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Abstract
Children with Autism Spectrum Disorder (ASD) often exhibit atypical prosody and disfluency pat-
terns, posing challenges for automatic speech recognition (ASR) systems. While large-scale models
like Whisper have achieved strong general performance, their effectiveness on neurodivergent speech
in low-resource languages remains underexplored. This study focuses on Dutch, a relatively under-
represented language in ASD ASR research, and investigates how task-specific fine-tuning of the
Whisper-medium model can improve recognition of Dutch speech from autistic children. The main
experiment involves baseline fine-tuning across seven speaker group combinations (TD (typical de-
veloping children), ADHD, ASD, and their mixes). And the study is complemented by exploratory
experiments using parameter-efficient LoRA fine-tuning.

Results show that fine-tuning significantly improves recognition performance, particularly when
ASD speech is included in training. The best baseline configuration (TD+ASD+ADHD) reduced
Word Error Rate (WER) from 43.12% (zero-shot) to 26.43%, while LoRA fine-tuning with ASD-
only data further reduced WER to 23.20%, underscoring the impact of prosody-aligned training
even under low-resource constraints. Error analysis revealed reductions in deletion and substitution
errors, and better recognition of disfluencies such as fillers and repetitions. Statistical tests (e.g.,
Mann-Whitney U) confirmed the significance of performance differences across training conditions
(p <0.05), favoring ASD-inclusive models.

These findings emphasize the importance of prosodic alignment and domain relevance in adapt-
ing ASR systems for neurodivergent speakers. This work contributes both methodologically, by
comparing full and parameter-efficient fine-tuning strategies, and practically, by advancing inclusive
speech recognition solutions in low-resource, underserved populations.

Keywords: Speech Recognition, Whisper, Fine-Tuning, Atypical Speech, Autism Spectrum Dis-
order (ASD), Child Speech, Prosody, Disfluency
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1 Introduction

1.1 ASR Development and Its Relation to Prosody and Fluency
Speech is one of the most fundamental and intuitive forms of human communication (Kohler, 2017).
Its naturalness and efficiency make it a preferred mode of interaction, not only in interpersonal con-
texts but also in modern Human-Computer Interaction (HCI). In this context, Automatic Speech
Recognition (ASR) plays a central role by enabling machines to understand and process spoken lan-
guage.

Since the 1950s, ASR technology has evolved through several major stages. Early systems relied on
simple pattern-matching techniques, while later approaches used statistical models such as Hidden
Markov Models (HMMs). In recent decades, the rise of neural networks has led to a breakthrough
in recognition performance, with models like Deep Neural Networks (DNNs) and Recurrent Neural
Networks (RNNs) becoming mainstream. Today, most cutting-edge ASR systems adopt an End-to-
End (E2E) architecture, often based on Transformer models. OpenAI’s Whisper is one such system,
known for its high performance across multiple languages and environments (Malik et al., 2021;
Prabhavalkar et al., 2024).

Beyond simple transcription, ASR is also embedded in broader applications such as voice assis-
tants, emotion detection, and speaker identification. In these contexts, it is not enough for ASR to
capture just the words spoken; it must also interpret prosodic and paralinguistic cues, such as into-
nation, rhythm, and emphasis, that convey meaning and speaker intent.

Two important aspects of speech that affect ASR performance are prosody and fluency. Prosody
refers to the suprasegmental features of speech, such as pitch (fundamental frequency), duration,
loudness (intensity), and rhythm, that shape the overall intonation and phrasing of spoken language.
These cues help ASR systems in detecting sentence boundaries, inserting appropriate punctuation,
and resolving ambiguities in meaning (Vicsi & Szaszák, 2010). Fluency, on the other hand, relates to
the smoothness and continuity of speech. Fluent speech typically contains fewer pauses, repetitions,
and interruptions, allowing ASR systems to map acoustic signals to words more reliably, especially
in spontaneous or noisy conditions (Bhardwaj et al., 2021).

1.2 ASD Children’s Speech and ASR Challenges
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects how individuals
interact, behave, and communicate (C et al., 2018). Children’s speech in general differs from adult
speech in terms of how sounds are produced (articulation), how they are heard (acoustics), and how
language is used. For children with ASD, these differences are even more pronounced. Their speech
often shows atypical prosody, for example, using unusually high or flat pitch, speaking too slowly
or too quickly, or placing stress on the wrong words. They also tend to speak with disfluencies, in-
cluding frequent fillers like ”um” or ”uh”, repeating words, or stopping mid-sentence and restarting
(Asghari et al., 2021). These speech patterns are found across many languages, including Dutch.

These atypical features make it harder not only for people to understand what the child is saying,
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but also for ASR systems to transcribe it accurately. Most ASR systems, such as OpenAI’s Whisper,
are trained on clear and fluent adult speech (D. Mujtaba et al., 2024). As a result, they often strug-
gle with speech that is disfluent or atypical. For instance, Whisper tends to ignore or smooth out
elements like pauses, repetitions, or fillers (e.g., “um”, “uh”), treating them as if they weren’t there.
This can lead to incorrect or incomplete transcriptions. These problems become even more severe
in natural, conversational speech, where people speak in a less organized way and the boundaries
between phrases or sentences are harder to detect (Graham & Roll, 2024).

