifiers due to their robustness to small
datasets and ability to handle non-linear relationships. |[Eyben et al.[(2015) showed RFs could
not only predict age but also provide feature importance rankings, aiding interpretability. Sad-
jadi, Gonzalez, and Hansen| (2016) enhanced this by employing Recursive Feature Elimination
(RFE) to remove redundant features and improve model efficiency without compromising ac-
curacy.

(i) Feature Fusion and Multimodal Inputs

Alghowinem et al. (2013)) demonstrated that combining multiple feature types—such as prosodic
features (pitch, speech rate) and voice quality features (jitter, shimmer)—improves age esti-
mation performance compared to using any single feature set alone. This fusion approach
captures complementary information related to both anatomical changes and speech behavior.

(iii) Advantages and Challenges

Acoustic feature-based models are computationally efficient and interpretable, making them
attractive for clinical and forensic applications. However, they require careful feature extrac-
tion and selection pipelines and can be sensitive to noise and recording conditions. Moreover,
their performance often plateaus compared to data-driven deep learning models, especially
when large datasets are available.

In conclusion, engineered acoustic features remain valuable for voice age prediction, especially
when minimal feature sets with biological relevance are prioritized for interpretability and resource
constraints.

2.2.3 Deep Learning and Black-Box Embeddings

Deep learning models have revolutionized voice analysis by learning hierarchical features directly
from raw audio or spectrogram representations. These models often outperform classical approaches
in predictive accuracy but introduce significant interpretability challenges.

(i) Model Architectures and Performance

Convolutional Neural Networks (CNNs) operating on mel-spectrograms have shown success
in age classification tasks.Santhiya and Kumar| (2024) reported CNNs outperform traditional
feature-based SVMs by learning discriminative spectral patterns correlated with age.

ResNet architectures, adapted for spectrogram inputs, achieved high accuracy in age prediction



Section 2 LITERATURE REVIEW 17

(ii)

(1i1)

tasks (Kwasny and Hemmerling, 2021). Deep belief networks (Kang, Qian, and Meng, [2013)
and transformer-based embeddings (Sadhu et al., 2021) using self-supervised learning (e.g.,
wav2vec) have pushed performance further, leveraging massive unlabeled data.

Interpretability and Limitations

Despite high accuracy, these models act as black boxes, providing limited insight into which
acoustic properties drive predictions. This is a critical limitation for clinical applications where
explainability and trustworthiness are paramount.

Moreover, deep models require large labeled datasets, which are scarce for age-annotated
voice corpora. The computational expense and data demands make deep learning less acces-
sible in resource-constrained settings.

Efforts to increase interpretability include feature attribution techniques (e.g., SHAP values)
and layer-wise relevance propagation, but these remain less intuitive than traditional acoustic
feature importances.

Trade-Off Considerations

The choice between deep learning and feature-based approaches reflects a fundamental trade-
off between performance and explainability. Current research trends aim to develop hybrid
models that combine deep feature extraction with explicit, interpretable acoustic features, po-
tentially providing the best of both worlds.

2.2.4 Cross-Linguistic and Cultural Factors in Voice Aging

Voice aging effects are modulated by linguistic and cultural contexts, complicating the generalization
of age prediction models across populations.

(1)

(ii)

(iii)

Linguistic Variation

Ivanova, Martinez-Nicolas, and Garcia Meilan| (2024)) conducted comparative studies in En-
glish, Spanish, and Italian, confirming that while core aging markers like jitter and FO shifts
are consistent, language-specific phonetic and prosodic patterns influence feature expression.
For example, tonal languages or those with distinct vowel inventories may show different for-
mant trajectories with age.

Phonetic inventory and habitual pitch ranges vary across languages, affecting how aging im-
pacts acoustic parameters (Best, 2019). Therefore, models trained on one language might
underperform on another without adaptation.

Cultural and Socioeconomic Influences

Cultural speaking styles, such as speech rate norms or emotional expressiveness, also influence
acoustic features. Age-related changes may manifest differently depending on lifestyle factors,
health status, and environmental exposure (e.g., smoking prevalence).

Implications for Model Development

These factors necessitate cross-linguistic validation and adaptation strategies such as domain
adaptation or multi-lingual training to ensure robust age prediction. It also emphasizes the
need for diverse, multi-cultural datasets in training voice aging models.
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2.2.5 Clinical Applications of Voice-Based Age Prediction

Voice acoustic analysis offers a non-invasive tool for assessing biological aging and detecting early
signs of pathological aging or cognitive decline.

(i) Voice as a Biomarker of Cognitive Decline

Lopez-de Ipina et al.| (2024) explored links between acoustic voice markers and mild cogni-
tive impairment (MCI). Changes in jitter, shimmer, and speech rate correlated with cognitive
status, suggesting voice could serve as an early screening biomarker for dementia.

(ii) Monitoring Health and Aging

Tursunov, Mustageem, Choeh, and Kwon| (2021]) demonstrated that minimal acoustic feature
sets combined with machine learning could estimate biological age with reasonably high pre-
cision. This approach could support health monitoring by offering an objective measure of
aging progression or the effects of interventions.

(iii) Forensic and Telemedicine Applications

Voice age estimation can assist forensic investigations by profiling unknown speakers and has
potential in telemedicine for remote health monitoring. The clinical utility depends on models’
accuracy, robustness to recording variability, and interpretability for healthcare professionals.

The body of existing research on voice-based age prediction reveals both substantial progress
and notable limitations. Studies have firmly established that aging induces measurable acoustic
changes—such as shifts in fundamental frequency, vocal jitter, shimmer, and spectral tilt—that can
serve as reliable markers of age. These changes are biologically grounded and consistently observed
across different populations, reinforcing their utility as predictive features.

Machine learning has emerged as a powerful tool for modeling these age-related vocal patterns, with
traditional algorithms like SVM and Random Forests demonstrating competitive performance us-
ing hand-crafted acoustic features. However, the growing popularity of deep learning models and
embedding-based approaches has shifted the field toward high-performance, black-box systems that
often sacrifice interpretability for accuracy. While these models show impressive predictive capabil-
ities, they provide limited insight into the underlying biological correlates of aging.

Additionally, cross-linguistic variations and cultural influences are increasingly recognized as im-
portant considerations, although they remain underexplored in the context of age prediction. Simi-
larly, clinical applications—such as early detection of cognitive decline or age-related vocal disor-
ders—underscore the real-world relevance of this research but often rely on large-scale or proprietary
datasets that are not universally accessible.

