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Abstract
This thesis explores how well a multilingual self-supervised speech recognition model, XLSR-53,
can understand Dutch speech from people with dysarthria, a motor speech disorder that affects pro-
nunciation. Automatic Speech Recognition (ASR) can help people with dysarthria communicate
more easily, but current systems often fail because of unclear or unusual speech patterns. A com-
mon idea in recent research is that using data from many languages (cross-lingual training) might
help models better handle this kind of variation.

To test this, I compared four setups: using a high-resource Dutch model without extra training,
fine-tuning on healthy Dutch speech, fine-tuning on English dysarthric speech, and a combination
of both. I evaluated each model’s performance using Word Error Rate (WER) on Dutch dysarthric
test data. Although none of the fine-tuned models outperformed the high-resource baseline, the
combined approach did slightly better than the models fine-tuned on only one type of data.

The findings show that fine-tuning with mismatched or limited data can make performance worse,
even when using advanced models. This research gives insight into what does and doesn’t work for
dysarthric speech recognition. It also highlights important issues, such as limited speaker diversity
and age differences in the data, and suggests future research could focus on phoneme-level evaluation
and training specific parts of the model to improve results.

Overall, this work helps researchers and developers better understand how to create more inclusive
ASR systems that support people with speech impairments.
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1 Introduction
A speech disorder can make the simplest conversation a challenge, since effective communication
involves multiple interdependent processes. For this reason, even basic conversations can become
significantly more difficult for individuals with a speech disorder (Hernandez et al., 2022). As more
people age globally, neurological disorders are becoming more common (World Health Organiza-
tion, 2024). Dysarthria is an acquired or developmental speech disorder caused by neuromuscular
disturbances that affect the articulators that are involved in articulation, such as jaws and tongue. It
may also arise secondary to neurological diseases such as Parkinson’s, Alzheimer’s and Traumatic
Brain Injury (TBI) (Darley, Aronson, & Brown, 1969; Joy & Umesh, 2018; Young & Mihailidis,
2010). In addition, individuals with dysarthria often experience other motor impairments, such as
those caused by a TBI, which can make the use of keyboards and phones particularly challenging
(Hux, Rankin-Erickson, Manasse, & Lauritzen, 2000; P. Wang & Van Hamme, 2023). Because
dysarthria interferes with effective communication, it is important that these individuals have access
to alternative ways of using technology. This speech impairment can lead to difficulties in social
interactions with family or friends, and may also create barriers in academic or professional settings.
In this context, Automatic Speech Recognition (ASR) has become increasingly important in daily
life. People use smart devices and virtual assistants to perform a wide range of tasks. These hands-
free technologies are especially beneficial for individuals with physical or neuro-motor disabilities
who may be unable to use standard input methods like a computer mouse or keyboard (Jaddoh,
Loizides, & Rana, 2023; Young & Mihailidis, 2010).

In addition, speech recognizers, as well as speech synthesizers, play a major role for individuals
with speech disorders (Doyle et al., 1997; Ferrier, Shane, Ballard, Carpenter, & Benoit, 1995). ASR
systems can improve the interaction capability, assist in therapy (Vaquero et al., 2006), and speed
up working with a computer since there is no need for typing, according to a case study by Hux
et al. (2000). The authors asked their participant, who survived a severe Traumatic Brain Injury
(TBI) which caused dysarthria, to type on a keyboard and the average typing speed was 10 words
per minute. Using ASR instead of the keyboard significantly reduces the physical effort required
for communication or computer use and enables faster, more natural interaction. In this case, ASR
could support the user in completing work tasks more efficiently and with less fatigue. This example
highlights how improving ASR for dysarthric speakers is not just a technical goal. it can directly
impact users’ daily productivity, autonomy, and participation in work or study environments.

An example of a potential ASR application is a Personal Emergency Response System (PERS).
Older adults, 65 years or older, and people with neuro-motor disabilities are at higher risk during
emergencies due to limited mobility. Traditional PERS devices, often installed in homes, offer 24-
hour emergency access but typically rely on panic buttons. These are sometimes avoided due to
cost, stigma, or physical difficulty, and can result in false alarms. Speech-based PERS could offer
a more user-friendly solution by eliminating the button, reducing stigma, and allowing false alarm
cancellation (Young & Mihailidis, 2010). Such systems also support aging at home and reduce
healthcare costs—every dollar spent on PERS has been linked to $7.19 in healthcare savings (Mann,
Belchior, Tomita, & Kemp, 2005). However, ASR in this context must handle challenges like aging
voices, stress, and speech impairments. Simpler systems with easy words and minimal training may
improve reliability (Young & Mihailidis, 2010).
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However, even with a simpler system, speech recognition accuracy is consistently and significantly
lower for individuals with moderate to severe dysarthria compared to individuals without dysarthria
P. Wang and Van Hamme (2023); Young and Mihailidis (2010). The problems for these recognition
systems are disfluencies, inconsistencies and variations in speech articulation, caused by the lack
of coordination in the muscles used for speaking. Specifically, irregular phoneme articulation such
as imprecise production of consonants and distortion of vowels, monotone nature in loudness and
pitch, slow speaking rate, slurring and mumbling. Although their speech is syntactically correct,
their difficulty lies in the correct pronunciation of words, with their speech being unintelligible
(Darley et al., 1969; Joy & Umesh, 2018). Mengistu and Rudzicz (2011) found that 83% of errors
in ASR for a dysarthric dataset, which consists of sentences as well as words, were single-word
utterances. Examples for mistakes made by people with dysarthria are consonant cluster reductions;
play becomes [peI] or initial /s/ deletion; spark becomes [pArk]. A more expanded overview of these
characteristics can be found in Section 2.2. These mistakes vary between individuals with dysarthria,
which makes it difficult for ASR generalize over all these different dysarthric pronunciations. This
results in a model that adapts more to one speaker instead of a model that can be used by everyone
with dysarthria, which I will highlight more in Section 2.3.1.

ASR systems for individuals with dysarthria have shown some progress over time. STARDUST
is a system by Parker, Cunningham, Enderby, Hawley, and Green (2006), that was developed to
improve recognizing severe dysarthric speech based on an Hidden Markov Model (HMM). It uses
data from speakers with and without dysarthria that had to articulate 10 words several times. After
training on dysarthric speech, the model improved with 5% recognition accuracy compared to their
baseline without the training. A more recent development, Joy and Umesh (2018) improved ASR
for dysarthric speech by using a Gaussian Mixture Model and Deep Neural Network based Hidden
Markov Model. The amount of utterances was a lot more than for the STARDUST project and here
the authors included the TORGO dataset, which also has full sentences. It improved the Word Error
Rate (WER) from 46.22% to 28.60%, which means that the lower the percentage of WER, words
are recognized correctly. This WER is still high compared to typical speech, which has a WER
benchmark of 4.8% for Wav2Vec 2.0 (Baevski, Zhou, Mohamed, & Auli, 2020).

One way to adapt speech recognition models to dysarthric speech is by using accented English com-
bined with dysarthric English, as explored by Shor et al. (2019). Most existing models, however,
are fine-tuned and tested within the same language or are not fine-tuned at all (Hernandez et al.,
2022; Shor et al., 2019; P. Wang & Van Hamme, 2023), limiting their ability to generalize across
languages or speech types. To address this, cross-lingual models such as Wav2Vec-XLSR-53 may
offer improvements in recognizing dysarthric speech, as these models are exposed to a wide variety
of phonemes across languages. For example, in English, it is common to replace /t/ with a glot-
tal stop, as in sort of pronounced [sOP Of]. A similar pattern appears in Dutch dysarthric speech,
where wakker (awake) may be produced as [VAP@r] instead of [VAk@r]. These examples show that a
phenomenon considered typical in one language might be interpreted as impaired speech in another
(Rietveld & Van Heuven, 2016), highlighting the value of cross-lingual models in capturing such
variations.

These cross-linguistic similarities in phoneme variation highlight the potential of multilingual mod-
els to generalize across both typical and impaired speech patterns. In this context, the scarcity of
open-source dysarthric data—often limited due to privacy concerns and participant fatigue—further



Section 1 INTRODUCTION 10

increases the value of cross-lingual training strategies (Jaddoh et al., 2023). To explore this, Hernan-
dez et al. (2022) evaluated self-supervised models that were pre-trained on large unlabeled corpora
to learn speech representations from raw audio, either in monolingual or multilingual settings. Their
study tested the models on English dysarthric speech, comparing Wav2Vec 2.0 and HuBERT (both
pre-trained on English) with XLSR-53, which was trained on data from 53 languages. XLSR-53
outperformed the others, achieving a WER of 26.1%, suggesting that exposure to a wider range of
linguistic input enhances model robustness.

This study investigates whether cross-lingual fine-tuning with dysarthric speech data is necessary
to improve recognition performance, or if monolingual fine-tuning with typical speech is sufficient.
Using a self-supervised model pre-trained on 53 languages, the model will be fine-tuned on English
dysarthric speech and tested on Dutch dysarthric speech to evaluate cross-lingual generalization.
While previous work has shown that self-supervised models can improve accuracy when fine-tuned
with dysarthric speech from another language (Javanmardi, Kadiri, & Alku, 2024), a key research
gap is the limited availability of open dysarthric datasets. This often results in speaker-specific mod-
els with poor generalizability. This study builds on findings that multilingual pretraining improves
performance, which has been done by Hernandez et al. (2022); P. Wang and Van Hamme (2023), and
to discover if cross-lingual fine-tuning can further reduce word error rates (Javanmardi et al., 2024).
By exploring cross-lingual fine-tuning, this research aims to advance dysarthric speech recognition
and address the limitations of current models.

1.1 Research Questions and Hypotheses
In light of the preceding discussion, the research questions at the core of this study can be formulated
as follows:

Does cross-lingual fine-tuning with English dysarthric speech, instead of
monolingual fine-tuning with healthy speech, improve the performance of the self-
supervised model XLSR-53 for Dutch dysarthric speech in ASR?

This main question can be broken down into the following sub-questions:

• How does a high-resource checkpoint of XLSR-53 perform when tested on Dutch dysarthric
speech?

• How does the performance of XLSR-53 on Dutch dysarthric speech compares to the baseline
when fine-tuned on Dutch typical speech?