1.3 Research Gap and Purpose
Although many studies have documented that children with ASD often exhibit unusual prosodic fea-
tures, such as abnormal pitch or timing, few have examined how these features directly contribute
to recognition errors in ASR systems (Asghari et al., 2021). Moreover, existing ASR studies on
ASD or disfluent speech have primarily focused on English, leaving non-English languages, such as
Dutch, largely underexplored, despite Dutch being a widely spoken language with its own unique
prosodic patterns (Fuckner et al., 2023). In addition, there is a lack of research on adapting Whisper,
the widely used end-to-end ASR model, to the speech of neurodiverse children. In particular, few
efforts have been made to fine-tune Whisper using small amounts of spontaneous, disfluent speech,
which more accurately reflects real-world communication challenges.

To address these gaps, this study proposes a targeted fine-tuning of the Whisper model using under
two hours of Dutch speech data from three groups of children: typically developing (TD), children
with ADHD, and children with ASD. The aim is twofold: first, to improve Whisper’s ability to ac-
curately transcribe speech from children with ASD; second, to examine how specific prosodic and
disfluency patterns in their speech are related to the types of recognition errors made by the model.

1.4 Research Questions
Although Dutch is not considered a low-resource language, current ASR systems, including ad-
vanced end-to-end models like Whisper, still struggle with underrepresented speech types. These
include speech from speakers with atypical developmental profiles, such as children with Autism.
The unique acoustic and linguistic characteristics of ASD speech are typically not well captured by
large-scale training datasets. This mismatch often leads to higher word error rates (WER) for this
population.

This study addresses the following two core research questions:

Can fine-tuning the Whisper model on a small dataset of Dutch child speech (in-
cluding TD, ADHD, and ASD) improve ASR performance for ASD speech, as mea-
sured by WER?

What prosodic and disfluency-related features characterize the speech of Dutch-
speaking autistic children, and how are these features related to recognition errors
produced by Whisper?
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No existing study has specifically investigated how to improve ASR for Dutch-speaking autistic
children. Furthermore, studies examining the prosodic and disfluent characteristics of this population
remain limited. Based on previous literature involving other languages and clinical speech domains,
this study proposes the following hypotheses:

Fine-tuning Whisper on a combination of Dutch child speech from ASD, TD, and
ADHD groups will result in a measurable improvement in WER, potentially around
10%, as observed in similar low-resource or atypical speech settings (Gale et al.,
2019).

Recognition errors will show significant associations with specific prosodic (e.g.,
pitch variability, utterance duration) and disfluency-related features (e.g., repeti-
tions, filler words), consistent with prior findings in clinical and child speech studies
(Soleymanpour et al., 2022; Tobin et al., 2024).

To explore these questions, the study conducts a series of fine-tuning experiments using the Whisper-
medium model. Speech data from TD, ADHD, and ASD children are used separately and in com-
bination to evaluate their impact on recognition accuracy and error types. The goal was to evaluate
how fine-tuning with data from different populations and their combinations affects the Whisper
model’s performance on ASD speech. Subsequently, I conducted an error analysis to investigate the
types and patterns of recognition errors.
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2 Literature Review
To position this study within the broader research landscape, the literature review part synthesizes
prior findings on prosodic and disfluency patterns in children with ASD, the limitations of general
ASR models on non-typical speech, and recent strategies for domain-specific fine-tuning. This re-
view not only contextualizes the challenges this thesis addresses but also clarifies how each technical
barrie, such as prosodic mismatch, model generalization, or data scarcity, can shape the methodolog-
ical decisions made in this work.

2.1 Prosodic and Disfluency Features in ASD Children’s Speech
Prosody and disfluency are critical elements of spoken language that extend beyond lexical content.
Prosody refers to the suprasegmental features of speech, such as pitch (fundamental frequency, F0),
duration, intensity, and rhythm. These cues help listeners understand sentence structure, identify
which words are emphasized, and interpret the speaker’s intent, for example, whether they are ask-
ing a question or making a statement (Asghari et al., 2021). Disfluency refers to interruptions or
irregularities in speech, such as filler words like “uh” or “um”, repeated words, stretched sounds,
and self-corrections. In typical speakers, these features help manage turn-taking or signal hesitation
during conversations (Zorić, 2024).

Importantly, both prosodic and disfluency phenomena are not only critical for human comprehen-
sion, but also represent potential risk factors for errors in automated speech technologies. Speech
patterns that diverge from neurotypical norms, such as irregular pauses or exaggerated pitch con-
tours, can disrupt the acoustic patterns expected by ASR models, leading to reduced transcription
accuracy.

2.1.1 Atypical Prosody in Children with ASD

Children with Autism Spectrum Disorder (ASD) frequently exhibit atypical prosodic features. These
include unusual pitch patterns (such as differences in contour, range, or variability), abnormal du-
ration, atypical intensity, and misplaced stress. These prosodic deviations are not only perceptually
salient but also objectively measurable using acoustic tools such as Praat. They have been shown to
impact both speech intelligibility and how listeners perceive the speaker (Asghari et al., 2021).

However, empirical findings on prosodic differences between ASD and typically developing (TD)
children have been inconsistent. For example, some studies report that individuals with ASD exhibit
a wider pitch range than TD peers (Diehl et al., 2009; Lehnert-LeHouillier et al., 2020), while oth-
ers have found a narrower range (Santen et al., 2010) or no significant difference at all (Paul et al.,
2008). The inconsistency of results not only complicates theoretical understanding but also limits
the application of such findings in speech technology and clinical screening tools.

One likely explanation for these inconsistencies is the wide variation in data collection protocols.
For instance, some studies use spontaneous conversation or open-ended storytelling tasks, which
tend to elicit more natural prosodic variation. Others rely on structured tasks like reading scripted
materials, which may suppress individual prosodic traits (Godin & Hansen, 2015). Such method-
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ological differences directly influence prosodic outcomes, including pitch, duration, and intensity.
This lack of methodological standardization undermines the reliability of cross-study comparisons
and complicates efforts to generalize findings to real-world speech contexts.