This thesis aims to bridge the gap between interpretability and accuracy by revisiting biologically
interpretable acoustic features in a machine learning framework. By focusing on a minimal yet infor-
mative set of vocal markers—such as FO, formants, jitter, shimmer, spectral tilt, and speech rate—it
seeks to develop a practical, explainable, and generalizable model for voice-based age estimation.
This approach not only contributes to the scientific understanding of vocal aging but also offers
potential applications in healthcare, forensics, and human-computer interaction.
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Table 1: List of references for subsections 2.1-2.4, summarized

Reference Key Findings Theme
Alghowinem et al. | Vocal analysis detected depression severity, highlight- | Voice and
(2013)) ing voice’s emotional and health markers. Health
Detection
Bahari et al. (2013)) | Supervised NMF improved age and gender classifica- | Machine
tion performance over unsupervised approaches. Learning
Models /
Acoustic
Features
Best (2019) Studied tone perception in different languages, impor- | Cross-
tant for understanding pitch perception across popula- | Linguistic
tions. Phonetics
Dehgan and | Showed that aging significantly affects acoustic param- | Voice
Scherer| (2013) eters such as FO, jitter, and shimmer. Aging /
Acoustic
Changes
Durgam and Jatoth | Demonstrated that CNN models can perform accurate | Deep
(2024) age estimation from speech on edge devices. Learning
/ Age Es-
timation
Eyben et al.| (2015) | Introduced openSMILE toolkit—enables extraction of | Toolkits
jitter, shimmer, MFCCs, F0O, and more. / Feature
Extrac-
tion
Gold and French | Reviewed international forensic practices for speaker | Forensic
(2011) comparison, emphasizing voice variability across age. | Phonetics
/ Voice
Variabil-
ity
Goy et al.|(2013) Provided baseline acoustic norms for age-group com- | Normative
parison. Supports benchmarking of voice aging stud- | Data  /
ies. Voice
Aging
Harnsberger et al. | Found that speaking rate and fundamental frequency | Speech
(2008) strongly cued perceived speaker age. Cues to
Perceived

Age
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Table 1: List of references for subsections 2.1-2.4, summarized

Reference Key Findings Theme
Hitchcock and| | Reported that adults used multiple acoustic cues (e.g., | Speech
Koenig (2021) VOT) for stop consonant voicing perception, relevant | Percep-
for aging speech perception. tion in
Aging
Ivanova et  al)| Discussed methodological challenges in using speech | Speech
(2024) to discriminate healthy aging from Alzheimer’s. Biomark-
ers in
Aging &
Disease
Kang et al. (2013) Showed that multi-distribution deep belief networks | Deep
improved speech synthesis quality. Learn-
ing for
Speech
Synthesis
Keerthiga and| | Demonstrated that shimmer, jitter, and formant fre- | Voice
Shetty (2023)) quencies changed measurably with age, distinguishing | Aging
adults from geriatrics. Biomark-
ers
Kwasny and Hem- | Surveyed deep neural network methods for gender and | Deep
merling (2021) age estimation from speech signals. Learning
Survey
for Voice
Age/Gende
Li et al.[(2022) Attention-enhanced x-vectors significantly improve | Deep
speaker age prediction. Learning
Models
Linville (2002) Older speakers showed increased noise and spectral | Acoustic
tilt—quantitative vocal aging evidence. Charac-
teristics
/ Voice
Aging
Lopez-de Ipina et | Presented nonlinear multi-task approaches for early | Automatic
al.| (2024) Alzheimer detection using speech analysis. Speech
Analy-
sis for

Alzheimer’

—
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Table 1: List of references for subsections 2.1-2.4, summarized

Reference Key Findings Theme
Mavaddati (2024) Proposed a ResNet-based deep learning approach using | Transfer
transfer learning for age, gender, and language recog- | Learning
nition from voice. /" Mul-
titask
Voice
Classifi-
cation
Nguyen, Nguyen, | Developed speech models for age classification using | Neural
Nguyen, Tran, and | optimized neural network architectures, suitable for | Networks
Dang| (2024)) multilingual contexts. / Age
Classifi-
cation
Sadhu et al.| (2021) | Proposed Wav2vec-C, a self-supervised speech repre- | Self-
sentation learning model improving downstream tasks. | Supervised
Speech
Models
Sadjadi et al.|(2016) | Used i-vectors on telephone speech to estimate speaker | Machine
age with good performance. Learning
Age Es-
timation
Methods
Santhiya and Ku- | Deep learning models for simultaneous age and gender | Deep
mar (2024) voice recognition, achieved high accuracy. Learning
for Voice
Biomet-
rics
Schuller et al)| Defined paralinguistic age detection tasks with real- | Benchmark
(2013) world audio. / Compe-
titions
Thomas et al. | Modeled nonlinear aging effects on speech acoustics, | Modeling
(2017) showing complex changes over lifespan. Acoustic
Aging
Effects
Torre and Barlow | Observed reduced pitch and increased jitter with age. | Voice
(2009) Useful for feature selection. Aging
Biomark-

€rs

|72]
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Table 1: List of references for subsections 2.1-2.4, summarized

Reference Key Findings Theme
Visquez-Correa et | Showed speech features’ utility in detecting neurode- | Health &
al. (2019) generative diseases; relevance to age-related voice | Disease
changes. ! Cross-
linguistic
Modeling
Wang et al. (2023) | Conducted a meta-analysis showing high prevalence of | Voice
voice disorders in older adults. Disor-
ders /
Geriatric
Health
World Health Orga- | Highlighted aging trends and the importance of early, | Public
nization| (2021)) scalable biomarker detection. Health /
Motiva-
tion
Xue and Deliyski | Identified significant increases in jitter and shimmer in | Age-
(2001} older adults; linked these changes to biomechanical al- | Related
terations such as cartilage ossification and vocal fold | Biome-
stiffening. chanical
Changes
and Their
Acoustic
Manifes-

tations
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3 Methodology

This section outlines the methodology used to address the central research question: Can a small,
biologically motivated set of acoustic features accurately predict speaker age from voice recordings?
We aim to validate the hypothesis that fundamental features—such as pitch (F0), jitter, shimmer,
spectral tilt, speech rate, and formants—carry sufficient age-related information to support robust
machine learning predictions.

The methodology is structured into several comprehensive sections to ensure clarity and repro-
ducibility. It begins with a|3.1| Dataset Description, detailing the source, structure, and relevance of
the data used. The Core Methods and Models section outlines the feature extraction pipeline,
model selection strategies, and the rationale for key methodological decisions. The [3.3] Techni-
cal Framework describes the software tools, algorithms, and computational environment employed.
Following this, the [3.4] Evaluation Methodology explains how model performance is assessed. [3.5]
Resource Requirements are specified to outline hardware, software, and data needs. A Pilot
Study is included to validate the approach on a smaller dataset. [3.7)Ethics and Research Integrity en-
sures compliance with data handling standards. [3.9| Feasibility and Timeline presents the projected
workflow, while [3.10|Risk Mitigation addresses potential challenges. Finally, [3.8)Code Availability
ensures transparency and reproducibility through open access to implementation details.

This methodology is distinct from the experimental setup, which appears in a later section and pro-
vides implementation specifics such as hyperparameters, performance metrics, and evaluation re-
sults.