Based on prior work, I hypothesize that fine-tuning XLSR-53, a self-supervised, cross-lingual model,
on dysarthric speech will yield a 10% reduction in Word Error Rate (WER) relative to monolingual
fine-tuning. This expectation is grounded in an 8.5% WER improvement reported when fine-tuning
on accented speech, where phonetic deviations such as altered vowel quality and non-standard con-
sonant articulation mirror key features of dysarthric speech. These shared characteristics help train
models to better handle pronunciation variability (Shor et al., 2019). XLSR-53 was pre-trained on
53 languages and later fine-tuned using 32 hours of high-quality speech for ASR tasks. This robust
multilingual and high-resource foundation enables the model to generalize well across languages and
speaker types. By exposing the model to a wide range of phonetic patterns across languages, cross-
lingual fine-tuning improves its ability to cope with pronunciation variability. An additional fine-
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tuning stage of dysarthric English speech should reinforce shared acoustic representations, benefit-
ing recognition in Dutch dysarthric speech as well (Hernandez et al., 2022; P. Wang & Van Hamme,
2023).

Moreover, Shor et al. (2019) demonstrated that even a few minutes of dysarthric speech can signifi-
cantly improve WER: 71% of the relative WER gain was achieved using only 5 minutes of training
data. This supports the plausibility of achieving meaningful improvements with limited dysarthric
speech. Therefore, a 10% WER reduction is a conservative yet realistic goal, especially consid-
ering that current cross-lingual systems still struggle with severe dysarthria, achieving only 60%
recognition accuracy in such cases (P. Wang & Van Hamme, 2023).

To validate these hypotheses, I conduct three experiments. The first is a high-resource Dutch baseline
using an XLSR-53 checkpoint that has already been fine-tuned on approximately 32 hours of Dutch
speech, which is the only available “pre-fine-tuned” model. The second is a duration-matched Dutch
condition, where that same checkpoint is fine-tuned on 140 minutes of healthy Dutch speech to allow
a fair comparison with the dysarthric data. Finally, the third is a cross-lingual dysarthric condition,
where XLSR-53 is fine-tuned on 140 minutes of English dysarthric speech from the TORGO corpus.
These three setups enable a direct comparison between monolingual and cross-lingual fine-tuning,
as well as between high-resource and low-resource training scenarios.

1.2 Thesis Outline
The structure of this thesis is as follows: The Introduction section 1 outlines the background and
highlights the research gaps addressed in this study. It also introduces the research question, hy-
potheses, and the overall structure of the thesis. The Literature Review section 2 describes the
search strategy and provides an overview of the relevant papers. It discusses existing research on
dysarthric speech and datasets, ASR for dysarthric speech, and the use of cross-lingual fine-tuning.
Special attention is given to speaker-dependent models and self-supervised learning. The Methodol-
ogy section 3 details the datasets used for fine-tuning and evaluation. It also explains XLSR-53, the
evaluation procedure, and the statistical analyses. Ethical and privacy considerations, as well as bias
and fairness, are addressed in this section. The Experimental Setup section 4 covers the technical
setup, including data splitting, experimental design, and hyperparameter configuration. The Results
section 5 presents the outcomes of the experiments, comparing ASR performance across different
fine-tuning strategies, supported by statistical tests. The Discussion section 6 interprets the exper-
imental findings and considers possible explanations for the results. It also discusses the study’s
limitations. Finally, the Conclusion section 7 summarises the thesis, outlines the main findings, and
provides suggestions for future research as well as the potential impact and relevance of the work.
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2 Literature Review
In this section of my thesis I will provide a review of the literature existing on dysarthric speech
recognition and self-supervised cross-lingual models to improve dysarthric ASR. In Section 2.1, I
will explaining my search strategy and the selection of certain criteria to make this literature review
replicable. Then, in Section 2.2 I will discuss what dysarthric speech is and its characteristics, with
a follow-up of different dysarthric speech datasets used in research. In Section 2.3, I will discuss
dysarthric speech recognition in the past, which will lead to a discussion of current research and some
different approaches of creating speaker-dependent models and self-supervised learning. Finally, in
Section 2.4 I will close this chapter with discussing cross-lingual fine-tuning for dysarthria and
previous research about this topic.

2.1 Search Strategy and Selection Criteria
To make the literature review replicable, Google Scholar was used. The XLSR-53 model I used is
retrieved from Hugging Face1 and Github2.The search terms were:

• (asr OR automatic speech recognition OR voice assistant) AND (dysarthric speech OR
dysarthria); after 2000

• (torgo dataset OR dysarthria); after 1969

• (cross-lingual AND dysarthria); after 2020

• (xlsr-53 AND fine-tuning AND dysarthria); after 2020

Reference Description

Young and Mihailidis (2010)
Challenges using ASR for dysarthric
and elderly speakers

Jaddoh et al. (2023)
How people with dysarthria interact
with ASR systems

Hux et al. (2000)
Systems performed better for a speaker
without dysarthria than for one with
mild dysarthria

Parker et al. (2006)
STARDUST project developed speaker-
dependent ASR

Shor et al. (2019)
Presents finetuning techniques to im-
prove ASR for users with ALS and ac-
cented speech

Qian and Xiao (2023)
The rise of deep learning methods since
the 2010s

Table 1: Results First Search Entry

1https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-dutch
2https://github.com/facebookresearch/fairseq
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The literature search for this study was carried out on Google Scholar using the entry (asr AND
dysarthria). To focus on the most relevant developments in automatic speech recognition, only
articles published after the year 2000 were considered. In addition, all selected studies were peer-
reviewed to ensure academic quality. Special attention was given to literature reviews, as these
helped frame the challenges of dysarthric speech recognition and highlighted existing approaches
within the field. The search returned around 16,700 results. To manage scope, only the first two
pages of results were reviewed, as Google Scholar ranks articles primarily by relevance, considering
factors such as keyword match and citation frequency. Studies with a clinical or therapeutic focus
on dysarthria were excluded, as were articles published before 2000. The aim was to concentrate on
speech technology applications rather than medical or diagnostic research. Based on these criteria,
the selected articles included in this literature review are listed in Table 1.

Reference Description
Rudzicz, Namasivayam, and Wolff
(2012)

Information about TORGO database

Joy and Umesh (2018)
Presents improved DNN-HMM ASR
models for dysarthric speech in the
TORGO dataset

Darley et al. (1969) Diagnostic patterns of dysarthric speech

Mengistu and Rudzicz (2011)
Speech characteristics of dysarthric
speech

Van Nuffelen, De Bodt, Middag, and
Martens (2009)

Dutch corpus of pathological and nor-
mal speech (COPAS)

Menendez-Pidal, Polikoff, Peters,
Leonzio, and Bunnell (1996)

Nemours corpus

H. Kim et al. (2008) UASpeech corpus
M. Kim, Kim, Yoo, Wang, and Kim
(2017)

Korean dysarthric speech without se-
vere dysarthria

Ons, Gemmeke, and hamme (2014) Domotica dataset

Table 2: Results Second Search Entry

For the second literature entry, the search was conducted using the keywords (torgo dataset OR
copas OR dysarthria), with a publication date filter starting from 1969. This search resulted over
8,000 results, from which the first three pages on Google Scholar were reviewed. The focus of this
search was on studies that address dysarthric speech data, particularly the variability in pronunciation
among individuals with dysarthria. Included papers were required to be peer-reviewed and could
also include clinical research related to the causes of dysarthria, as these help contextualize speech
variation within the datasets. In contrast, studies primarily concerned with assessing the severity
of dysarthria were excluded, as they fall outside the scope of this research. The selected studies
meeting these criteria are presented in Table 2.

For the third search entry (cross-lingual AND dysarthria), I focused on papers published from 2020
onwards, since I mostly focused on self-supervised model XLSR-53, which was introduced in that
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Reference Description

Hernandez et al. (2022)
Self-supervised models like Wav2Vec,
HuBERT, and XLSR improve ASR per-
formance on dysarthric speech

P. Wang and Van Hamme (2023)
Different pre-training strategies for spo-
ken language understanding (SLU) sys-
tems on Dutch dysarthric speech

Baevski et al. (2020) Self-supervised model wav2vec 2.0

Javanmardi et al. (2024)
Improved generalization and accuracy
after fine-tuning in cross-database sce-
narios

Conneau, Baevski, Collobert, Mo-
hamed, and Auli (2020)

Introduces XLSR, a cross-lingual
speech representation model

Table 3: Results Third Search Entry

year. The search gave 389 results, and I looked through the first 3 pages on Google Scholar to find
relevant studies. Only peer-reviewed papers were included to make sure the sources are reliable. I
chose not to include studies that focus on classifying the severity of dysarthria, because this thesis
is not about identifying how severe someone’s speech disorder is. Instead, it focuses on improving
speech recognition for all types of dysarthric speech. Papers that met these criteria are listed in Table
3.

For the final search entry (xlsr-53 AND fine-tuning AND dysarthria), I again limited the results to
papers published after 2020, since XLSR-53 was introduced that year. This search term is closely
related to the previous one, so many of the same results appeared. Google Scholar returned 48
articles in total, and I reviewed the first 2 pages to identify relevant studies. In addition to direct
search results, some key papers were found through references in other studies. For example, the
papers by Rosen and Yampolsky (2000) and Mann et al. (2005) were cited in Young and Mihailidis
(2010), while Espana-Bonet and Fonollosa (2016) was found through Joy and Umesh (2018). The
papers on different self-supervised learning models (Chen et al., 2022; Graham & Roll, 2024; Hsu et
al., 2021) were referenced in Su (2024), which influenced the research direction taken in this thesis.

2.2 Dysarthric Speech
In this section I will get in depth about the cause of dysarthria and the characteristics of dysarthric
speech. Dysarthria is a motor speech disorder caused by damage to the central or peripheral nervous
system, leading to weakness or incoordination of the muscles involved in speech. It affects the
physical execution of speech rather than language processing or speech planning. The disorder can
affect several aspects of speech. Respiration may be impaired, resulting in reduced breath support
and short, quiet utterances. Articulation can become slurred or imprecise, while poor control of
the velopharyngeal mechanism can lead to hypernasal resonance. Prosody may also be disrupted,
leading to speech that sounds monotone or lacks natural rhythm. These features vary depending
on the type of dysarthria, such as flaccid, spastic, ataxic, hypokinetic, or hyperkinetic dysarthria,
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with each type reflecting a distinct pattern of neuromotor impairment as described by Darley et al.
(1969). Importantly, dysarthric speech is highly individual. Not every characteristic appears in every
speaker, and the severity and combination of symptoms differ across cases.