In terms of duration, some studies have reported significant differences between ASD and TD speak-
ers (Diehl & Paul, 2013; Filipe et al., 2014). Others highlight the role of emotional context in shaping
duration in TD children, a factor that has yet to be systematically investigated in ASD populations
(Hubbard et al., 2017). Regarding intensity, most research finds no substantial group differences
(Diehl & Paul, 2013). However, Olivati et al. (2017) observed significantly higher maximum and
minimum intensity levels in the speech of children with ASD. Across all prosodic dimensions, indi-
vidual variability may also be influenced by factors such as age, gender, IQ, and expressive language
ability. These participant-level differences often vary within and between diagnostic groups, making
it difficult to generalize findings.

Given these sources of variability, both methodological and participant-related, it remains challeng-
ing to draw consistent conclusions about prosodic patterns in ASD speech. Additionally, most stud-
ies focus on isolated prosodic features without modeling their interactional or contextual dynamics,
which limits their ecological validity and applicability in dynamic ASR environments. Moreover,
many studies rely on experimental designs that lack ecological validity and do not include system-
atic acoustic labeling. As a result, the implications of atypical prosody for downstream technologies
such as ASR remain underexplored.

2.1.2 Disfluency in ASD Speech

While prosodic features in ASD speech show considerable variability across individuals and studies,
some speech characteristics, particularly disfluencies, emerge more consistently and prominently.
A frequently observed feature is the presence of disfluencies, such as repetitions, filled pauses, and
irregular pauses, that occur more often and in less predictable positions than in neurotypical speech
(Lake et al., 2011). These disfluencies often appear at syntactically or semantically inappropriate
points, making the speaker’s intended meaning harder to understand (Zorić, 2024). In neurotypi-
cal speech, disfluencies often serve pragmatic functions, such as signaling hesitation, corrections,
or managing turn-taking. In contrast, disfluencies in ASD speech frequently lack such contextual
relevance and can actively hinder listener interpretation.

These non-pragmatic disfluencies tend to occur in semantically unrelated or socially inappropriate
places, which can confuse listeners and reduce overall communicative effectiveness. Nevertheless,
many studies stop at descriptive analysis, without developing predictive or computational models
that can capture such disfluency behaviors in practical applications. The occurrence and form of
disfluencies may vary with factors such as age, language environment, and speaking task (Holler &
Levinson, 2019). Moreover, much of this research is based on English-speaking populations, with
limited attention to language-specific or cross-linguistic prosodic norms, raising questions about
generalizability. To systematically capture this variation, Lake et al. (2011) proposed a classification
scheme that divides disfluencies in ASD speech into three main types: stalling, repair, and fragmen-
tation. Among these, stalling and fragmentation are especially common in ASD speech, particularly
during spontaneous narratives that place high demands on planning and fluency.
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In addition to disfluency patterns, prosodic irregularities in ASD speech also show cross-linguistic
consistency. A meta-analysis found that features such as flattened pitch contours, reduced pitch
range, and irregular timing were consistently observed across English, Dutch, and French (Asghari
et al., 2021). This suggests that these atypical prosodic cues may reflect broader cognitive-perceptual
traits, rather than being language-specific phenomena.

2.1.3 Prosodic Features in ADHD Speech

While much of the existing literature has focused on the prosodic and disfluency patterns of ASD,
emerging research suggests that children with Attention-Deficit/Hyperactivity Disorder (ADHD)
may also exhibit distinct prosodic abnormalities. Although the underlying neurodevelopmental
mechanisms differ, both populations display atypical speech profiles that challenge conventional
models of prosody and fluency development. In contrast to the often flattened or rigid prosodic
contours observed in ASD, children with ADHD tend to produce exaggerated and unstable pitch
and intensity variations. For instance, Cassol-Jr et al. (2010) found that during spontaneous mother-
child interactions, children with ADHD exhibited highly variable loudness and pitch, resulting in
an erratic paralinguistic style. These atypical prosodic patterns may reflect underlying deficits in
executive function, particularly in inhibitory control, which disrupt the real-time regulation of vocal
output.

Although research on ADHD speech is more limited, the available findings suggest a distinct trajec-
tory. Whereas prosodic anomalies in ASD are often linked to social-pragmatic impairments, those in
ADHD appear more related to impulsivity and reduced control over vocal modulation. This distinc-
tion highlights the importance of developing disorder-specific models for analyzing and interpreting
speech characteristics, especially in clinical and technological contexts such as ASR.

Despite increasing interest in atypical prosody, the literature remains fragmented. In the case of
ASD, many studies rely heavily on perceptual judgments rather than systematic acoustic analysis,
limiting cross-study comparability and integration into computational models. For ADHD, research
is even more sparse and often lacks the methodological rigor needed for reliable cross-diagnostic
comparison.

Furthermore, spontaneous speech corpora that capture children’s natural vocal behavior remain
critically scarce, especially for underrepresented languages such as Dutch. Few publicly available
datasets, such as ASDBank, provide the level of annotation and linguistic diversity needed to sup-
port robust acoustic modeling or to train inclusive ASR systems. This highlights the urgent need for
large-scale, systematically annotated corpora to advance theunderstanding of prosody and disfluency
in neurodivergent child populations. Even when such corpora exist, their annotations are often in-
consistent or lack standard prosodic labeling, making it difficult to train generalizable or explainable
ASR models.
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2.2 Challenges of ASR on Child and Atypical Speech
ASR systems consistently perform worse on children’s speech due to notable acoustic and articula-
tory mismatches with adult-trained models. Compared to adults, children typically produce speech
with higher fundamental frequency (F0), shorter vocal tract lengths, less stable articulation, and
greater variability in speaking rate (Sobti et al., 2024). These physiological and developmental dif-
ferences substantially elevate WER, particularly in spontaneous, unscripted speech.