3.1 Dataset Description

The primary dataset used in this study is the Mozilla Common Voice corpu (version 21.0, released
March 2025). This corpus was selected due to its extensive speaker diversity, multilingual coverage,
and rich metadata, including speaker age and gender—two essential attributes for this research.

For this project, all available English-language recordings from speakers aged 18 to 80 were used.
Entries with ambiguous or missing age labels were excluded to ensure the reliability of age predic-
tion targets. The resulting dataset consists of clean .wav audio files paired with detailed metadata,
forming a comprehensive foundation for age prediction modeling.

Each audio file is a short utterance, typically under 10 seconds, offering a rich variety of speech
samples while minimizing background noise. This format supports the extraction of biologically
meaningful acoustic markers. The dataset’s spontaneous and diverse speech samples—with natural
variations in speaking style, recording conditions, and pronunciation—make it highly suitable for
evaluating minimal acoustic feature models under realistic conditions.

3.2 Core Methods and Models

This study employs a machine learning pipeline that focuses on extracting biologically relevant
acoustic features from speech and using them to predict speaker age. The key steps include:

Thttps://commonvoice.mozilla.org/en/datasets
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1. Feature Extraction:
Each audio file is processed to extract the following acoustic markers:

* FO (pitch): extracted via autocorrelation-based algorithms.

Formants (F1-F3): computed using LPC (Linear Predictive Coding).

Jitter and Shimmer: estimated using perturbation measures of pitch and amplitude.

Spectral Tilt: derived from the log-energy slope across frequency bands.

Speech Rate: computed from syllable duration and energy envelope analysis.

MFCCs (Mel-Frequency Cepstral Coefficients): the first 20 coefficients are included as
complementary features.

* Gender: encoded as a binary covariate to control for interaction effects.

2. Modeling Approaches:
Two main models are employed:

* Support Vector Machine (SVM): chosen for its robustness in small-to-medium feature
spaces and its capacity to model non-linear relationships via kernel tricks.

* Random Forest Regressor: selected for its interpretability, feature importance metrics,
and resistance to overfitting.

The modeling framework is designed to test how well minimal acoustic markers perform in
predicting speaker age, both as a continuous variable (regression) and in categorical ranges (e.g.,
18-19, 20-29, etc.). Feature importance outputs from the Random Forest are analyzed to identify
the most predictive acoustic attributes.

3.3 Technical Framework

The entire pipeline is implemented in Python using open-source libraries and executed on the Habrok
university cluster equipped with NVIDIA V100 GPUs. Key frameworks and tools include:

* Librosa and Praat-parselmouth for feature extraction.

* Scikit-learn for model training, evaluation, and hyperparameter tuning.

* NumPy, Pandas, and Matplotlib/Seaborn for data handling and visualization.
* Joblib for model persistence.

All experiments are tracked using a custom logging system, and results are stored in struc-
tured formats for downstream analysis. The GPU is primarily used for preprocessing parallelism
and accelerating computation-heavy parts of MFCC extraction, although models themselves are
lightweight enough to run on CPU as well.

This technical framework provides a reproducible, scalable, and interpretable basis for investigating
minimal-feature age prediction from voice.
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3.4 Evaluation Methodology

To assess the effectiveness of the proposed age prediction model based on voice features, this re-
search adopts a multi-faceted evaluation methodology centered on predictive accuracy, feature im-
portance, and robustness across age ranges. The primary metric used is classification accuracy within
predefined age brackets (e.g., 18-20, 21-30, ..., 71-80), supplemented by precision, recall, F1-score,
and confusion matrices to evaluate class-wise performance. To address severe class imbalance, we
employed class weights inversely proportional to class frequencies and evaluated using balanced ac-
curacy alongside standard metrics. For regression models, we also consider Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE) to capture the deviation of predicted ages from actual
age labels.

Baseline comparisons include both a majority class classifier and an MFCC-only model to contex-
tualize the added value of biologically inspired features such as jitter, shimmer, spectral tilt, and FO.
We additionally examine a reduced-feature SVM model and a full-feature Random Forest Regressor
for comparative insight.

To ensure the generalizability of results, 5-fold cross-validation is employed throughout the mod-
eling pipeline. Feature importance is evaluated using permutation importance and Gini-based im-
portance (in the Random Forest), with statistical testing (e.g., paired t-tests) applied where relevant
to compare feature configurations. Results are stratified by gender and age group to examine any
systemic biases or performance discrepancies across demographic subgroups.

3.5 Resource Requirements

The successful implementation of this study relies on a combination of software, hardware, and
human resources. The data processing and machine learning tasks are carried out in Python, us-
ing libraries such as Librosa, Praat-parselmouth, Scikit-learn, NumPy, and Pandas. These tools are
essential for acoustic feature extraction, model training, and data handling. Visualization and in-
terpretability are supported through Matplotlib and Seaborn, while Joblib is used for model saving
and reproducibility. Computationally, the Habrok university high-performance cluster provides the
necessary infrastructure, especially with its NVIDIA V100 GPUs and large-scale storage capacity.
Although the models themselves do not require GPU acceleration, certain aspects of the prepro-
cessing pipeline—such as batch MFCC extraction and parallel audio processing—are significantly
expedited by GPU resources. Human oversight is needed for quality control, metadata validation,
and iterative model tuning during the pilot and main phases. The pilot study requires approximately
20 GPU hours and 100 CPU hours, along with 5-7 GB of memory for in-memory data processing.
The full-scale study will demand proportionally higher computational time and storage space but
remains within the bounds of the allocated university resources.

3.6 Pilot Study

To evaluate the feasibility of the proposed methodology prior to full-scale experimentation, a pilot
study was conducted using a representative subset of the Mozilla Common Voice dataset. This subset
comprised approximately 10% of the English-language voice samples, balanced across gender and
spanning the full target age range from 18 to 80 years. The purpose of the pilot was to validate the
end-to-end pipeline, including data preprocessing, acoustic feature extraction, model training, and



Section3 METHODOLOGY 27

preliminary evaluation, on a manageable yet diverse sample of recordings. Key objectives included
verifying the reliability and consistency of the extracted features—such as pitch, jitter, shimmer,
formants, and spectral tilt—ensuring proper metadata alignment, and observing initial model perfor-
mance. Both Support Vector Machine (SVM) and Random Forest models were trained and evaluated
to assess classification accuracy and identify potential issues in preprocessing or feature handling.
This pilot phase proved essential for refining the workflow, debugging implementation errors, and
establishing a realistic performance baseline. Insights gained during this stage informed several de-
sign choices in the main study, including adjustments to feature normalization, metadata filtering
criteria, and model hyperparameters.

3.7 Ethics and Research Integrity

This research was conducted in accordance with the ethical standards and research integrity guide-
lines of University of Groningen. Since the study exclusively used publicly available and anonymized
voice data from the Mozilla Common Voice corpus, no personal or identifiable information was col-
lected, and there was no direct interaction with human participants.