2.2.1 Dysarthric Speech Characteristics in TORGO

The TORGO3 English database is designed to support the development of speech recognition sys-
tems for people with dysarthria, particularly spastic, ataxic, and athetoid types caused by cerebral
palsy, as well as one case of ALS. It includes recordings from six dysarthric and matched control
speakers, along with detailed articulatory data. Their age range is between 16 and 50 years old. The
speech material spans non-words, short words, structured sentences, and spontaneous speech, en-
abling analysis of a wide range of phonetic contrasts. Observed speech deviations are grouped into
different classes, making the dataset valuable for both ASR research and clinical studies (Rudzicz et
al., 2012). In Section2.2.2, I will discuss other dysarthric datasets as well. The observed deviations
in the TORGO dataset of six subjects are grouped into different classes (Mengistu & Rudzicz, 2011):

• Final consonant deletion: Omission of the final consonant, which requires more articulatory
control. E.g: Feed → Fee

• Consonant cluster reduction: Omission of a consonant in a consonant cluster. E.g: Grow →
Gow

• Initial /s/ deletion: When the /s/ is followed by a stop. E.g: Spark → Park

• Devoicing: The voiceless counterpart is pronounced E.g: Deer → Teer

• Fronting: Consonants that are normally produced at the back of the alveolar ridge are sub-
stituted by consonants that are produced at or in front of the alveolar ridge. E.g: Ship →
Sip

• Vocalization: Liquids (/l/ and /r/) are sometimes produced as vowels when they occur in
word-final positions. E.g: Table → Tabo

• Stopping: Substitution of a stop consonant for a fricative. E.g: Thorn → Torn

To analyze pronunciation differences, the expected English phoneme sequences were compared to
the actual phoneme sequences produced by the dysarthric speakers. The expected English phonemes
are based on the CMU Pronunciation Dictionary4. This is an open-source machine-readable pronun-
ciation dictionary for North American English. Other observed articulatory mistakes were poor
articulation of vowels. However, these characteristics are specific to the TORGO dataset, which
contains English dysarthric speech recorded from speakers in Toronto. While dysarthria presents
core features across languages, such as imprecise articulation, reduced intelligibility, and abnormal
prosody, its manifestation is shaped by each language’s phonetic structure. In English, reduced
vowel clarity and complex consonant clusters, such as /str/, /pl/, are particularly affected. In con-
trast, Dutch dysarthric speakers often struggle with the production of uvular fricatives like /X/ and

3https://www.cs.toronto.edu/ complingweb/data/TORGO/torgo.html
4http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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/G/, as well as uvular /r/, which may be omitted or replaced with a glottal or alveolar variant. Voic-
ing contrasts in Dutch, such as /p/ vs. /b/, can also be weakened, leading to mergers that reduce
intelligibility (P. Wang & Van Hamme, 2023).

Some individuals with dysarthria tested in the TORGO dataset differed in these neurological disor-
ders, which adds context to variability between the speakers (Rudzicz et al., 2012). This variability
arises not only from the wide range of dysarthria types and severities but also from individual differ-
ences in speech patterns, articulation strategies, and compensation techniques. Moreover, collecting
high-quality speech data from individuals with dysarthria is challenging. Participants often find the
recording sessions physically and mentally demanding, especially when tasks involve repeated ar-
ticulation or prolonged speech. As a result, available datasets are limited in size and scope. In the
next section, I will discuss different datasets that are often used in research for dysarthric speech
recognition.

2.2.2 Dysarthric Speech Datasets

Because of the data scarcity and the variability of dysarthric speech, datasets are quite limited (Jad-
doh et al., 2023). Current datasets mostly consist of repetitions of utterances by the same participant
and are lacking unique utterances. As I mentioned in the introduction as well, physical fatigue as
well as frustration of the speaker are also reasons why the amount of data is little. The most-used
datasets for research of dysarthric speech are Nemours (0.9 hours) (Menendez-Pidal et al., 1996),
UASpeech (17 hours) (H. Kim et al., 2008) and TORGO (23 hours) for English (Joy & Umesh,
2018; Young & Mihailidis, 2010). The last two are currently widely used in ASR research. Due to
the unavailability of UASpeech, TORGO is used for English dysarthric speech. However, healthy
speech is also included in the amount of hours which makes the amount of dysarthric speech data
smaller than the overall dataset size. Some datasets do not contain severe dysarthria, since the re-
searchers could not recruit people with severe dysarthria, but only mild or moderate, for example
a dataset retrieved from M. Kim et al. (2017). This data consisted of mild and moderate Korean
dysarthric speech.

For Dutch, the datasets are even more limited. In P. Wang and Van Hamme (2023), the Dutch
dysarthric dataset used for their research was Corpus Pathologische en Normale Spraak (COPAS)5.
This is a Dutch corpus of pathological speech recorded in Flanders, a Dutch-speaking region in
Belgium (Van Nuffelen et al., 2009). In the paper by P. Wang and Van Hamme (2023), the authors
give an overview of the amount of dysarthric data, which is around 4 hours with different severities.
Another Dutch dysarthric dataset discussed by P. Wang and Van Hamme (2023) is the Domotica6

dataset (Ons et al., 2014). This is again a Flemish speech corpus designed for home automation
applications, containing 4,147 utterances from 17 speakers with varying levels of speech impairment.
The dataset includes commands for controlling domestic devices, such as adjusting lights, doors, and
heating.

According to Jaddoh et al. (2023), the authors argue that using dysarthric speech for training data
improves the performance of speech recognition. Including users with dysarthria in designing and
testing ASR systems will eventually solve the problem of data scarcity and improve the performance.

5https://taalmaterialen.ivdnt.org/download/tstc-corpus-pathologische-en-normale-spraak-copas/
6https://www.esat.kuleuven.be/psi/spraak/downloads/
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In contrast to that, Young and Mihailidis (2010) argues that collecting more dysarthric speech data
will be problematic, since it can cause fatigue when the same individual has been used. Also, using
more individuals for the collection of data can be very time consuming, since people with dysarthria
are very vulnerable. Their solution for data scarcity is a simple corpus which minimizes the required
training time and will benefit speech-based Personal Emergency Response Systems (PERS), as men-
tioned in Section 1. However, this system cannot be used for everyday communication with family
or as a substitute for a mouse or keyboard during work or study.

2.3 Dysarthric Speech Recognition
Recognizing dysarthric speech comes with many challenges, such as the lack of large datasets, high
variability between speakers, and frequent disfluencies. A traditional approach for addressing these
challenges involves using Hidden Markov Models (HMMs) combined with Gaussian Mixture Mod-
els (GMMs) (Joy & Umesh, 2018; Mengistu & Rudzicz, 2011; Parker et al., 2006). These models
are considered interpretable because their structure, such as states, transitions, and emission prob-
abilities which can be examined and understood in a transparent way. This allows researchers to
analyze how the model makes predictions and to adjust its parameters based on prior linguistic or
acoustic knowledge. It is a well-understood framework because it has been widely used and tested
in speech processing for decades, especially in low-resource settings. HMM-GMM systems can
work relatively well with limited data, as shown in the STARDUST project (Parker et al., 2006),
where speaker-dependent HMMs were used successfully with only eight participants who had severe
dysarthria. Similarly, the TORGO dataset was used in earlier research on adapting these models for
dysarthric speakers (Joy & Umesh, 2018; Mengistu & Rudzicz, 2011), demonstrating that even with
restricted vocabulary and variable speech patterns, consistent phonetic tokens within each speaker’s
output could be used to train effective recognizers. Nonetheless, a GMM-HMM struggles with
large-vocabulary tasks due to the speech characteristics of dysarthria. The performance of a GMM-
HMM did improve over time based on Joy and Umesh (2018) and Espana-Bonet and Fonollosa
(2016). The monophone GMM-HMM by Espana-Bonet and Fonollosa (2016) had a WER range
of 29.10%-88.62%, where Joy and Umesh (2018) improved this with a monophone GMM-HMM
with speaker-dependent transformations. Their WER range was 20.28%–80.92%, which was en-
hanced by tuning key parameters such as frame shift duration, context-dependent states, and feature
dimensionality specifically for dysarthric speech. This demonstrates that parameter optimization is
effective.

In addition to using GMM-HMM models, Joy and Umesh (2018) also explored DNN-HMM hy-
brids, which combine the traditional HMM framework with deep neural networks. They applied
sequence-discriminative training, specifically State Minimum Bayes Risk (sMBR), and achieved a
17.62% relative reduction in WER compared to the model from Espana-Bonet and Fonollosa (2016).
DNN-HMM models outperform GMM-HMMs for dysarthric speech because they can capture more
complex, non-linear patterns in speech and better handle speaker variability. This has also been
confirmed by recent findings in speech technology, where DNN-HMMs are widely used due to
their flexibility and improved accuracy (Qian & Xiao, 2023). However, these models require large
amounts of labeled data, which can be a problem in dysarthric ASR since many individuals cannot
provide enough annotated speech for training. As a result, there is a trade-off: DNNs generally
perform better but rely on large datasets, while GMMs work with less data but offer weaker results.
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The study by Joy and Umesh (2018) focused on speaker-dependent adaptations, meaning that WER
improvements varied across different severity levels of dysarthria. I will discuss this further in Sec-
tion 2.3.1. Finally, neither GMMs nor DNNs are pre-trained on multilingual data, which limits their
ability to generalize across languages. This highlights the potential of cross-lingual self-supervised
models like XLSR-53, which are trained on many languages and require less labeled data for effec-
tive adaptation.

Building on this need for generalizability and data efficiency, recent approaches have turned to
transfer learning to further improve dysarthric ASR. In particular, Joy and Umesh (2018) applied
transfer learning by training a teacher DNN on dysarthric-only speech, which then guided a student
DNN trained on both dysarthric and control speech. This technique transferred useful knowledge
via soft targets but still relied on large amounts of labeled dysarthric data, which are difficult and
time-consuming to collect. Furthermore, the method required significant computational resources,
limiting its practicality. To overcome these challenges, Shor et al. (2019) proposed a lighter fine-
tuning approach that required only 5-10 minutes of dysarthric speech, combined with accented En-
glish. Their model, based on a pretrained RNN-Transducer with a Listen, Attend and Spell module,
showed a 70% WER improvement over a baseline trained only on healthy speech. However, since
the comparison involved different architectures, including Google Cloud ASR, the results are harder
to generalize. To ensure valid evaluation, this thesis uses the same model architecture for both the
baseline and the fine-tuned systems.