For children with ASD, these baseline challenges are compounded by atypical prosodic cues and
context-insensitive disfluencies, as discussed in Section 2.1. Features such as irregular pausing, mis-
placed stress, and filled pauses disrupt standard segmentation cues and acoustic-to-linguistic map-
pings, leading to increased substitution, insertion, and deletion errors. These problems are particu-
larly acute in spontaneous narrative tasks, where such disfluencies occur unpredictably and interfere
with both syntactic alignment and semantic coherence.

Despite the importance of these issues, there remains a striking lack of controlled experimental stud-
ies that systematically compare ASR performance between ASD and typically developing children.
This gap is especially concerning given the increasing reliance on ASR in educational, clinical, and
assistive settings. The absence of such comparisons not only limits theunderstanding of recognition
disparities but also impedes the development of inclusive and generalizable speech technologies.

2.2.1 Whisper ASR Model: Architecture and Bias

Figure 1: Whisper ASR Architecture

Whisper (Radford et al., 2022) is a large-scale transformer-based ASR model developed by OpenAI,
designed to handle speech recognition, translation, and language identification through a unified
encoder-decoder architecture. Its sequence-to-sequence framework, unlike traditional CTC-based
systems, allows Whisper to model long-range dependencies and contextual semantics across multi-
lingual domains. Moreover, Whisper supports transcription in nearly 100 languages and is pretrained
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on over 680,000 hours of speech, making it highly adaptable to low-resource and cross-lingual set-
tings. Its architecture is as shown in Figure 1.

Despite its architectural sophistication, Whisper is trained on weakly supervised data sourced pri-
marily from online platforms such as YouTube and broadcast media. Critically, this dataset over-
whelmingly consists of normative, fluent, adult speech. Speech from children, accented speakers,
disfluent speakers, or neurodivergent individuals is severely underrepresented. This data imbalance
introduces systematic bias into the model’s learned representations.

As a result, Whisper exhibits notable performance degradation when confronted with marginalized
speech populations, including children, L2 speakers, and individuals with dysarthria or neurodevel-
opmental conditions (Fuckner et al., 2023; Jain, 2023). In particular, when processing ASD speech,
Whisper has been observed to hallucinate content, omit filled pauses, or restructure disfluent seg-
ments to resemble grammatical fluency (Mujtaba et al., 2024). These distortions reflect not just
a recognition error but an implicit prioritization of fluency over fidelity, thereby misrepresenting
speakers who fall outside normative expectations.

Nonetheless, Whisper’s strong zero-shot performance and multilingual flexibility make it an attrac-
tive candidate for fine-tuning in atypical speech domains. In recent benchmarking on Dutch ASR
tasks, Whisper demonstrated top-tier performance on standard datasets such as CGN and JASMIN
(as reported by the ASR-NL initiative https://github.com/opensource-spraakherkenning-nl), outper-
forming many traditional Kaldi-based or wav2vec2 systems on clean read speech. While these
benchmarks primarily involve adult and scripted speech, they suggest Whisper’s capacity to gener-
alize well to Dutch, especially when adapted with even modest amounts of in-domain data.

Furthermore, although some studies have tested Whisper on child speech, they predominantly rely
on scripted or read-aloud tasks, which fail to capture the naturalistic prosodic variation and irregu-
larity found in spontaneous dialogue. This methodological gap obscures the true extent of Whisper’s
limitations in real-world conditions, particularly for underrepresented languages such as Dutch and
underexplored groups such as children with ASD or ADHD.

These limitations are not merely technical oversights but structural barriers that reinforce exclu-
sion. Whisper’s training paradigm and decoding biases collectively restrict its usability for inclusive
speech technologies. However, its success in prior Dutch-language adaptation studies and its flexi-
ble architecture make it well-suited for domain-specific fine-tuning. The need for targeted, inclusive
ASR modeling, especially on spontaneous, neurodivergent child speech in low-resource languages,
thus presents both a practical opportunity and an ethical imperative.

2.2.2 Prosody-ASR Error Correlations

A growing body of empirical research has revealed that prosodic features, including pitch vari-
ability, segmental duration, and pausing behavior, strongly influence the accuracy of Automatic
Speech Recognition (ASR) systems, particularly in challenging domains such as spontaneous or
child-directed speech. For instance, Goldwater et al. (2010) demonstrated that short duration and
reduced prosodic prominence significantly increased word error rates in ASR transcriptions. Simi-
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larly, Stoyanchev et al. (2012) showed that prosodic anomalies, including irregular pause placement
and extreme pitch shifts, were strongly predictive of recognition errors. Their prosody-based error
prediction models achieved AUC values up to 0.84, highlighting the diagnostic value of supraseg-
mental speech features in identifying high-risk regions for ASR failure.

Recent work has shown that prosodic information can be effectively integrated into self-supervised
speech models to improve recognition accuracy. For example, ProsodyBERT, a model that em-
beds prosodic cues like pitch and rhythm into the Transformer architecture, achieving substantial
reductions in substitution and deletion error rates (Y. Hu et al., 2022). These results underscore that
temporal and tonal dynamics are integral, not peripheral, components of the speech signal, which
conventional ASR models like Whisper may inadequately model.