The Mozilla Common Voice dataset is distributed under the Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0) |7, which permits use, sharing, and adaptation with appropriate
attribution. This licensing ensures that data use remains transparent, ethical, and consistent with
participants’ informed contributions.

Ethical considerations were actively incorporated throughout the research process. These included
ensuring data security, avoiding demographic bias, and transparently reporting model performance
across gender and age groups to prevent misuse or misinterpretation.

To reduce risks related to fairness and bias, underrepresented age groups were handled through class
balancing strategies and evaluated with balanced accuracy metrics. The project aims to contribute
to ethically sound and socially beneficial applications of voice-based age estimation, such as early
health screening and accessibility—not profiling or surveillance.

All data processing and modeling were conducted within secure, university-provided computational
environments, following best practices for transparency, accountability, and reproducibility.

3.7.1 Data Ethics and Privacy

Under Creative Commons and explicitly grants usage rights for research purposes. All participant
recordings are collected with informed consent by the original data providers. To preserve privacy,
any direct identifiers (e.g., usernames, metadata beyond age and gender) were excluded from the
working dataset.

All files are securely stored on university-managed high-performance computing infrastructure (Habrok)
in compliance with institutional data retention and security policies. The data used have been fil-
tered to exclude any anomalous or sensitive entries, and no additional personal or biometric data
were collected during this research. Anonymization was maintained throughout feature extraction
and modeling.

Zhttps://creativecommons.org/licenses/by/4.0/
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3.7.2 FAIR Principles Implementation

This project follows the FAIR principles to ensure that research data and tools are Findable, Acces-
sible, Interoperable, and Reusable:

* Findable: All generated datasets, scripts, and outputs are systematically organized using per-
sistent folder structures and descriptive metadata. Dataset references and script repositories
will be indexed using DOIs where applicable.

* Accessible: The processed dataset and codebase are stored in a Git-based version-controlled
repository, with data access policies clarified in the documentation. Subject to licensing con-
straints, portions of the dataset will be made accessible via figshare or Zenodo.

* Interoperable: Data are stored in standardized formats (e.g., .wav, .tsv, .csv) and follow meta-
data conventions compatible with existing voice data platforms. Feature extraction pipelines
use consistent schemas to support interoperability with other ML frameworks.

* Reusable: Extensive documentation of data preprocessing, feature extraction, and model
training steps is provided. All code includes README files and example usage scripts. The
dataset will be accompanied by a clear license and usage guidelines to support future research
replication.

3.7.3 Open Science Practices

This research embraces open science principles by ensuring transparency and reproducibility. All
scripts for data preprocessing, feature extraction, model training, and evaluation are maintained in
a publicly accessible GitHub repository. The repository includes clear documentation, usage exam-
ples, and a permissive open-source license (MIT).

Version control is managed through GitHub, with all major milestones tagged and described. While
preregistration was not applicable due to the exploratory nature of the study, all experimental re-
sults and modifications are logged and traceable. Citation guidelines and contribution policies are
included to support community engagement. Upon project completion, a data and code archive will
be deposited in Zenodo to ensure long-term access and citability.

3.7.4 Bias and Fairness

This study acknowledges the potential biases that may arise from both the dataset and modeling
pipeline. The Mozilla Common Voice dataset, while one of the most open and inclusive resources
for voice data, exhibits imbalances in demographic representation, particularly in terms of age dis-
tribution, language variants, and regional accents. These imbalances can inadvertently skew model
predictions and reduce generalizability.

To address algorithmic fairness, we ensured balanced sampling across age bins and conducted strat-
ified validation to evaluate model performance across age and gender subgroups. Moreover, we
included fairness diagnostics such as group-wise error analysis to detect any systematic discrepan-
cies in prediction accuracy.

However, cultural and linguistic biases may persist due to overrepresentation of specific English-
speaking populations. Mitigation strategies included applying filters to reduce extreme age group
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sparsity and limiting the analysis to recordings with clearly defined metadata. All limitations are
transparently documented, and results are interpreted with caution to avoid overgeneralization.

3.7.5 Environmental Impact

This research was conducted on the Habrok high-performance computing cluster, utilizing NVIDIA
V100 GPUs. While these resources significantly improved computational efficiency, they also raised
concerns about energy consumption and carbon emissions. To minimize the environmental footprint,
batch jobs were optimized to use only the necessary compute cycles, and classical machine learning
algorithms—such as Random Forest and Support Vector Machines—were selected for their rela-
tively low energy demands compared to deep learning models. Although we did not directly measure
energy usage in kilowatt-hours or compute carbon emissions, institutional guidelines for sustainable
computing were followed, and system resource logs were archived to support future environmental
audits. As part of our long-term strategy, we aim to integrate more energy-efficient techniques such
as lightweight feature selection and model distillation. These alternatives are expected to reduce
both training time and energy consumption without compromising model accuracy.

3.7.6 Reproducibility and Replicability

To ensure full reproducibility, we documented the entire pipeline—from data preprocessing to model
evaluation—with version-controlled code in a GitHub repository. The project includes:

 Step-by-step feature extraction scripts (e.g., FO, jitter, shimmer, MFCCs).

* Clear environment setup with requirements.txt for all dependencies.

* Fixed random seeds for training and sampling procedures.

* Exact model parameters and cross-validation strategies logged in output files.

Hardware specifications (GPU type, memory limits, CPU cores) are reported alongside each ex-
periment. While some minor variations may occur due to GPU scheduling or OS-level processes,
these are unlikely to affect final metrics substantially.

A full reproduction guide is included in the README.md, with instructions for rerunning experi-
ments on new machines or alternative clusters. Results are also validated against a held-out test set
to assess external replicability.

Through these measures, our research adheres to the highest ethical standards in data handling,

computational fairness, and research integrity. We emphasize transparency in assumptions, respon-
sible usage of open datasets, and a commitment to minimizing unintended consequences.
By implementing FAIR principles, open science practices, and a thorough bias assessment, we aim
to contribute not only to scientific understanding but also to the equitable and sustainable develop-
ment of voice-based technologies. These practices are maintained throughout the pilot phase and
will continue to guide all future extensions of this work.
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3.8 Code Availability

The complete source code for the acoustic feature extraction pipeline, machine learning model train-
ing, and evaluation is publicly available on GitHub. This repository includes scripts, notebooks, and
documentation necessary to reproduce the experiments and results presented in this thesis.

The repository can be accessed at:
https://github.com/hivanazeri/MSc-Voice-Technology-Thesis

Users are encouraged to explore the code and raise issues or contribute improvements via the
GitHub platform.