2.3.1 Speaker-Dependent Models

As previously mentioned, dysarthric speech varies greatly between individuals speaking the same
language, due to differences in severity and the location of neurological damage (Darley et al., 1969).
For typical speech, speaker-independent models, trained on many speakers, can recognize thousands
of words and generalize well to new users (Young & Mihailidis, 2010). However, developing ASR
systems for dysarthric speech is challenging because of high variability across speakers (Jaddoh et
al., 2023; Parker et al., 2006; Rosen & Yampolsky, 2000). Parker et al. (2006) found that train-
ing and testing an ASR model on the same individual, a speaker-dependent approach, can improve
recognition performance for dysarthric speech. On the other hand, Young and Mihailidis (2010)
argue against speaker-dependent models due to the large number of dysarthric speakers required to
build generalized systems, and the long training times involved. They also highlight the increased
fatigue experienced by dysarthric users during extensive data collection. To address this, they pro-
posed a simplified system focused on recognizing very short words, words with 1-2 syllables, with
a small vocabulary and minimal training, although no empirical testing was conducted to validate
this approach. In contrast, Parker et al. (2006) support speaker-dependent systems with their STAR-
DUST model, which achieves improved performance through personalized training. However, since
STARDUST recognizes only about 10 words, it limits communication options and reduces ASR
inclusivity for people with dysarthria who need more flexible and extensive vocabulary support.

In contrast to the previous articles, Rosen and Yampolsky (2000) preferred a speaker-adaptive model,
which updates acoustic templates dynamically as the user speaks, improving dysarthric speech
recognition. The system, which is built from scratch, adapts over time correctly to the user’s specific
speech patterns. The difference between a speaker-dependent and speaker adaptive model is that
for speaker-dependent the model is trained on one user’s data, whereas a speaker-adaptive model
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is pre-trained on different speakers and it adjusts to a speaker’s characteristics through fine-tuning.
A more recent development is the personalized model by Shor et al. (2019). It begins with a large
speaker-independent model as their base model, trained on healthy speech. Next, it was fine-tuned
on a small amount of user-specific data, which was English dysarthric and accented speech. This
makes the model not speaker-dependent, but speaker-adaptive, which does not start from scratch, as
in Rosen and Yampolsky (2000). It thus provides better accuracy and is more practical for dysarthric
speech recognition.

2.3.2 Self-supervised Learning

Self-supervised learning (SSL) is a recent development that has a promising approach to address
challenges in dysarthric speech recognition, as previously mentioned the scarcity of dysarthric data
and variability in speech. SSL models, unlike DNNs and GMMs, are pre-trained on large amounts
of unlabeled data to learn speech representations and can be fine-tuned with smaller labeled datasets.
These models try to predict masked parts of the audio signal (Conneau et al., 2020; Hernandez et
al., 2022; Javanmardi et al., 2024). This makes SSL models more flexible than traditional DNNs,
which often requires domain-specific feature engineering or complex training methods to adapt to
dysarthric speech (Joy & Umesh, 2018). SSL models can learn layered patterns in speech, including
both normal and unusual speech. For example, Javanmardi et al. (2024) showed that wav2vec 2.0
worked better than traditional MFCC-based systems when trained and tested on dysarthric speech.
SSL models also handle noise and recording mismatches better, thanks to pre-training on diverse
data. In contrast, traditional systems often rely on post-processing methods like FMLLR or MLLR
to handle such variation (Joy & Umesh, 2018), which adds complexity and may not fully solve the
problem of background noise, different microphones, and inconsistent recording environments.

Several examples of an SSL models are wav2vec 2.0 (Baevski et al., 2020), wav2vec 2.0 variants
(XLSR-53 and XLS-R) (Babu et al., 2021; Conneau et al., 2020), WavLM (Chen et al., 2022) and
HuBERT (Hsu et al., 2021). WavLM is a newer self-supervised learning (SSL) model that improves
on wav2vec 2.0 by adding features like relative positional encoding, speech denoising, and multi-
task training to better handle noise and speaker variation (Chen et al., 2022). While these upgrades
have led to strong results on standard benchmarks, WavLM has been less tested on non-English or
dysarthric speech. In contrast, wav2vec 2.0 has already shown strong performance in low-resource
and dysarthric ASR tasks, even with limited labeled data (Baevski et al., 2020; Javanmardi et al.,
2024). It also has multilingual versions, like XLSR-53, which are useful for underrepresented lan-
guages such as Dutch. For these reasons, wav2vec 2.0 serves as a strong and practical baseline for
studying dysarthric speech recognition. This model encodes speech audio via a multi-layer convo-
lutional neural network and uses a transformer-based context network to predict missing parts from
the audio without needing hand-crafted features.

HuBERT is another SSL model that, like wav2vec 2.0, learns from raw audio without labels. It
uses a clustering step to create pseudo-labels before training, which helps it learn useful speech
patterns (Hsu et al., 2021). Some studies show that HuBERT can improve recognition for dysarthric
speech, especially with advanced training tricks like adversarial data augmentation. However, it is
less commonly used than wav2vec’s XLSR-53 in multilingual or cross-lingual setups, and there are
fewer pretrained models or benchmarks for Dutch. Because of this, XLSR-53 is a more practical
and reliable choice for this research.
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2.4 Cross-lingual Fine-tuning for Dysarthria
Another model that is advanced in speech recognition is OpenAI’s Whisper7 (Graham & Roll, 2024).
It is trained on 680,000 hours of multilingual and multitask data, making it highly effective for rec-
ognizing a wide variety of languages, accents, and speech contexts. However, unlike self-supervised
models like Wav2Vec 2.0, Whisper needs paired audio-text data for training, making it less suitable
for adapting to dysarthric speech with limited labeled data (Fan, Shankar, & Alwan, 2024). Also,
fine-tuning Whisper is more complex because of its encoder-decoder structure and large size, which
needs more memory and careful setup. Since Wav2Vec 2.0 and its multilingual version XLSR-53
are easier to fine-tune on small datasets and have already shown strong results on dysarthric and
low-resource speech, they are a more practical choice for this research.

In Section 2.3.2, I quickly mentioned XLS-R (Babu et al., 2021). This is a model build upon
Wav2Vec 2.0. It is a powerful self-supervised speech model trained on over 400,000 hours of multi-
lingual audio, offering broader coverage and stronger generalization than earlier models. However,
XLSR-53, a smaller version trained on 56,000 hours across 53 languages, is more accessible and still
highly effective—especially for cross-lingual fine-tuning. P. Wang and Van Hamme (2023) show that
XLSR-53 outperforms mono-lingual models and even Whisper in tasks involving Dutch dysarthric
speech. Therefore, XLSR-53 strikes a good balance between performance and practicality.

In addition, the strength of XLSR-53 in multilingual ASR comes from its large-scale training on
diverse transcribed audio from the web, allowing it to generalize well across different linguistic
features and typical variations in pronunciation. It relies on noisy transcriptions from the web rather
than learning directly from unlabeled audio. In contrast, Wav2Vec 2.0 is a true SSL model that first
pre-trains on large amounts of unlabeled raw audio using a contrastive, masked prediction objective,
and is then fine-tuned on labeled data. This two-stage approach allows XLSR-53 to learn robust and
generalizable acoustic representations that can adapt well to non-standard speech, such as dysarthria,
even with limited labeled data (Conneau et al., 2020).

Recent studies have explored the effectiveness of cross-lingual self-supervised learning models like
XLSR-53 for improving ASR performance on dysarthric speech. Hernandez et al. (2022) demon-
strated that XLSR’s multilingual phoneme representations effectively model dysarthric speech pat-
terns without manual feature engineering, such as in DNN-HMM systems. This aligns with findings
by P. Wang and Van Hamme (2023), who observed that SSL representations generalize better across
languages and speaker variations compared to monolingual approaches.

Further supporting these advancements, Javanmardi et al. (2024) investigated the role of fine-tuning
XLSR-53 in dysarthric speech detection across English and Italian. Their study revealed that fine-
tuned XLSR features achieved absolute accuracy improvements of 1.46%–8.65% in cross-database
scenarios, suggesting an advantage over monolingual models like Wav2Vec-BASE. Although they
did not explicitly benchmark XLSR against monolingual SSL models within the same experimental
setup, the observed improvements were attributed to XLSR’s ability to capture shared dysarthric
characteristics across languages. This was credited to XLSR’s extensive pretraining on 56,000 hours
of multilingual data, which I will discuss in Section 3.1.1. It enhances robustness to linguistic and
acoustic variability, a finding that aligns with the observations of P. Wang and Van Hamme (2023)

7https://huggingface.co/openai/whisper-small
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on cross-lingual adaptation.

Together, these studies highlight the potential of cross-lingual SSL models like XLSR-53 for dys-
arthric speech processing, particularly in addressing data scarcity. While Javanmardi et al. (2024)
and P. Wang and Van Hamme (2023) both emphasize the advantages of multilingual pretraining, such
as reduced reliance on labeled data and improved generalization, their focus diverges; Javanmardi
et al. (2024) focus on how fine-tuning helps adapt pretrained models to work better with disordered
speech, while P. Wang and Van Hamme (2023) highlight how XLSR-53 can already transfer well
across languages without extra training. However, neither study directly compares multilingual and
monolingual fine-tuned models under the same conditions.

This concludes the literature review. While earlier research has made progress in dysarthric speech
recognition through traditional models, deep learning, and transfer learning, challenges such as lim-
ited data, speaker variability, and language mismatch still remain. Recent studies show that self-
supervised models, especially cross-lingual ones like XLSR-53, offer strong potential for addressing
these issues. By learning from large amounts of multilingual data, XLSR-53 can better handle varia-
tion in speech and reduce the need for extensive labeled datasets. Building on this, my research uses
English dysarthric speech to fine-tune the model and Dutch dysarthric speech to test it. Although
the model is not personalized to individual speakers, it can be considered speaker-adaptive because
it is fine-tuned to better recognize dysarthric speech characteristics across multiple speakers. The
methodology behind this fine-tuning approach will be discussed in detail in Section 3.
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3 Methodology
In this section, I will discuss the methodology of my thesis. This includes the description of the
dataset, core methods and models, technical framework and evaluation methodology. I will also
consider ethics and research integrity at the end of this section. In Section 3.1 I highlight the exact
datasets to make this study replicable. Then in Section 3.2, I will discuss the model I am using
in detail and I will highlight the training details. Section 3.3 describes the evaluation method and
metrics that are used in this thesis. This includes Word Error Rate and statistical analysis. At
last, Section 3.4 will provide information about ethical considerations, including data privacy, FAIR
principles, fairness and replicability.

3.1 Dataset Description
A variety of datasets is necessary for conducting this research. In the following subsections I will
discuss the pre-train datasets for XLSR-53, fine-tune datasets and the testing datasets.