However, most of these studies focus on standard child corpora and high-resource languages, and few
explicitly examine how prosodic irregularities interact with neurodivergence or language-specific
constraints. Moreover, while models like HuBERT have incorporated prosody through architectural
adjustments (Hsu et al., 2021), Whisper has yet to systematically integrate or leverage such informa-
tion. This omission may partially explain its underperformance on spontaneous, disfluent speech.

Taken together, these studies offer compelling motivation to investigate the role of prosody in ASR
error patterns. Yet, a critical research gap remains: there is still little empirical evidence linking
prosodic features with ASR recognition errors in neurodivergent children’s speech, particularly in
underrepresented languages like Dutch. This gap directly motivates theproposed correlation analysis
between prosody/disfluency patterns and Whisper misrecognitions in Dutch-speaking children with
ASD.

2.3 Adapting ASR to Low-Resource and Atypical Speech Domains
2.3.1 Fine-Tuning Whisper for Low-Resource and Atypical Speech

Fine-tuning refers to the adaptation of a pre-trained model to a specialized task using a smaller,
domain-specific dataset. In the case of Whisper, originally trained on over 680,000 hours of pre-
dominantly normative, adult, English-language speech, fine-tuning allows the model to better ac-
commodate underrepresented forms of speech, including spontaneous, disfluent, or child speech
from marginalized populations.

This approach proves especially beneficial in low-resource settings, where collecting large-scale
annotated speech corpora is infeasible. Recent work has demonstrated that Whisper can achieve sig-
nificant gains with very limited training data. For example, Rijal et al. (2024) fine-tuned Whisper on
just 80 minutes of Nepali speech and achieved a relative WER reduction of 35.6% compared to the
baseline. Similarly, Ghimire et al. (2024) reported that parameter-efficient fine-tuning of Whisper
using only 100 minutes of Nepali speech yielded WER improvements exceeding 30% over zero-shot
performance, highlighting Whisper’s strong adaptation potential in low-resource environments.

However, while these results are promising, they are often limited to scripted, monolingual, or rel-
atively clean speech settings. Their generalizability to spontaneous, disfluent, and neurodivergent
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speech remains largely untested. This is especially problematic given that the populations most in
need of inclusive ASR solutions are typically those furthest from the normative training distributions
of large models.

To address overfitting risks and computational constraints in such data-scarce scenarios, recent
studies have adopted parameter-efficient fine-tuning methods. Techniques like partial fine-tuning
(which freezes most model layers), LoRA (which adds low-rank trainable matrices), and BAFT of-
fer lightweight alternatives to full fine-tuning (Bhardwaj et al., 2022; Liu et al., 2024; Mujtaba et
al., 2024). These approaches lower the barrier for adapting Whisper to specific speech domains, but
their performance on disfluent child speech, especially in typologically distinct or underrepresented
languages, remains underexplored.

Despite technical advances in adaptation strategies, there is still a striking lack of research applying
Whisper to spontaneous speech from neurodivergent children in languages such as Dutch. No ex-
isting studies, to theknowledge, have systematically evaluated how fine-tuning Whisper with Dutch
ASD speech affects model performance or fairness. This gap is not merely empirical, it signals a
broader neglect of linguistic diversity and neurodivergent populations in speech technology research.
The study addresses this need by evaluating the efficacy of low-resource Whisper fine-tuning on the
Dutch ASDBank corpus.

2.3.2 Parameter-Efficient Fine-Tuning: LoRA and Alternatives

In low-resource domains such as disfluent or neurodivergent speech modeling, full fine-tuning of
large-scale ASR models like Whisper is often computationally prohibitive and susceptible to over-
fitting. To address this, the field has increasingly turned to Parameter-Efficient Fine-Tuning (PEFT)
techniques, which enable task-specific adaptation by training only a small fraction of the model’s
parameters (Ashvin et al., 2024; Müller-Eberstein et al., 2024; Zhang et al., 2025).

Among these, Low-Rank Adaptation (LoRA) has emerged as a leading method. Rather than up-
dating the full parameter space, LoRA inserts pairs of low-rank trainable matrices into the attention
layers while keeping the original weights frozen (E. J. Hu et al., 2021). This dramatically reduces
memory usage and computational cost, while still allowing the model to adapt effectively to new
domains.

Alternative PEFT approaches have also been explored:

• Adapter Tuning adds small bottleneck layers between transformer blocks, preserving the main
architecture but increasing memory and latency costs across all layers;

• BitFit, which updates only bias terms, offers minimal training overhead but struggles with
complex, acoustically variable tasks;

• Prefix Tuning, effective in text-based transformers, prepends learnable prompts to input em-
beddings, but its reliance on token-level semantics limits its utility for speech models where
timing and prosody matter more than discrete tokens.
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While LoRA’s utility is well-established in NLP, its application in speech modeling, particularly for
Whisper, remains relatively unexplored. Only a handful of studies (e.g., Liu et al. (2024); Mujtaba et
al. (2024)) have tested LoRA on ASR models, and these primarily target clean or scripted datasets.
The feasibility and impact of LoRA on atypical or disfluent speech, especially in low-resource and
non-English contexts, remains largely an open question.

Moreover, Whisper’s unique encoder-decoder structure poses specific challenges for PEFT. Unlike
uni-directional encoders in most language models, Whisper processes temporal acoustic patterns
and long-span dependencies jointly, raising questions about where and how LoRA modules should
be inserted to maximize efficacy. Existing PEFT benchmarks seldom address these speech-specific
architectural nuances, creating a gap in both theoretical understanding and empirical validation.