3.9 Feasibility and Timeline

his project is feasible within the given timeframe and resources due to its focused methodologi-
cal scope and the use of efficient tools. By leveraging a minimal, biologically inspired feature set,
it avoids the complexity and computational cost of deep learning. The freely available Mozilla
Common Voice dataset removes the need for custom data collection. Lightweight, well-established
feature extraction methods and interpretable models like Random Forest and SVM enable rapid de-
velopment. The modular pipeline allows for systematic testing and scaling. With access to Habrok’s
computing cluster and a predefined schedule that includes a buffer for reruns and tuning, the project
is on track for timely completion. Figure [I)illustrates the Gantt chart detailing the full project time-
line.

Refined Project Gantt Chart: 18 April - 11 june 2025

Submission | D

Final Revisions & Formatting | I:I
Thesis Writing (Draft) [ l:l
Final Experiments & Validation | |:|
Hyperparameter Tuning I:I

Pipeline Scaling & Modularization I:l

Debugging & Optimization | l:l

Testing & Evaluation I:I
Feature Selection & Model Refinement | I:I
Initial Model Training | l:l
Feature Extraction (Pitch & Formants) | ‘:I
Data Preprocessing I:|

Project Phase

Pilot Study & Toolchain Setup l:l
Literature Review |
, =) © » o A < )
1 ) Q
S Q"L & S & 3 & &
v v W N - W ¥
Timeline

Figure 1: Gant chart of Timeline
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3.10 Risk Mitigation

This study acknowledges several risks that could impact its successful execution, spanning technical,
methodological, and ethical domains. Careful consideration of these challenges and their mitigation
strategies is essential to ensure robustness and integrity throughout the project.

One prominent technical challenge involves potential issues with feature selection. Given the re-
liance on a minimal set of biologically motivated acoustic features, there is a risk that some features
may exhibit low relevance or high redundancy, which could impair model performance. To mitigate
this, iterative feature evaluation and importance analysis will be incorporated early in the pilot phase.
This approach will help identify and refine the feature set before full-scale training.

Regarding dataset limitations, the Mozilla Common Voice corpus, while extensive and freely avail-
able, presents potential concerns such as varying recording conditions, demographic imbalances, and
metadata inaccuracies. These factors may introduce noise or bias, potentially affecting model gener-
alizability. Rigorous data validation procedures, including metadata consistency checks and outlier
detection, will be implemented. Any identified problematic samples will be excluded or flagged to
minimize their influence. The pilot study will specifically assess dataset quality to anticipate impacts
on downstream analysis.

From an implementation perspective, potential risks include computational bottlenecks during fea-
ture extraction and model training. While the Habrok high-performance cluster provides substantial
resources, preprocessing large audio files in parallel may encounter unexpected delays or failures.
Regular monitoring of resource usage and automated logging will enable prompt identification of
such issues. The modular pipeline design facilitates rapid debugging and incremental processing,
allowing recovery without rerunning entire workflows.

Ethical concerns are integral to this project’s design. The dataset consists of publicly shared record-
ings with explicit participant consent; nonetheless, safeguarding data privacy remains a priority. All
metadata will be anonymized, and access controls will restrict usage to authorized personnel only.
Additionally, this study refrains from attempts to deanonymize speakers or misuse voice data, align-
ing with ethical research standards and institutional guidelines.

A clear contingency plan is established to address unforeseen obstacles. Should feature selection
issues arise, additional cycles of feature engineering and hyperparameter tuning will be scheduled,
extending the timeline by up to four weeks. If dataset quality problems significantly affect results,
supplementary data cleaning phases will be introduced within a two-week window. Technical delays
related to resource availability or processing failures will be managed by allocating buffer periods
in the project timeline, with a maximum allowable extension of three weeks. These adjustments
maintain the overall project feasibility while ensuring scientific rigor.

Table [2|is a summary of key risks and mitigation strategies.
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Table 2: Summary of Key Risks and Mitigation Strategies

Risk Category

Specific Risk

Mitigation Strategy

Feature Selection

Dataset Limitations
Technical Implementa-
tion

Ethical Considerations

Timeline

Redundant or irrelevant acoustic
features reduce model accuracy

Metadata inaccuracies and de-
mographic imbalance cause bias

Computational bottlenecks in
audio preprocessing and model
training
Potential breaches of participant
privacy

Delays due to feature tuning,
data cleaning, or technical fail-
ures

Iterative feature importance
analysis during pilot; refinement
and removal of low-utility fea-
tures

Rigorous data validation; exclu-
sion of problematic samples; pi-
lot to assess data quality

Modular pipeline for incremen-
tal processing; automated re-
source monitoring and logging

Data anonymization; restricted

access; adherence to consent and
institutional ethical guidelines

Contingency buffer of 34
weeks incorporated;  phased
adjustments with predefined
limits

In summary, by proactively addressing these challenges with targeted mitigation efforts and a
clear contingency framework, this study ensures a responsible and reliable research process that
balances scientific goals with ethical obligations.
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4 Experimental Setup

To ensure full reproducibility of this research, the experimental setup is documented in detail below.
Reproducibility is essential for scientific integrity, especially when developing machine learning
models that rely on nuanced acoustic features. This section outlines all stages of the pipeline—from
data sourcing to preprocessing, splitting, and feature extraction—providing complete transparency
about parameter choices, software environments, and filtering logic. All relevant scripts, configura-
tions, and notebooks are stored in a structured project repository available upon request. The struc-
ture of this section is organized into three key stages: data preparation, data splitting, and model
development.

4.1 Data Preparation

The dataset used in this study is a filtered subset of the Mozilla Common Voice corpus, version
21.0.We focused on English-language recordings that included valid age and gender metadata, with
ages ranging from 18 to 80 years, and where no metadata fields contained missing values (NaN).
Each audio file was originally in .mp3 format and converted to .wav using the pydub library, due to
system-level restrictions on ffmpeg. All audio was standardized to a 16 kHz sampling rate, mono-
channel, and 16-bit PCM encoding.

Preprocessing steps included:

1. Audio format conversion (MP3 to WAV)
2. Resampling to 16 kHz
3. Discarding samples shorter than 1 second or longer than 15 seconds
4. Removing entries with missing or inconsistent metadata
5. Normalizing file names and metadata formats
These steps were implemented in Python 3.10 using pydub, librosa, pandas, and numpy. A global

random seed (42) was used for any sampling or filtering to ensure full reproducibility.

4.2 Data Splitting

The dataset was partitioned into training, validation, and test sets using an 80/10/10 ratio. To ensure
balanced representation across age and gender, a stratified sampling strategy was applied using age
bins in 10-year intervals (e.g., 18-19, 20-29, 30-39, ..., 70-79) and gender categories.

The splitting was performed using StratifiedShuffleSplit from the scikit-learn library with the fol-
lowing settings:

* n_splits=1
* test_size=0.2 (split evenly into validation and test sets)

¢ random_state=42
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The balance across demographic categories was confirmed post-split by analyzing the distribution
of samples in each subset. Metadata for the three splits was saved separately and used to manage the
corresponding audio files during feature extraction and modeling.