3.1.1 Pre-training datasets XLSR-53

The model XLSR-53 has been pre-trained on Common Voice, BABEL and Multilingual LibriSpeech
(MLS), resulting in a pre-training corpus of 56k hours across 53 languages. This large-scale multi-
lingual data enables robust cross-lingual representation learning (Conneau et al., 2020). All audio is
sampled at 16 kHz.

CommonVoice8: This dataset comprises read speech in 38 languages, with 11 languages selected
for pre-training: Spanish, French, Italian, Kyrgyz, Dutch, Russian, Swedish, Turkish, Tatar, Chinese,
and English. The total pre-training data from CommonVoice is 1,350 hours, combining 793 hours
from the 10 evaluation languages and 557 hours of English audio (Ardila et al., 2019).

BABEL9: This dataset consists of conversational telephone speech, primarily in Asian and African
languages. For pre-training XLSR-53, 10 languages are used: Bengali, Cantonese, Georgian, Haitian,
Kurmanji, Pashto, Tamil, Turkish, Tokpisin, and Vietnamese, totaling 650 hours. The dataset is no-
table for its balanced distribution of hours per language, which is ranging from 30 to 130 hours
(Gales, Knill, Ragni, & Rath, 2014).

Multilingual LibriSpeech (MLS)10: Derived from read audiobooks, MLS includes 8 languages:
Dutch, English, French, German, Italian, Polish, Portuguese, and Spanish. The English subset dom-
inates with 44k hours, while the remaining 7 languages contribute approximately 6.7k hours (Pratap,
Xu, Sriram, Synnaeve, & Collobert, 2020).

3.1.2 Fine-tuning

According to the paper by Conneau et al. (2020), it is necessary to fine-tune XLSR-53 before testing
the model. Therefore, I used a model by Grosman (2021), which was fine-tuned with around 32

8https://commonvoice.mozilla.org/en/datasets
9https://catalog.ldc.upenn.edu/byyear

10https://www.openslr.org/94/
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hours of Dutch data, 18 hours of Dutch from Common Voice 6.1 and 14 hours of Dutch from the
CSS10 single-speaker dataset. For the next experiment, I fine-tuned my model on healthy Dutch
speech using the Common Voice 13.0 “delta” subset, which includes a variety of Dutch dialects. The
age range is unknown, since providing age data is voluntary. I considered using Corpus Gesproken
Nederlands (CGN), but there were two main issues. First, CGN requires a license to access. Second,
the CGN files are very large, which is exceeding the capacity of my computer. Although CGN is
available on our university’s cloud (UWP), I did not know how to download or manage such a big
dataset from there. In comparison, Common Voice 13.0 (released in April 2023) was easy to grab,
and XLSR-53 (developed in 2021 (Conneau et al., 2020)) had never seen that data before. For fine-
tuning on English dysarthric speech, I used the TORGO corpus, as I mentioned in Section 2.2.2. It
is important to compare fine-tuned monolingual and cross-lingual models with the same amount of
fine-tuning data to make a valid comparison.

3.1.3 Testing

To test the XLSR-53 model on Dutch dysarthric speech, I used COPAS together with Domotica. The
COPAS Corpus, aged between 50 and 80 years old, includes recordings from 319 speakers across
eight categories, for example, normal, dysarthria, hearing impairment and laryngectomy (Van Nuffe-
len et al., 2009). Speakers performed various tasks like passage reading, articulation assessment, and
storytelling. However, for this research, I only included the 2 read sentences of the dysarthric speak-
ers, which are a total of 50 different speakers. I will explain the details about pre-processing and
data preparation in Section 4.1.

The Domotica Dataset (Ons et al., 2014) contains over 3,000 Flemish Dutch utterances related to
home automation, recorded from 17 dysarthric speakers (15 adults and 2 children) with conditions
like multiple sclerosis, aged between 14 and 61 years old. For every experiment, I used the same
dysarthric set to make a valid comparison between the fine-tuning with English dysarthric speech
and Dutch typical speech is as similar as possible.

3.2 Model
In this subsection, I will discuss the reason for using the XLSR-53 model instead of other models
and I will discuss the model architecture. For this thesis, the selection of a sufficient model is
crucial to achieve reliable results. This process for choosing the right model was based on previous
research. For the improvement of speech recognition for dysarthric speech, XLSR-53 has often been
used. It has also been cross-lingual fine-tuned with Italian and tested on English (Javanmardi et al.,
2024). There are several expanded models as I mentioned in Section 2.4, such as XLS-R and its
variations. XLSR-53 and XLS-R are both cross-lingually pretrained wav2vec 2.0 models. XLS-R is
using over 372K hours of unlabeled audio from 128 languages, making it more robust and broader
in linguistic coverage. However, for cross-lingual fine-tuning on dysarthric speech, XLSR-53 is still
sufficiently powerful. Since dysarthric datasets are small and often low-resource, XLSR-53’s ability
to generalize from many languages makes it a strong and more computationally efficient choice
without requiring the massive scale of XLS-R (Babu et al., 2021; Hernandez et al., 2022; P. Wang &
Van Hamme, 2023). Therefore, XLSR-53 is a reasonable model.



Section 3 METHODOLOGY 26

Figure 1: System architecture from XLSR-53. Reprinted from Conneau et al. (2020)

3.2.1 Model Architecture

As I previously mentioned, XLSR-53 is a model that is based on the wav2vec 2.0 framework. In
Figure 1, the architecture of wav2vec-XLSR-53 is visualized, together with the multilingual quan-
tized latent speech representations. Firstly, wav2vec2.0 is introduced by Baevski et al. (2020) and it
is a self-supervised model for learning speech representations directly from raw audio. It consists of
three main components: a convolutional feature encoder, a Transformer network and a quantization
module.

Convolutional feature encoder. The convolutional feature encoder processes raw audio waveforms
into latent representations. The CNN in Figure 1 consists of multiple convolutional layers that
process the input waveform X into a sequence of latent representations Z = (z1,z2, . . . ,zT ) for T
time steps. The convolutional layers are followed by a layer normalization and a Gaussian Error
Linear Unit (GELU) activation function, ensuring that the transformation is both non-linear and
normalized. The raw audio waveform is first normalized to zero mean and unit variance, and the
encoder’s total stride determines the number of time steps T passed to the Transformer.

Transformer architecture. The output of the feature encoder is fed into a context network that
follows the Transformer architecture, which uses self-attention mechanisms to generate contextual-
ized representations C = (c1,c2, . . . ,cT ). This enables the model to capture dependencies across the
entire sequence of latent representations, improving its understanding of speech context. Instead of
using fixed positional embeddings to encode absolute position, the model employs a convolutional
layer as a relative positional embedding. The output of this convolution is passed through a GELU
activation, added to the input sequence, and then layer-normalized, supporting stable and effective
learning.

Quantization module. For self-supervised training, the output from the feature encoder is discre-
tised into a finite set of speech representations using product quantization. This involves selecting
quantized vectors from multiple codebooks, each containing a fixed number of entries. One entry
is chosen from each of the codebooks, the resulting vectors are concatenated, and a linear transfor-
mation is applied to produce the final quantized vector. The selection process is made differentiable
using the Gumbel softmax function. This approach has proven effective in previous work, enabling
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the model to jointly learn discrete speech units and contextualized representations.

Building on this, XLSR-53 by Conneau et al. (2020) extends wav2vec 2.0 to the multilingual set-
ting by using the same architecture as above, with a shared feature encoder, context network, and
quantizer. The model is trained on unlabeled speech from 53 different languages. A key innovation
was that the quantized speech units qt are shared across all languages, which enables effective cross-
lingual representation learning. This design helps the model to generalize better to low-resource lan-
guages (Bălan, 2023) and it will adapt to unseen language conditions, while retaining architectural
simplicity. As a result, XLSR-53 learns robust speech patterns from a large, multilingual dataset and
can be fine-tuned for various downstream tasks across different languages and speech impairments.

3.2.2 Training Details

Masking. As I mentioned in Section 3.2.1, XLSR-53 begins by processing raw audio through a
multi-layer convolutional feature encoder, which outputs latent speech representations. During pre-
training, a proportion of these latent representations are masked. Specifically, a fraction p = 0.065
of time steps are randomly selected as starting indices, and the subsequent M = 10 consecutive time
steps are masked. These masked spans are replaced with a learned feature vector shared across
all masked positions. This masking strategy is inspired by masked language modeling in BERT
(H. Wang et al., 2024) and ensures the model learns robust contextual representations by predicting
the masked segments.

Training. The pre-training objective involves a contrastive task where the model must distinguish
the true quantized latent representation qt for a masked time step from a set of distractors. The
contrastive loss is defined as:

Lm =−log
exp(sim(ct ,qt)/κ

∑q̃∼Qt exp(sim(ct , q̃)/κ)

where ct is the Transformer output for the masked time step, Qt contains the true latent and K
distractors sampled from other masked time steps, and sim(a,b) computes cosine similarity between
vectors a and b. The loss encourages the model to align the contextual representation with the
correct quantized latent. Additionally, a diversity loss Ld maximizes the entropy of codebook usage
to ensure all entries are utilized:

Ld =
1

GV

G

∑
g=1

V

∑
v=1

p̄g,vlog(p̄g,v)

where p̄v,g is the average softmax probability for codebook entry v in group g.

Fine-Tuning. After pre-training, the model is fine-tuned on labeled data. A linear projection layer
is added on top of the Transformer to map contextual representations to output tokens. The model is
trained using Connectionist Temporal Classification (CTC) loss, which aligns audio sequences with
transcriptions without requiring explicit segmentation. During fine-tuning, SpecAugment is applied
to mask time steps and channels, enhancing robustness. The feature encoder remains frozen, while
the Transformer and output layer are updated.
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3.3 Evaluation Methodology
In this subsection, I will discuss the evaluation method that I used for evaluating speech recognition
for dysarthric speech and I will discuss statistical tests to evaluate the significance of the experiments
in this thesis.

3.3.1 Evaluation Metric

The evaluation of the models fine-tuned with different datasets has been done using Word Error
Rate (WER), which is a standard and widely accepted objective metric in speech recognition (Bălan,
2023).

The formula is defined as:
WER =

S+D+ I
N

where S is the number of substitutions, D is the number of deletions, I is the number of insertions,
and N is the total number of words in the reference text. The lower the WER is, the better the
performance of the model. WER is expressed as a percentage and can exceed 100%, though it has a
lower boundary of 0%.

For comparing the different WER between each other, I used a Relative WER. This metric is com-
monly utilized for comparing various models or experiments, as it takes into account the relative
nature of the results in relation to a reference point.