Given the extremely limited availability of annotated Dutch speech from children with ASD or
ADHD, and the presence of disfluency patterns that diverge sharply from Whisper’s normative train-
ing data, LoRA offers a promising yet under-tested pathway for efficient model adaptation. By
incorporating LoRA into our fine-tuning of Whisper, this study aims to extend the applicability of
PEFT methods to spontaneous, neurodivergent child speech, an area that has been critically under-
represented in both ASR research and model evaluation frameworks.

2.4 Summary and Identified Gaps
The reviewed literature underscores the complex interplay between prosody, disfluency, and ASR
performance in neurodivergent child speech. Studies on ASD and ADHD speech have identified
distinct suprasegmental patterns, ranging from flat intonation in ASD to exaggerated pitch variabil-
ity in ADHD, that interfere with standard acoustic-linguistic mappings. These deviations are further
compounded by irregular pausing and filled pauses, which distort the timing cues relied upon by
ASR models. Despite this, the majority of prior work has focused on adult or TD populations, leav-
ing neurodivergent child speech significantly underexplored.

Although state-of-the-art ASR models like Whisper have demonstrated robust generalization across
many domains, their training data remains heavily skewed toward fluent, adult speech. This imbal-
ance results in marked performance degradation when applied to spontaneous, disfluent, or develop-
mentally atypical speech. Furthermore, most evaluations of Whisper’s performance on child speech
rely on read or scripted corpora, which do not reflect the prosodic irregularities or disfluency patterns
characteristic of real-world child communication, particularly in low-resource languages like Dutch.

While prosodic features have shown promise as predictors of ASR errors, existing models have sel-
dom incorporated them explicitly, especially within the Whisper framework. Research integrating
prosodic embeddings into ASR architectures has mostly focused on standard child corpora or high-
resource languages, and few studies have investigated how these features correlate with recognition
errors in neurodivergent speech. Additionally, although parameter-efficient fine-tuning methods such
as LoRA have shown success in natural language processing and adult ASR tasks, their application
to spontaneous, disfluent child speech remains largely untested.
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Finally, a critical infrastructural limitation persists: the lack of systematically annotated corpora
for neurodivergent child speech in underrepresented languages. Even when such datasets exist, they
often lack consistent prosodic labeling or robust disfluency annotation, hindering the development
of explainable and generalizable ASR systems. In sum, despite growing interest in inclusive speech
technology, three interrelated gaps remain unresolved:

Limited fine-tuning research on neurodivergent child speech, particularly in Dutch and involv-
ing spontaneous, disfluent utterances;

Lack of empirical analysis linking prosodic and disfluency features with ASR recognition
errors in ASD and ADHD speech;

Underexplored use of parameter-efficient adaptation methods (e.g., LoRA) for addressing
atypical speech in low-resource settings.

These gaps directly motivate the present study, which seeks to address both the technical and lin-
guistic challenges in modeling ASR for Dutch-speaking neurodivergent children.
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3 Methodology
This section outlines the methodological framework adopted to investigate the effectiveness of fine-
tuning Whisper models for improving ASR performance on speech from Dutch-speaking children
(TD, ADHD, ASD). Building upon the findings discussed in the literature review, which highlighted
the limitations of existing ASR systems in handling non-standard speech patterns, particularly in
low-resource or disordered speech contexts, this study adopts a transfer learning approach using the
Whisper architecture.

The methodology consists of four main components: construction and preprocessing of a representa-
tive dataset, selection and description of the pre-trained Whisper model, design and implementation
of the fine-tuning experiments across different training conditions, and quantitative evaluation of
ASR performance.

Through this methodological design, the study aims to systematically examine how model archi-
tecture, training data composition, and fine-tuning strategies interact to influence ASR outcomes.
The following subsections provide a detailed account of each component. The complete code and
experimental setup used in this thesis are available at github1.

3.1 Dataset Description
3.1.1 Corpus Overview

The speech data used in this study were drawn from the ASDBank Asymmetries Corpus (Kuijper
et al., 2015), a linguistically rich Dutch corpus designed to facilitate comparative analysis across
neurodevelopmental profiles. The corpus includes recordings of 86 children aged 6-12, categorized
into three diagnostic groups: Typically Developing (TD), Attention-Deficit/Hyperactivity Disorder
(ADHD), and Autism Spectrum Disorder (ASD).

Each child was recorded producing four picture-based narrative retellings (Pirate, Ballerina, Princess,
and Indian), following the CHAT transcription protocol. The elicitation setting was semi-spontaneous
and child-friendly, yielding approximately 1 to 2 minutes of speech per speaker. ASD diagnoses
were made based on at least one gold-standard instrument, the Autism Diagnostic Interview-Revised
(ADI-R) or the Autism Diagnostic Observation Schedule (ADOS). Notably, around 60% of ASD
participants met criteria on both instruments, while the remainder satisfied only one but exhibited
pronounced social-communicative features consistent with ASD. This inclusion strategy enhances
not only the diagnostic validity but also the ecological validity of the dataset, aligning with contem-
porary trends in autism research that emphasize functional diversity and real-world communicative
variation.

To ensure acoustic quality and modeling reliability, additional filtering was performed on the origi-
nal recordings. Speech segments with overlapping speech, excessive background noise, or degraded
audio fidelity were excluded. The data that is used in this study is as shown in table 1:

1https://github.com/maxyuht/VT thesis.git

https://github.com/maxyuht/VT_thesis.git
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Table 1: Dataset Information

Group Number of
Speakers

Total Duration
(min)

Average Dura-
tion per Speaker
(min)

Approx. Av-
erage Utterance
Length

TD 30 64.65 2.16 ˜6-8 seconds
ADHD 19 50.35 2.65 ˜6-10 seconds
ASD 37 26.84 0.73 ˜4-6 seconds
Total 86 141.84 – –

Compared to TD and ADHD groups, the ASD group contributed significantly shorter average dura-
tions, partly due to speech production challenges typical of this population. Nevertheless, the corpus
offers valuable insights into how ASR models handle speech diversity across neurodevelopmental
conditions.