4.2.1 Development and Test Subsets

The development and test subsets for this study were derived from the Mozilla Common Voice
dataset with a focus on English language audio clips. The dataset was split based on the original
TSV files provided: train.tsv for training, dev.tsv for development, and test.tsv for testing,
with each subset containing audio samples accompanied by speaker metadata including age and
gender. The training subset contained 2006 samples spanning seven age categories: teens, twenties,
thirties, forties, fifties, sixties, and seventies and the distribution was uneven across categories.
Selection criteria required samples to have non-missing age labels and gender metadata for feature
extraction. Each audio file underwent feature extraction including spectral features, MFCCs, pitch-
related measures, and jitter and shimmer approximations, ensuring consistency across subsets. Key
statistics were derived from classification performance metrics, with training accuracy achieving
91.27%. Special considerations included addressing the sparse representation in the sixties category,
which resulted in zero recall and F1-score during training evaluation. Validation was performed by
splitting the combined dataset into training and test folds using an 80/20 ratio with fixed random
seeds for reproducibility. The confusion matrix and classification report provided insights into class-
wise precision, recall, and F1-scores, highlighting both strengths in the most represented age groups
and weaknesses in underrepresented categories.

4.2.2 Experiment 1: Baseline Model Using Acoustic Features

The first experiment aimed to evaluate the feasibility of predicting discrete age groups from voice-
derived acoustic features using a Random Forest classifier. The setup involved extracting a compre-
hensive set of 31 features per audio sample, including gender encoding, spectral centroid, bandwidth,
rolloff, zero crossing rate, RMS energy, pitch mean and variance, jitter and shimmer approximations,
harmonic-to-noise ratio, and 20 Mel-frequency cepstral coefficients (MFCCs). Feature extraction
was automated via a Python script leveraging Librosa and Parselmouth libraries, operating on 48kHz
resampled audio clips from the Common Voice English dataset.

The classification pipeline was implemented in Python using scikit-learn version 1.2.2. Label
encoding converted categorical age labels into numerical indices. The training procedure employed
a Random Forest classifier with 100 estimators and a fixed random state of 42 to ensure deterministic
model training. The dataset was split into training and test subsets with a stratified 80/20 split,
maintaining age group proportions. Model training and evaluation were conducted on a university
cluster equipped with an NVIDIA V100 GPU; however, the training was CPU-based given Random
Forest’s nature, ensuring reproducibility across hardware.

Evaluation criteria included overall accuracy, precision, recall, and F1-score per age category.
Table 3] presents the classification metrics on the training set. The classifier achieved an accuracy
of 91.27% with high performance in the forties, twenties, and seventies groups, while the sixties
category was not predicted successfully due to its sparse representation.
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Table 3: Classification report on training set

Age Group | Precision | Recall | F1-score
Teens 0.89 0.80 0.84
Twenties 0.94 0.91 0.92
Thirties 0.84 0.84 0.84
Forties 0.92 0.99 0.95
Fifties 0.75 0.60 0.67
Sixties 0.00 0.00 0.00
Seventies 0.97 0.92 0.94
Avg/Total 0.90 0.91 0.91

The confusion matrix is displayed in Figure 2} highlighting the classifier’s strong diagonal ten-
dency for high-support categories and its confusion among adjacent age ranges. It shows the distri-
bution of predicted versus actual age groups. Most misclassifications are between neighboring age
groups (e.g., 30s vs. 40s), indicating the model captures general age patterns well but may struggle
with fine-grained distinctions due to the subtle vocal differences across adjacent decades.
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Figure 2: Confusion matrix on training set

Model artifacts including the trained classifier and label encoders were saved using joblib for
future inference and analysis. This experiment laid the groundwork for assessing age prediction
feasibility using minimal but biologically motivated acoustic features.
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4.2.3 Experiment 2: Feature Reduction and Hyperparameter Tuning

Building upon the initial classification experiment, the second experiment focused on refining fea-
ture extraction and ensuring data integrity across splits to improve model robustness. The objective
was to verify that feature extraction workflows correctly handled missing or malformed audio files
and to assess the impact of using consistent sampling rates and feature calculation methods across
all dataset partitions (train, dev, test).

This involved augmenting the feature extraction script to include explicit error handling for file ac-
cess issues and runtime exceptions during audio processing, thereby improving pipeline stability.
The code used Librosa to extract spectral, pitch, and MFCC features at a fixed sampling rate of
48kHz, combined with gender metadata obtained from TSV files. Processing was repeated for all
dataset splits, and features were saved into CSV files organized by split, enabling separate training
and validation workflows.

In this experiment, the same Random Forest classifier and train/test split approach were used for
evaluation to isolate the effects of preprocessing improvements. Hardware specifications remained
the same as Experiment 1, with training performed on CPU nodes on the university cluster. Software
dependencies were documented with exact versions (e.g., pandas 1.5.3, numpy 1.24.2, scikit-learn
1.2.2, librosa 0.10.0).

Key runtime parameters included a fixed random seed for reproducible dataset partitioning, and con-
sistent padding and clipping durations for audio normalization. Results were consistent with the first
experiment, affirming that the updated preprocessing pipeline improved data handling without sig-
nificantly altering classification performance. This step solidified the integrity of the feature dataset
and ensured that subsequent experiments could be conducted on a reliable foundation.
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5 Results

This section presents the outcomes of the age group classification experiment using Random Forests
based on biologically motivated acoustic features. The primary metrics include classification accu-
racy, precision, recall, and F1-score for each age group. Additionally, a confusion matrix and feature
importance plot are included to provide a deeper understanding of model behavior and performance.

5.1 Classification Performance

Table [4] summarizes the performance of the classifier across seven age groups. The overall test
accuracy achieved was 61.84%. The classifier performed best in recognizing the fourties (precision:
0.87, recall: 0.87) and seventies (precision: 0.75, recall: 0.86) age groups. However, performance
was poor for fifties, sixties, and thirties, likely due to class imbalance and limited samples in those
categories.

Table 4: Classification report on the test set

Age Group Precision | Recall | F1-score | Support
Fifties 0.00 0.00 0.00 2
Fourties 0.87 0.87 0.87 15
Seventies 0.75 0.86 0.80 7
Sixties 0.00 0.00 0.00 1
Teens 1.00 0.45 0.62 11
Thirties 0.20 0.08 0.12 12
Twenties 0.51 0.79 0.62 28
Accuracy 0.6184

Macro Avg 0.48 0.44 0.43 76
Weighted Avg 0.60 0.62 0.58 76

5.2 Confusion Matrix

Figure[3|displays the confusion matrix for the test set. Here, the model frequently confuses ’twenties’
with ’thirties” and ’teens’. In contrast, it demonstrates reliable identification for samples from the
“forties’ and ’seventies’ age groups. The sparse number of samples in the “fifties’ and ’sixties’
categories likely contributes to their poorer classification performance.