RelativeWER =
Reference WER−Actual WER

Reference WER

where Reference WER is the WER score that is compared and Actual WER corresponds to the WER
score measured in a different experiment than the reference.

3.3.2 Statistical Analysis

To evaluate model performance and validate the significance of observed differences, statistical anal-
ysis was conducted on the Word Error Rate (WER) across all test samples in the three experimental
conditions: no fine-tuning (baseline), fine-tuning on Dutch healthy speech (monolingual), and fine-
tuning on English dysarthric speech (cross-lingual).

The Shapiro-Wilk test was applied to assess the normality of WER distributions, and results indi-
cated that the data were not normally distributed. As a result, the Kruskal-Wallis test was used to
compare WER values across the three conditions. For pairwise comparisons, the Wilcoxon Signed-
Rank test was applied. Additionally, the relative WER difference was used to quantify the per-
formance improvement of each fine-tuned model relative to the baseline. This statistical approach
ensures that reported improvements are both robust and meaningful. These tests are based on the
research by Su (2024).

The use of statistical tests next to the evaluation metrics ensures that the differences in the perfor-
mance between the baseline, monolingual and cross-lingual are statistically validated. This approach
increases the credibility of the findings and supports the conclusions drawn from the experiments.
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3.4 Ethics and Research Integrity
For this thesis, I wanted to make ASR more inclusive for dysarthric users to be used in their daily
life. Therefore, I will reflect on some ethical concerns, FAIR principles, Open Science Practices,
Bias and Fairness and Reproducibility and Replicability.

3.4.1 Data Ethics and Privacy

Not all the datasets used are open source. As I previously mentioned in Section 3.1.3, for the use
of the COPAS corpus it is necessary to request a license via e-mail. In this license it is necessary
to explain the reason for the use of the data. All the participants are aware of being recorded and
gave permission that their data could be used in research (Van Nuffelen et al., 2009). The rest of
the dataset are publicly available, which also received permission for the use of their data (Ons
et al., 2014; Rudzicz et al., 2012). For COPAS, the participants are named after their condition
together with a number, which protects their privacy. For Domotica, the files of the participants are
named after their participant number. The files in the TORGO dataset are separated by sex, together
with their participant number. The Common Voice dataset is licensed under CC0, allowing free
distribution and adaptation without requiring credit.

3.4.2 FAIR Principles Implementation

Findable. All datasets are easy to find because they are properly referenced in footnotes and de-
scribed with clear information.

Accessible. The codes are available through the repositories mentioned in this thesis, with access
rules in place, and plans for long-term availability. However, the datasets are not available on the
GitHub page, since it is not allowed to distribute it myself. For COPAS, creating an account is
necessary, as well as signing the terms and conditions via mail.

Interoperable. The dataset is stored in widely-used and accessible formats, including .wav files
for audio recordings and .txt files for transcriptions. These formats are supported by most speech
processing and machine learning toolkits, making the data easy to integrate into other workflows.
Standard metadata terms, such as transcription, are used consistently to describe the data. As I will
explain in Section 4, this use of common formats and conventions enhances compatibility with other
datasets and tools, supporting future reuse, combination, or benchmarking across research projects.

Reusable. There is clear documentation and information about where the data comes from, so others
can use it in the future. The forms for asking the license for using COPAS is on their website.

3.4.3 Bias and Fairness

To address potential biases in this study, several factors are considered. The use of English dysarthric
speech for cross-lingual fine-tuning may introduce dataset bias due to linguistic and phonetic mis-
matches between English and Dutch. Additionally, the small amount of Dutch dysarthric training
data may result in unbalanced model performance and poor generalization. Algorithmic fairness is
a concern, as the model may perform better on certain speaker characteristics, such as the severity
of dysarthria.
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3.4.4 Reproducibility and Replicability

To support reproducibility, all code is thoroughly documented and shared on a publicly available
GitHub page11. There is a step-by-step guide for reproducing the experiments. Some variation
in performance is expected due to hardware and training randomness, yet the general findings and
experimental procedure are reproducible. Also, no subjective evaluation methods involving human
participants were used, which helps avoid ethical concerns and enhances the replicability of the
results.

In this section, I described the methodology in this thesis to improve dysarthric speech recognition,
as well as the XLSR-53 model in more detail and discussed the evaluation and statistical methods.
Through these measures, I ensure that this research takes into account the highest ethical standards,
being transparent and making sure that this research is reproducible and replicable, as well as taking
into account the potential bias.

11https://github.com/AmberL2002/DysarthricASR-cross-lingual-fine-tuning.git
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4 Experimental Setup
In order to make this research fully replicable, the experimental setup has to be explained in full
detail. The first experiment is running the baseline of XLSR-53 to get the WER with minimal fine-
tuning. The second experiment is to discover the performance of healthy mono-lingual fine-tuning.
The third experiment is the final experiment, which tests the use of cross-lingual fine-tuning with
dysarthric speech. In Section 4.1 I will discuss the preparation of the recordings and the amount
of fine-tuning data and testing data. In Section 4.2 I will discuss the design of the experiments. In
Section 4.3 I will elaborate on the hyperparameter settings for optimal performance.

4.1 Data Preprocessing
For the TORGO dataset, the recordings were made using two different microphones, which were an
array microphone and a head-worn microphone. This captured the same utterances. In this research,
the array microphone recordings were used because of their higher clarity and lower electrical noise
after sampling (Rudzicz et al., 2012). I excluded recordings, such as ’[say Ah-P-Eee repeatedly]’.
I excluded all files with brackets in the transcripts. In this dataset there were no recordings longer
than 10 seconds duration.

For the COPAS dataset, recordings were made using two microphones: a headset and one placed
on the table. In the dataset folder, I found only a single set of recordings, with no clear indication
of which microphone was used. Therefore, I assume that the two recordings were either merged
or only one was retained. I did not use the full dysarthric portion of the dataset, as it contains a
large amount of clinical testing data and spontaneous speech. These parts were excluded. Instead, I
focused on two repeated sentences that were consistently present across recordings. The dataset is
available under a BSD 2-Clause License and the audio files are stored in 16kHz, 16-bit WAV format.

Since the COPAS dataset only includes two repeated sentences per speaker, it was not sufficient on
its own for training or evaluating a model on Dutch dysarthric speech. To increase both the amount
and variety of speech material, I also included recordings from the Domotica dataset, specifically
versions 2, 3, and 4. These sets feature the same 17 dysarthric speakers across different sessions,
providing more diverse and representative speech data. I used clean data, which contains recordings
made with a close-talk microphone and with background noise removed. Like COPAS, the Domotica
data is stored in 16kHz, 16-bit WAV format.

The Common Voice 13.0 dataset, which consists of 3 hours of speech by 53 speakers. For this
dataset, there is no standardized microphone, since the voice recordings are contributed by volunteers
using their own devices. This was the only dataset in MP3 format, which needed to be converted
to wav file. This has been done by using a Python script, as well for removing all capital letters
and punctuation marks. This step was especially crucial for normalizing the data, since dysarthric
speech frequently contains irregular pauses and stuttering that can result in inconsistent punctuation.
Removing punctuation and converting text to lowercase helped for creating a more uniform dataset,
enabling the ASR model to concentrate on the essential phonetic content without being affected by
transcription variability.



Section 4 EXPERIMENTAL SETUP 33

4.1.1 Data Splitting

The datasets needed to be split in separate sets. For the first experiment I only needed the test
data since I wanted to get the baseline results of dysarthric speech recognition without fine-tuning.
Therefore, I used 30 minutes of testing data. For the mono-lingual experiment, I used 140 minutes
of healthy Dutch data to train XLSR-53. Here, I used the same testing set. At last, the cross-
lingual experiment, I used the same amount as for the mono-lingual experiment, 140 minutes of
dysarthric English data. The reason for using 140 minutes is because the approximately amount of
English dysarthric speech dataset TORGO is 200 minutes. As I mentioned in Section 4.1, excluding
several recordings causes a certain reduction in the amount of minutes available. Since Shor et al.
(2019) also fine-tuned with minimal data, I assumed that multiple hours were not required to achieve
meaningful performance improvements.

4.2 Experiment Design
In the first experiment, the goal was to evaluate the baseline performance of the XLSR-53 model on
Dutch dysarthric speech without any fine-tuning. For this, only the Dutch dysarthric test set were
used. No model adaptation was performed in this condition, allowing for a direct assessment of how
well the base model performs on dysarthric Dutch speech.

In the second experiment, the monolingual fine-tuning approach was applied. The XLSR-53 model
was fine-tuned using healthy Dutch speech. The goal of monolingual fine-tuning is to see if adapting
the XLSR-53 model with healthy Dutch speech improves ASR for Dutch dysarthric speakers by
aligning the model to the target language. However, since healthy speech lacks the acoustic patterns
of dysarthria, cross-lingual fine-tuning with English dysarthric data may be more effective, as it
exposes the model to disordered speech characteristics, helping it better handle similar challenges in
Dutch dysarthric speech.

Therefore the third experiment is introduced. Here, English dysarthric speech was used to fine-tune
the XLSR-53 model. The same Dutch dysarthric test set was used for evaluation. The results of
these experiments are presented in Section 5 where I compared the performances.

I also highlight another experiment in Section 5, I added another experiment which used the fine-
tuning data of both monolingual and cross-lingual together to fine-tune the model on combined
Dutch typical and English dysarthric data.

4.3 Hyperparameters Setting
The optimal hyperparameters are based on the parameters in Su (2024) and Leivaditi (2023) for a
stable model convergence and performance. The following settings were found:

• Max tokens: 3200000

• Optimizer: adam (adam betas: (0.9, 0.98), adam eps: 1e08)

• Learning rate (lr): 0.0003

• Scheduler: Fairseq tri stage scheduler
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• Max updates: 10000 steps

• Validation interval: 200

• Gradient accumulation steps: 2

The experiments were conducted on the Hábrók high-performance cluster of the University of
Groningen. The GPU used was an Nvidia A100 GPU accelerator card with 40 GB of VRAM avail-
able.
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5 Results
In this section, I present the results of the three experiments conducted to address the research ques-
tions introduced in Section 1.1. Each experiment was designed to evaluate the performance of the
XLSR-53 model under different training conditions, with a focus on dysarthric Dutch and English
speech. The evaluation metric used throughout is Word Error Rate (WER), which reflects how ac-
curately the model transcribes speech. Statistical tests are used to evaluate the model’s performance
and validate the significance of observed differences. To decide the correct statistical tests, I used
this12 website to decide the statistical tests. To assess the significance and distribution of the results, I
applied the Shapiro-Wilk test to examine normality and the Kruskal-Wallis test for comparing group
differences in cases where data did not follow a normal distribution. To identify which groups are
significant, I used a Dunn’s Post Hoc Test. Together, these experiments aim to provide insight into
the impact of fine-tuning strategies on ASR performance for dysarthric speakers. In Section 5.1,
I present the performance of all experiments together. In Section 5.2, I present the results of the
statistical tests I used to check normality and calculate the significance. The log results are visible
in the Appendix section A.