To evaluate the effectiveness of Whisper fine-tuning in recognizing atypical speech patterns, par-
ticularly those characteristics of ASD, a speaker-independent data split was applied to the 37 ASD
participants in the curated ASDBank corpus. The split was performed randomly, with the following
distribution:

• Training set: 12 ASD speakers, used for model fine-tuning

• Validation set: 10 ASD speakers, used for tuning monitoring and early stopping

• Test set: 15 ASD speakers, held out for final evaluation

All TD and ADHD speakers were included exclusively in the training set to simulate a realistic low-
resource scenario where models are trained on typical or near-typical speech but must generalize to
more idiosyncratic clinical speech.

This design serves two purposes: first, it ensures speaker independence across subsets, thereby
preventing data leakage and inflated performance estimates; second, it enables an empirical investi-
gation into how cross-group transfer, from TD, ADHD to ASD speech, impacts ASR performance.
By reserving ASD speech solely for evaluation and validation, the study ensures that generalization
metrics reflect model robustness in clinically relevant target conditions.

To systematically explore this question, the study adopted seven fine-tuning paradigms, each de-
signed to probe different aspects of model generalization and the incremental value of ASD training
data:

• TD only
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• ADHD only

• ASD only

• TD+ADHD

• ADHD+ASD

• TD+ASD

• TD+ADHD+ASD

These paradigms allow for fine-grained comparison of training sources and provide insight into
whether fine-tuning on more neurotypical data benefits or hinders ASR performance on atypical
ASD speech, and how the inclusion of even limited ASD samples might shift recognition accuracy.

3.1.2 Preprocessing and Annotation Normalization

To prepare the audio data for model training, a standardized preprocessing pipeline was imple-
mented. All original recordings in MP3 format were first converted to WAV format with a sampling
rate of 16 kHz, mono channel, and 16-bit PCM encoding. Each speaker’s speech was then manually
segmented into utterances of less than 30 seconds using Praat, ensuring compatibility with Whisper’s
input length constraints and minimizing memory overflow during fine-tuning.

For ASR evaluation purposes, CHAT-format transcriptions were cleaned and converted to Praat-
compatible .TextGrid files. To enable accurate and consistent Word Error Rate (WER) calculation,
a set of normalization rules was applied:

• Fillers (e.g., uhm, eh) were retained to preserve disfluency patterns, which are critical for
assessing ASR robustness to spontaneous speech.

• Partial words or interrupted phonemes (e.g., pi(raat)) were truncated to their audibly realized
component (pi), ensuring alignment with what is actually spoken and avoiding artificial penal-
ization in WER computation.

• Unclear or optional phonemes (e.g., (h)em) were regularized based on contextual cues (→
hem), promoting transcription-listening consistency.

• CHAT meta-symbols and non-lexical markers (e.g., pause indicators, retracing markers) were
stripped to eliminate mismatches between transcribed tokens and acoustic content, while still
preserving lexical fidelity to the child’s original utterances.

These adjustments aimed to strike a balance between linguistic accuracy and evaluation validity.
By aligning transcriptions more closely with perceptible speech, the normalization reduces spurious
mismatches during WER scoring and increases the interpretability of recognition errors in low-
resource, spontaneous child speech contexts.
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3.2 Model Architecture
In this study, I utilized OpenAI’s Whisper architecture for Dutch automatic speech recognition.
While various model sizes are available, I compared two pre-trained checkpoints, Whisper-medium
and Whisper-large-v2, as baselines in a zero-shot setting.

The following table summarizes the two Whisper variants referenced in this research:

Table 2: Whisper ASR Models

Model Parameter
Count

Disk Size Description

Whisper-Medium 769 million 1.5 GB Mid-sized model
balancing perfor-
mance and effi-
ciency

Whisper-Large-v2 1.55 billion 3.1 GB Largest publicly
available model
with state-of-
the-art ASR
performance

Before fine-tuning, I conducted a preliminary evaluation of two pre-trained Whisper models, Whisper-
Large-v2 and Whisper-Medium, on the ASD test set in a zero-shot setting, in order to establish a
performance baseline. The Whisper-Large-v2 model achieved a Word Error Rate (WER) of 37.10%,
outperforming Whisper-Medium, which obtained a WER of 43.12%. Despite the better baseline
performance of large-v2, I chose Whisper-medium as the fine-tuning target, for the following three
reasons:

1. Computational efficiency: Medium is faster to train and consumes significantly less GPU mem-
ory, which is essential for low-resource iterative experiments.

2. Overfitting prevention: Larger models are more prone to overfitting when fine-tuned on very
limited data, which is the case for thesmall speech dataset.

3. Prior research support: Studies such as Zhang et al. (2025) has shown that smaller models tend to
benefit more significantly from task-specific adaptation in extremely low-resource domains.