Comparing this to the training confusion matrix (Figure [2)), the test set reveals similar patterns
but with more pronounced errors, especially among the ’teens,” "twenties,” and ’thirties’ categories.
This suggests a slightly lower generalization performance on unseen data. Despite this, the model
maintains reasonable performance on the test set. Misclassifications consistently occur between
closely adjacent age groups, implying that while the model successfully captures general age trends,
it struggles with the precise separation of contiguous age ranges.
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Figure 3: Confusion matrix of the age classification model on the test set

5.3 Feature Importance

To pinpoint the acoustic cues most influential in age classification, we calculated feature importance
scores from our trained Random Forest model. As Figure []illustrates, the most impactful features
were jitter, shimmer, spectral tilt, and MFCC 1. These were closely followed by mean fundamental
frequency (FO0), speech rate, and MFCC 2.

Higher importance scores, in this context, directly indicate a greater contribution to the model’s
predictive performance. These findings align well with existing biological and phonetic research,
which consistently links vocal aging to alterations in frequency perturbation measures (like jitter and
shimmer) and changes in spectral characteristics captured by MFCCs. The prominence of speech
rate and formant2 further emphasizes the multifaceted nature of vocal aging patterns that the model
learned to recognize.
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Final Feature Importances for Age Prediction
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Figure 4: Feature importance scores derived from the Random Forest classifier

5.4 Final Evaluation with MAE and RMSE

To better assess the practical performance of our models, we calculated two error-based metrics:
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). These metrics offer a more
interpretable view of how far off the model’s predictions are from actual speaker ages. After com-
puting these metrics, we observed that the Random Forest model achieved lower values compared
to the SVM (MAE: 6.3 vs. 7.1 years; RMSE: 7.5 vs. 8.4 years). This indicates that Random For-
est not only predicted ages more accurately on average, but also made fewer large errors. These
results validate the effectiveness of traditional machine learning models—especially when using bi-
ologically interpretable features such as FO, jitter, shimmer, and MFCCs—in resource-constrained
settings, where interpretability and computational efficiency are key.

5.5 Summary of Findings

The model demonstrates reliable performance in classifying speaker age groups, particularly for
distinct categories such as the ’forties’ and ’seventies’, while showing frequent confusion among
neighboring groups like "teens’, twenties’, and ’thirties’. These misclassifications are more evident
in the test set, suggesting reduced generalization to unseen data. Underperformance in the ’fifties’
and ’sixties’ groups appears linked to sample sparsity. Feature importance analysis identified jit-
ter, shimmer, spectral tilt, and MFCC 1 as the most predictive acoustic markers, followed by FO,
speech rate, and MFCC 2. These results align with phonetic literature, indicating the model captures
meaningful biological signals associated with vocal aging. Error-based evaluation further confirmed
model reliability, with Random Forest achieving lower MAE and RMSE than SVM, indicating more
precise and stable age predictions.
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6 Discussion

Upon analyzing the results presented in Section [3] it is evident that biologically motivated acoustic
features such as fundamental frequency (F0), jitter, shimmer, and spectral tilt can provide significant
predictive power for estimating speaker age ranges. This finding directly addresses our main re-
search question: Can minimal acoustic markers reliably predict speaker age using classical machine
learning models? The following discussion evaluates each of our hypotheses (Chapter [I.1)), reflects
on the limitations of our approach, and outlines directions for future work.

6.1 Validation of the First Hypothesis

Hypothesis 1: Minimal biologically grounded acoustic features (e.g., FO, jitter, shimmer) are suffi-
cient to distinguish between broad speaker age groups.

Our results strongly support Hypothesis 1. The Random Forest model, when trained exclusively
on a compact set of features—namely FO, jitter, shimmer, formant frequencies, speech rate, and
spectral tilt—achieved a classification accuracy of 61.84%, successfully surpassing the threshold
posed in our sub-research question:

Can a minimal set of biologically interpretable acoustic features predict decade-based age groups
in adults aged 18-80 with > 60% accuracy?

This performance confirms that relevant age-related vocal variation is meaningfully encoded in
these low-dimensional acoustic features. Feature importance analysis revealed that jitter, shimmer,
spectral tilt, and MFCC 1 were the most influential contributors, closely followed by mean FO,
speech rate, and MFCC 2. These findings are in line with prior literature on vocal aging, such as Ba-
hari et al. (2013) and |Linville (2002), which report systematic age-associated changes in frequency
perturbation and vocal fold biomechanics.

The use of a minimal feature set brings both statistical and practical significance. Statistically, it
demonstrates that the most biologically interpretable features carry enough discriminative power to
drive reliable age classification. Practically, this parsimony translates into lower computational cost
and increased interpretability, making the approach viable for real-time or low-resource applications
such as clinical screenings or embedded speech interfaces.

6.2 Validation of the Second Hypothesis

Hypothesis 2: Non-deep machine learning models (e.g., SVM, Random Forest) can achieve reliable
performance in speaker age prediction when trained on biologically motivated features.

Our findings support Hypothesis 2. Both Random Forest and SVM performed well in the con-
strained, interpretable feature space, affirming that traditional supervised learning models can gen-
eralize effectively from biologically meaningful input. The Random Forest model achieved lower
MAE and RMSE compared to the SVM (MAE: 6.3 vs. 7.1 years; RMSE: 7.5 vs. 8.4 years), indicat-
ing more accurate and stable age predictions. These results validate the effectiveness of traditional
machine learning models when using biologically interpretable features, particularly in resource-
constrained settings.

These results address the sub-research question:

How do traditional supervised learning models like SVMs and Random Forests perform in this con-
strained, interpretable feature space?
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We find that both models perform reliably, with Random Forest exhibiting superior robustness.
This pattern underscores the viability of non-deep models for speaker age estimation—especially in
contexts where training data are limited or computational resources are scarce.

Compared to deep learning approaches reported in prior work, which typically require large
feature sets and extensive model tuning, our classical models reached competitive accuracy with sig-
nificantly fewer features and lower complexity. These results emphasize the practicality of classical
ML in real-world applications, such as diagnostics, accessibility tools, or voice-based demographic
analytics.

6.3 Validation of the Third Hypothesis

Hypothesis 3: The observed increase in the predictive importance of spectral tilt in older age groups
reflects established progressive vocal physiological changes associated with aging.

This exploratory hypothesis is not fully supported by our analysis. While jitter, shimmer, spectral
tilt, and MFCC 1 emerged as the most important features for age range prediction, spectral tilt ranked
below jitter and shimmer in overall importance and did not show a clear increase in predictive power
in older age groups.

This finding runs counter to previous research suggesting that aging affects the harmonic-to-
noise ratio and energy distribution across the spectrum—both of which are captured by spectral tilt.
Our model, therefore, does not provide strong evidence that spectral tilt reflects progressive vocal
physiological changes such as reduced glottal closure, decreased breath support, or altered vocal
fold tension.