5.1 Performance of Experiments
Experiment 1 aimed to evaluate the high-resource baseline performance of XLSR-53 with testing
with dysarthric Dutch speech. In experiment 2, I fine-tuned XLSR-53 with 140 minutes of unseen
healthy Dutch speech data. In experiment 3, I fine-tuned XLSR-53 with 140 minutes of dysarthric
English speech data. Since the results are not as I expected, I tried to fine-tune the model with
the combined data, healthy Dutch and dysarthric English, which is experiment 4. The data for
experiment 4 is the same as for the previous experiments, just as the testing data. The resulting Word
Error Rates are presented in Table 4 and the relative WERs in Table 5. The results of the relative
WER with cross-lingual as reference are negative since there is no improvement. The combined
fine-tuned experiment achieved a positive WER for the monolingual and cross-lingual experiments,
nonetheless not for the high-resource baseline in Table 6 where the combined experiment is the
reference.

Experiment WER
High-resource baseline 82.73
Monolingual 101.44
Cross-lingual 109.51
Combined 93.73

Table 4: Results Third Search Entry

5.2 Statistical results
In Table 7, a Shapiro-Wilk test was conducted to test for normal distribution to decide which para-
metric or non-parametric test was necessary for calculating significance.

12https://www.scribbr.com/statistics/statistical-tests/
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Experiment Relative WER
Baseline -24.45
Monolingual -7.37
Combined -14.42

Table 5: Relative WER with Cross-Lingual as Reference

Experiment Relative WER
Baseline -11.74
Monolingual 8.21
Cross-lingual 16.81

Table 6: Relative WER with Combined as Reference

Experiment Statistic p-value
Baseline 0.9760 6.39e-05
Monolingual 0.9599 2.36e-07
Cross-lingual 0.5695 1.39e-26
Combined 0.9281 7.41e-11

Table 7: Shapiro-Wilk Test Results

Since all the distributions were not normally distributed, p < 0.05, the use of a non parametric
Kruskal-Wallis test conducted. The results of this test are shown in Table 8. The Kruskal-Wallis test
does show a significant difference for at least one pair of conditions. This test does not show which
pairs are significantly different.

Metric Statistic p-value
WER 122.5939 2.13e-26

Table 8: Kruskal-Wallis Results

In order to identify which groups are significantly different from each other, Dunn’s post hoc test
was performed. The results of Dunn’s post hoc test for WER are shown in Table 9.

Baseline Monolingual Cross-lingual Combined
Baseline 1.000000e+00 1.255737e-06 3.285586e-26 8.758655e-03
Monolingual 1.255737e-06 1.000000e+00 1.560395e-07 2.676505e-01
Cross-lingual 3.285586e-26 1.560395e-07 1.000000e+00 2.159391e-13
Combined 8.758655e-03 2.676505e-01 2.159391e-13 1.000000e+00

Table 9: Dunn’s Post Hoc Test
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A significance level of 0.05 is used for the Dunn’s post hoc test13 and the results are that the baseline
is significantly different (p = 1.3× 10−6), (p = 3.3× 10−26) than monolingual and cross-lingual
experiments, which indicates that the baseline outperforms the other experiments. For the monolin-
gual and combined experiments, the WERs are not significantly different p = 0.268 as well for the
baseline and combined experiments (p = 0.009).

Four experiments evaluated XLSR-53’s performance on dysarthric Dutch speech (Table 4 and Table
5. The high-resource baseline (Experiment 1) performed best with a WER of 82.73, while mono-
lingual and cross-lingual fine-tuning (Experiments 2 and 3) yielded higher WERs of 101.44 and
109.51. The combined approach (Experiment 4) showed partial improvement (WER = 93.73) but
did not outperform the baseline. Relative WER in Table 5) confirmed the cross-lingual model under-
performed across comparisons. As the Shapiro-Wilk test indicated non-normal distributions (Table
7), a Kruskal-Wallis test was used and revealed significant differences p = 2.13× 1026 in Table 8.
Dunn’s post hoc test (Table 9 showed that the baseline differed significantly from all other models,
except combined p = 0.009. Cross-lingual results also differed significantly from monolingual and
combined models. Only the monolingual and combined models did not show a significant difference
p = 0.268.

13https://www.adventuresinmachinelearning.com/mastering-kruskal-wallis-and-dunns-test-a-comprehensive-guide/
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6 Discussion
This section provides an interpretation of the experimental outcomes and evaluates the performance
of the XLSR-53 model under the different fine-tuning strategies. Specifically, it compares the impact
of mono-lingual fine-tuning on healthy Dutch speech versus cross-lingual fine-tuning using English
dysarthric data. The results are discussed in relation to the research question and hypotheses pre-
sented earlier. Additionally, potential explanations for the observed effects, the influence of dataset
characteristics, and broader implications for ASR in dysarthric speech are addressed.

The main goal of this study was to investigate whether cross-lingual fine-tuning with English dys-
arthric speech improves recognition performance for Dutch dysarthric speech, compared to using
mono-lingual fine-tuning on healthy Dutch speech. This leads to the central research question:

Does cross-lingual fine-tuning with English dysarthric speech, instead of
monolingual fine-tuning with healthy speech, improve the performance of the self-
supervised model XLSR-53 for Dutch dysarthric speech in ASR?

The hypothesis was that multilingual exposure allows the model to generalize across phonetic vari-
ability, making it more robust to atypical pronunciations common in dysarthria, a claim supported in
earlier work such as Hernandez et al. (2022) and P. Wang and Van Hamme (2023).

6.1 Performance of High Resource Baseline
The surprisingly good performance of the high-resource baseline XLSR-53 model on Dutch dysarthric
speech suggests that its multilingual pre-training already provided it with a useful foundation for
handling non-standard pronunciation. One likely reason is that the model had exposure to Dutch and
Dutch-like phonetic patterns through its training on large, diverse datasets such as Common Voice
6.1, which includes contributions from a range of Dutch dialects (Hernandez et al., 2022). The
amount of 32 hours of fine-tuning data may have helped the model generalize more effectively to the
dysarthric Dutch speech used in this study. In contrast, the models fine-tuned on just 140 minutes of
data in this thesis, whether healthy Dutch or dysarthric English, were working with much more lim-
ited information. According to Javanmardi et al. (2024), models that begin from robust, extensively
pre-trained architectures generally achieve better performance, especially in scenarios where fine-
tuning data is limited. This is supported by findings from Shor et al. (2019), who demonstrated that
pre-trained models can still perform well on dysarthric speech with very limited fine-tuning, high-
lighting the strength of self-supervised learning in low-resource conditions. However, the model
by Shor et al. (2019) was not XLSR-53. In theory, cross-lingual fine-tuning would have a positive
effect.

6.2 Cross-lingual Fine-Tuning vs. Mono-Lingual Fine-Tuning
Another explanation lies not in utterance length, but in the phonetic confusability of dysarthric
speech. Although the English TORGO dataset contains mostly isolated words and short phrases,
many of the longer Dutch test and training utterances in this study were still frequently not correctly
recognized. This aligns with findings from the STARDUST project (?), which showed that severe
dysarthria often reduces the number of distinguishable phonetic tokens a speaker can produce. As
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a result, short and long utterances alike can be problematic when phonetic contrasts are weak or
inconsistent. Similarly, Mengistu and Rudzicz (2011) reported that 83% of recognition errors oc-
curred in single-word utterances, largely due to the presence of homophones created by articulation
errors such as deletions and substitutions. However, they also showed that pronunciation lexicon
adaptation (PLA) was significantly more effective in longer utterances, as context helps resolve am-
biguity. In this thesis, it is likely that phoneme-level confusion and pronunciation variability, rather
than utterance length alone, contributed to the high WER observed in both short and long sentences.

The combined fine-tuning approach, which included both Dutch and English data, outperformed
the purely cross-lingual model, likely because it offered a more balanced exposure to both target
language features and general phonetic variability. This aligns with findings from Hernandez et al.
(2022), who demonstrated that multilingual fine-tuning using XLSR-53 improves dysarthric speech
recognition across multiple languages, including English, Spanish, and Italian. Their results showed
that XLSR-based features consistently outperformed monolingual models, suggesting that cross-
lingual representations are more robust to variation in impaired speech. Also, Shor et al. (2019) also
found that combining dysarthric and accented speech data led to further improvements, especially in
diverse or noisy acoustic conditions.

In this thesis, the combined model may have benefited from a similar effect: English dysarthric data
introduced articulation variability, while the Dutch data, despite dialectal variation, helped ground
the model in the target language. Although the combined approach did not surpass the high-resource
baseline, it clearly performed better than cross-lingual fine-tuning alone, supporting the conclusion
by Hernandez et al. (2022) that strategically combining multilingual and in-language data enhances
robustness for dysarthric ASR systems.

6.3 Additional Observations
Age Differences Between Datasets. The English and Dutch datasets differed considerably in the
age of speakers, which could affect the acoustic characteristics of speech. Su (2024) highlighted the
importance of using age-matched training data for improved model performance on impaired speech.
I did not include age-matched datasets in the current research, potentially leading to mismatches in
vocal characteristics. As I mentioned in Section 2.2.1 and Section 3.1.3, the age ranges were for
Dutch training data unknown, for English training data between 16 and 50 years old and for testing
data between 14 and 80 years old (with COPAS and Domotica combined).

Determining Which Language. Although cross-lingual models are often praised for their ability
to generalize across languages, their effectiveness strongly depend on the degree of similarity be-
tween the source and target domains. This includes not just the language itself, but also the speech
style, prosody, phonotactics, and even demographic factors such as speaker age or regional accent.
As demonstrated by Javanmardi et al. (2024), fine-tuning with a small amount of dysarthric data
can yield meaningful improvements only when there is sufficient alignment between the character-
istics of the fine-tuning data. Using English dysarthric speech to improve Dutch dysarthric recogni-
tion could be a weak alignment between speech characteristics and creates differences in phoneme
distributions, lexical stress patterns, or sentence structure may limit the transferability of learned
representations. This issue becomes even more pronounced when the fine-tuning dataset is small,
as the model lacks the exposure needed to adjust effectively to mismatched features. Moreover,
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impaired speech introduces another layer of variability, often with speaker-specific articulatory pat-
terns, which may not be captured adequately through generalized multilingual fine-tuning. There-
fore, while cross-lingual models show promise for low-resource ASR tasks, their success largely
depends on how closely the source language and speech style match the target task.