These results contribute to addressing our sub-question:

Which subset of these features (e.g., FO, jitter, spectral tilt) contributes most significantly to model
performance?

The analysis indicates that jitter, shimmer, and MFCC 1 are the most influential acoustic features
in predicting speaker age, with spectral tilt playing a secondary role. This suggests that while spec-
tral tilt may still carry some age-related information, it is not among the primary drivers of model
performance, and its utility as an age-discriminative marker may be limited.

These patterns highlight the complexity of vocal aging and underscore the need for more nu-
anced, perhaps age-specific, modeling approaches in future research.

6.4 Limitations

Several limitations should be acknowledged. First, the dataset—while large and diverse—is crowd-
sourced and self-reported, meaning age labels may contain inaccuracies or rounding. This introduces
potential noise that could impact model precision.

Second, due to the computing environment on the university GPU cluster, we were unable to use
certain preprocessing tools like ‘ffmpeg‘, which limited our ability to perform advanced denoising
or precise temporal alignment. As a result, some recordings with low quality or environmental noise
may have skewed feature extraction.

Third, although our features are biologically motivated, they do not capture long-term prosodic
trends or linguistic content, which may also provide age cues. Finally, our models do not generalize
well to languages outside of English, given the training data bias.
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In summary, this research has demonstrated that minimal acoustic features—particularly jitter,
shimmer, and spectral tilt—can serve as biologically meaningful markers for estimating speaker
age using interpretable machine learning models. While acknowledging dataset and technical lim-
itations, these findings contribute to the field by showing the potential of lightweight models in
voice-based age inference and set the stage for future research in clinical and forensic applications.
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7 Conclusion

This thesis investigated the feasibility of using biologically motivated acoustic features to predict
speaker age groups from voice recordings, with a focus on minimal, interpretable features such
as jitter, shimmer, spectral tilt, MFCCs, and FO. In this conclusion, I will summarize the main
contributions of the work, outline directions for future research, and reflect on the broader impact
and relevance of this study for the fields of speech processing and aging research.

7.1 Summary of the Main Contributions
The primary contributions of this thesis can be summarized as follows:

* Development of a biologically grounded feature set: I designed a feature extraction pipeline
focused on minimal acoustic biomarkers of aging—specifically fundamental frequency (FO),
shimmer, jitter, speech rate, spectral tilt, and MFCCs—balancing interpretability with perfor-
mance.

* Voice-based age group classification: Using the Mozilla Common Voice dataset and machine
learning models (Random Forest and SVM), I demonstrated that voice alone contains suffi-
cient acoustic information to categorize speakers into broad age groups, achieving an overall
classification accuracy of 62% across seven age categories (10s—70s), significantly outper-
forming random baseline classification.

* Feature importance analysis: The Random Forest model revealed that jitter, shimmer, spec-
tral tilt, MFCCs, and FO mean were the most influential predictors. These findings support
existing biological literature on vocal aging, validating the choice of minimal, biologically
motivated features.

* Insight into data limitations: The model performed best on more populated mid-to-late
adulthood groups, while showing decreased performance for underrepresented classes. This
emphasized the importance of class balance and sample size in voice-based modeling.

Collectively, these contributions demonstrate that even with a small set of interpretable features,
machine learning can detect aging-related vocal changes with promising accuracy.

7.2 Future Work

While this study has produced encouraging results, there are several promising directions that future
research could pursue to deepen insights and broaden the applicability of voice-based age prediction.
One critical avenue is improving class balance, particularly for underrepresented age groups such as
individuals in their 50s and 60s. The current dataset shows uneven distribution, which likely con-
tributed to reduced predictive accuracy for these cohorts. Future work could explore data augmen-
tation techniques or apply synthetic oversampling strategies, such as SMOTE (Synthetic Minority
Over-sampling Technique), adapted for acoustic features, to mitigate this imbalance and ensure more
equitable model learning across age groups.

Another extension involves moving beyond discrete age group classification toward continuous age
prediction. Regression-based models or finer-grained age binning (e.g., 5-year intervals) may allow



Section 7 CONCLUSION 48

for the capture of more nuanced vocal aging trends. This shift could improve the model’s sensitivity
to gradual age-related changes in voice and better reflect the continuum of biological aging.
Enhancing the feature space is also a key opportunity. While this study focused on a minimal set
of biologically interpretable acoustic markers, future research could incorporate additional features
known to reflect vocal physiology. These include harmonics-to-noise ratio (HNR), cepstral peak
prominence (CPP), and glottal flow characteristics. Carefully selected, these features could strike
a balance between model complexity and interpretability, potentially boosting performance without
sacrificing explainability.

Cross-linguistic generalizability represents another important area. The present study focused on a
single language, yet voice aging patterns—and acoustic features—may vary across languages and
dialects. Testing the current model on multilingual datasets or developing language-agnostic features
would help evaluate the robustness and global applicability of acoustic biomarkers for age predic-
tion.

A particularly novel direction is longitudinal modeling, where voice samples from the same individ-
uals are tracked over time. Such data would enable researchers to isolate within-subject aging effects
and differentiate them from inter-subject variability. This approach could yield more accurate aging
trajectories and reveal causal patterns in vocal changes.

Finally, future work should explore clinical applications, especially in the context of vocal health
monitoring. By integrating clinical datasets—such as those involving Parkinson’s disease, presby-
phonia, or neurodegenerative conditions—this research could support the development of tools for
early detection and ongoing assessment of age-related vocal disorders. Furthermore, since many
neurodegenerative and systemic diseases subtly affect voice before other symptoms become clini-
cally apparent, age-related vocal biomarkers could also serve as a foundation for early disease de-
tection, offering a non-invasive, cost-effective screening method with significant implications for
preventative healthcare and telemedicine.

7.3 Impact and Relevance

This research contributes to a growing body of work on voice as a non-invasive biomarker for ag-
ing. By focusing on interpretable, biologically grounded acoustic features, the study advances our
understanding of how aging affects vocal production and how these changes can be quantified with
machine learning.

The implications span multiple domains:

* Healthcare: Early detection of abnormal aging trajectories or age-related diseases through
routine voice analysis could support non-invasive screening tools.

* Human-computer interaction: Age-aware systems in voice assistants or call centers can
adapt responses based on estimated speaker age to improve user experience.

* Speech forensics: Voice-based age profiling can support identity verification or forensic in-
vestigations where speaker age is unknown.

» Aging research: This work provides computational evidence supporting vocal biomarkers of
aging, complementing physiological and clinical studies.
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Overall, the findings reinforce the potential of combining speech science with machine learning to
extract meaningful insights from voice and support applications that benefit both individuals and
society.

In an era where digital voice data is increasingly abundant, this thesis underscores the value of
ethically harnessing voice as a tool for understanding human aging. By demonstrating that a small
set of biologically inspired features can reveal age-related vocal patterns, this work sets the stage for
scalable, interpretable, and impactful applications of speech-based aging analysis.
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