Speaker-dependent models. Because of the variation between speakers in both the fine-tuning and
testing datasets, such as differences in age, demographics, sentence complexity, and severity levels
of dysarthria, the model may struggle to generalize. As Rosen and Yampolsky (2000) explained,
speaker-dependent ASR systems typically achieve higher accuracy when matched to an individual
user’s speech patterns. These systems use the speaker’s own templates, making them more tolerant
of atypical but consistent speech. However, when fine-tuned on one set of speaker characteristics
and tested on another, performance can decline, especially if the speech patterns differ significantly.
This mismatch likely contributed to the reduced performance in this study.

6.4 Limitations
This study faced several limitations that are important to acknowledge when replicating this study.

A key limitation was the restricted availability and diversity of dysarthric speech datasets. Public
resources such as TORGO, COPAS, and Domotica contain relatively few speakers, and much of
the speech consists of structured or repeated utterances. This limited variety makes it difficult for
the model to generalize to broader, more realistic scenarios, especially for individuals with rare
articulation patterns or highly variable symptoms. The small amount of data also increases the risk
of overfitting during fine-tuning, particularly when trying to adapt to the unique characteristics of
dysarthric speech.

Another limitation concerns cross-lingual phonetic mismatch. Although XLSR-53 is pre-trained on
a wide range of languages, fine-tuning it on English dysarthric speech and evaluating it on Dutch
dysarthric speech introduces inconsistencies at the phonetic level. Differences in phoneme invento-
ries, intonation patterns, and typical pronunciation errors between English and Dutch could prevent
the model from effectively learning the features most relevant to Dutch dysarthric speech. As this
thesis has shown, these differences may have limited the potential benefit of cross-lingual fine-
tuning.

The study also relied solely on Word Error Rate (WER) as the evaluation metric. WER calculates
the proportion of word-level errors by counting the number of substitutions, insertions, and deletions
needed to transform the predicted transcript into the reference transcript, divided by the number of
words in the reference. While this is a standard metric in ASR, it does not always reflect how under-
standable or useful the output is to a listener. For example, a predicted sentence that is phonetically
close to the reference but structurally different might still result in a WER of 100%, even though
it is more intelligible than another output with a lower WER but more distortion. This occurred
multiple times in the cross-lingual model, where minor pronunciation errors led to worse scores than
completely unintelligible outputs. WER does not account for phoneme-level closeness or partial
recognition, which limits its ability to capture subtle improvements in intelligibility that could be
meaningful in real-world applications.

Additionally, the study did not incorporate age-matched fine-tuning data. Su (2024) has shown
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that age-related differences in vocal characteristics, such as pitch, speaking rate, and articulation
can affect ASR performance. By fine-tuning only on healthy adult speech with unspecified age
ranges, the model may have missed important acoustic patterns that align more closely with the
target dysarthric speech, which often comes from older speakers.

As I mentioned before, according to P. Wang and Van Hamme (2023) the use of dialectal variations
in fine-tuning can reduce generalizability. This can be solved according to Shor et al. (2019) by
focusing on layers closest to the input, like the encoder. In my current setup, I did not specifically
focus on the layers closest to the input. I replaced and fine-tuned the final classification head and
froze only the feature extractor, which includes the initial convolutional layers. However, the rest of
the encoder layers remained trainable, meaning the model updated weights across all higher layers
during fine-tuning. According to Shor et al. (2019), focusing on the lower encoder layers could
improve generalization in cross-lingual settings, especially when dealing with dialectal variation. To
potentially lower the WER, I recommend an experiment with freezing the higher layers and fine-
tuning only the lower ones, or apply layer-wise learning rates that emphasize updates closer to the
input.

Finally, the study did not explicitly take into account dysarthria severity. Each dataset used in the
experiments includes a mixture of mild, moderate, and severe cases of dysarthria. However, the data
was not separated based on severity levels, so it is unclear how much of the training and testing
material came from speakers with mild, moderate, or severe dysarthria. A potential imbalance is
critical, as ASR systems tend to perform substantially worse on speech from individuals with severe
dysarthria (Jaddoh et al., 2023; Young & Mihailidis, 2010).

Thus, limitations in dataset size, language matching, evaluation metrics, speaker demographics, and
severity distribution all impacted the outcomes of this research. Addressing these limitations could
be useful for future research, which I will discuss in Section 7.2.
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7 Conclusion
This thesis explored whether cross-lingual fine-tuning on dysarthric speech can help improve recog-
nition. While past work showed benefits from multilingual fine-tuning, it is still unclear if cross-
lingual fine-tuning helps with limited dysarthric data. This study aimed to address that gap and
improve recognition for Dutch dysarthric speech. In Section 7.1 I will discuss shortly the key find-
ings and how the results contradicted my hypotheses. In Section 7.2, I will discuss potential future
research based on my limitations addressed earlier. In the final Section 7.3, I will discuss the poten-
tial applications this thesis has.

7.1 Summary of the Main Contributions
This thesis examined whether cross-lingual fine-tuning with English dysarthric speech can improve
ASR performance on Dutch dysarthric speech, compared to monolingual fine-tuning using healthy
Dutch speech. The self-supervised XLSR-53 model was evaluated under four experimental con-
ditions, including a high-resource baseline, monolingual, cross-lingual, and combined fine-tuning
strategies. Key findings include:

• The high resource baseline model, performed best overall. This suggests that the fine-tuning
multilingual model already had strong generalization abilities for dysarthric Dutch speech.
Both monolingual and cross-lingual fine-tuning led to worse performance, contradicting the
initial hypothesis that introducing phonetic variability would help the model adapt to impaired
speech.

• Neither monolingual fine-tuning on healthy Dutch speech nor cross-lingual fine-tuning on
English dysarthric speech led to improved performance. This outcome contradicts the original
hypothesis that cross-lingual fine-tuning would help the model handle atypical pronunciation
more effectively.

• The combined fine-tuning approach, which merged Dutch and English data, performed better
than cross-lingual fine-tuning alone, but still failed to surpass the high resource baseline. This
suggests that combining target-language and variability-rich data can help, but is insufficient
without further alignment between training and test conditions.

Overall, this study contributes to the understanding that while cross-lingual strategies hold promise,
their success depends heavily on the alignment of linguistic, acoustic, and demographic features.

7.2 Future Work
The limitations I mentioned in Section 6.4, can also build on future research.

Future research should focus on using larger and more diverse dysarthric speech datasets. Current
datasets are small and repetitive, which limits model generalisation. Including more speakers with
varying types and severity levels of dysarthria could make models more robust and useful.

Further work could also explore how speech sounds differ across languages. Since cross-lingual
fine-tuning did not help in this study, focusing on shared phonemes or using phoneme-based metrics
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like Phoneme Error Rate (PER) might improve performance. PER is especially useful for identifying
subtle pronunciation errors common in dysarthric speech.

In addition to WER, future evaluations should consider other metrics like intelligibility or task suc-
cess to better capture real-world effectiveness.

It may also help to separate data by severity and train different models for mild, moderate, and
severe dysarthria. Finally, experiments with freezing higher layers and fine-tuning lower ones could
improve cross-lingual generalisation, especially with limited data.

7.3 Impact and Relevance
Although this study did not lead to improved recognition performance for dysarthric Dutch speech,
it offers valuable insights into why current ASR approaches may fall short and what factors need
to be addressed in future development. By systematically testing monolingual, cross-lingual, and
combined fine-tuning strategies, this research highlights key challenges in adapting existing models
to non-standard speech, such as data mismatch, lack of speaker diversity, and the limitations of
commonly used evaluation metrics like Word Error Rate.

These insights are particularly relevant for real-world applications like speech-based Personal Emer-
gency Response Systems (PERS). Traditional PERS often rely on physical buttons, which can be
difficult or inaccessible for people with limited mobility. A voice-controlled alternative could al-
low users to call for help more easily, reduce stigma, and even lower healthcare costs. However,
such systems must be able to understand speech that may be impaired, aged, or spoken under
stress—conditions that standard ASR systems often fail to handle reliably.

By identifying the gaps and limitations in current ASR strategies for dysarthric speech, this the-
sis helps pave the way for more inclusive and accessible speech technology. It helps clarify what
challenges need to be solved to make speech technology more reliable for people with speech im-
pairments and highlights the need for future research that focuses on specific speaker needs and
smarter use of limited data.
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Appendices

A Loss and WER dynamics

(a) Train Loss (b) Eval Loss (c) Eval WER

Figure 2: Fine-tuned with Dutch typical speech

(a) Train Loss (b) Eval Loss (c) Eval WER

Figure 3: Fine-tuned with English dysarthric speech

(a) Train Loss (b) Eval Loss (c) Eval WER

Figure 4: Fine-tuned with combined speech
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B AI tools in Master Thesis
Acknowledging, citing and referencing use of AI tools and technologies in the
Master thesis
For MSc Voice Technology students:

AI tools may be used for the following support functions without disclosure: grammar check-
ing, spell checking, translation between languages, generating practice questions for self-assessment,
and clarifying publicly available technical concepts. These functions must not alter the substance,
structure, or argumentation of your work.

Use of AI for generating code, algorithm explanations, experimental design, or data interpretation
must be disclosed. Students must demonstrate understanding of AI model limitations relevant to
their research domain and justify their choice of AI tools over alternatives.

Declaration

I hereby affirm that this Master thesis was composed by myself, that the work herein is my own
except where explicitly stated otherwise in the text. This work has not been submitted for any other
degree or professional qualification except as specified, nor has it been published. Where other
people’s work has been used (from any source: printed, internet or other), this has been carefully
acknowledged and referenced. During the preparation of this thesis, I used ChatGPT for the follow-
ing purpose: giving stylistic feedback and checking grammar for the introduction, literature review,
discussion and conclusion. Also my title is generated by AI. My original title was: Cross-Lingual
Fine-Tuning for Improving Dysarthric Speech Recognition, which was the prompt for creating the
title. All content was subsequently reviewed, verified, and substantially modified by me.

Amber Lankheet / 10-06-2025

Prohibited uses include: AI generation of research hypotheses, experimental methodology, data
analysis interpretations, conclusions, or any content where independent reasoning and domain ex-
pertise are being assessed. Submitting AI-generated text without disclosure constitutes academic
misconduct
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