This choice balanced performance and practicality, enabling more controlled and replicable experi-
ments across the six training paradigms.
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3.3 Baseline Fine-Tuning of Whisper-Medium
3.3.1 Fine-Tuning Strategy

To balance generalization and task adaptation under data-scarce conditions, this study first employed
a partial fine-tuning strategy. Specifically, the lower layers of the Whisper-medium encoder were
frozen, while only four Transformer blocks (layers 8-11) were unfrozen during training. This deci-
sion was based on findings from prior work suggesting that upper layers in transformer-based ASR
models encode more abstract linguistic and semantic information, which is more relevant for down-
stream adaptation (Liu et al., 2024; Yang, Zhang, Tao, Ma, & Qin, 2023).

This selective unfreezing allows the model to retain general acoustic knowledge from pre-training
while learning task-specific patterns from limited target-domain data. Such strategies have also been
shown to prevent overfitting in low-resource fine-tuning settings (Lee et al., 2024). The baseline
fine-tuning flow is as shown in Figure 2.

Figure 2: Whisper Baseline Fine-tuning

3.3.2 Training Configuration

Experiments were conducted on a single NVIDIA A100 GPU with 40GB of memory. Each training
run used the same preprocessing pipeline to ensure consistency and reproducibility. All audio in-
puts were limited to 30-second segments, represented as 80-dimensional log-Mel spectrograms. The
Whisper Dutch tokenizer remained frozen during training. Optimization used AdamW with a linear
learning rate scheduler and warm-up.



Section 3 METHODOLOGY 27

Table 3: Training Configuration

Training Data Com-
position

Max Training Steps

TD only 100
ADHD only 100
ASD only 70
TD+ADHD 100
ADHD+ASD 100
TD+ASD 90
TD+ADHD+ASD 100

All models were trained with the following shared configuration:

• Batch size: 16

• Learning rate: 1e-5

• Warm-up steps: 5

• Evaluation interval: every 10 steps

• Optimizer: AdamW

• Scheduler: Linear decay

• Audio input: ≤ 30s log-Mel spectrograms

• Tokenizer: Whisper Dutch tokenizer (frozen)

• Loss: CTC loss

Each training run lasted less than 30 minutes and consumed approximately 10-12GB of GPU mem-
ory, making partial fine-tuning feasible even under limited hardware resources.

3.4 Parameter-Efficient Fine-Tuning via LoRA
3.4.1 Rationale

While partial fine-tuning helps reduce overfitting, it still requires updating a significant number of
model parameters. To further reduce the computational cost and parameter footprint, this study
adopted Low-Rank Adaptation (LoRA) (Hu et al., 2021), a parameter-efficient fine-tuning (PEFT)
method. LoRA freezes all original model weights and introduces trainable low-rank matrices into
specific attention projection layers, usually q proj and v proj.
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This approach has shown strong performance in low-resource ASR and TTS tasks (Deng et al., 2023;
Xie et al., 2023), and significantly reduces memory usage and training time. The Whisper implemen-
tation followed the publicly available Fast-Whisper-Finetuning (https://github.com/Vaibhavs10/fast-
whisper-finetuning) repository, which builds on Hugging Face’s peft library with Whisper-specific
adjustments.

3.4.2 LoRA Configuration and Training Setup

LoRA adapters were inserted into the q proj and v proj layers of the Whisper encoder blocks. The
rank was set to 32, with an α of 64 and dropout of 0.05. Based on the best-performing results from
the previous stage, I selected two groups for LoRA adaptation: ASD only and TD+ADHD+ASD
combined. Experiments were conducted on the same GPU setup as before.

Table 4: Training Configuration

Experiment Group
Max
Steps

Batch
Size

Grad
Accum.

Learning
Rate

LoRA
Rank

Alpha Dropout
Eval
Step

TD + ADHD + ASD 8000 4 4 3e-6 32 64 0.05 200
ASD only 5000 2 8 3e-6 32 64 0.05 200

Shared configuration:

• Loss Function: Sequence-to-sequence cross-entropy (with built-in label smoothing)

• Audio input: ≤ 30s log-Mel spectrograms

• Tokenizer: Frozen Whisper Dutch tokenizer with language prefix

• Optimizer: AdamW

• Scheduler: Cosine learning rate decay with warm-up

3.5 Evaluation
To assess the performance of the fine-tuned and baseline models in recognizing speech from children
with Autism Spectrum Disorder (ASD), two widely adopted metrics in automatic speech recogni-
tion (ASR) research were employed: Word Error Rate (WER) and Character Error Rate (CER).
These metrics provide complementary insights into recognition quality at different linguistic levels.
WER captures the overall correctness of recognized word sequences, making it a primary indicator
of transcription fidelity, especially in semantic contexts. CER offers a finer-grained evaluation by
accounting for character-level mismatches, which is particularly useful in short utterances or mor-
phologically rich languages such as Dutch.

Both metrics were computed using the jiwer Python package, comparing the recognized outputs
against manually curated ground truth transcriptions. Evaluation was performed on a speaker-
independent test set comprising 15 autistic speakers, ensuring the robustness of results across unseen
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individuals. Each fine-tuned model and zero-shot experiment are evaluated on the same test data to
facilitate fair comparison.

Third, statistical tests were conducted to validate observed trends:

• Spearman’s rank correlation was used to assess associations between prosodic features and
WER/CER.

• OLS regression modeled WER as a function of multiple acoustic predictors.

• Mann-Whitney U tests compared prosodic patterns between high- and low-WER utterance
groups.

3.6 Ethical Considerations
All data employed were pre-existing and publicly distributed under ethical research provisions. The
ASDBank corpus was collected with institutional consent for linguistic analysis. This study abstains
from involving any personally identifiable information or subjective evaluations, and the disfluency
annotations were derived from anonymized, child-friendly scripts. All analyses and model outputs
were strictly used for research purposes.
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4 Results
This section presents a comprehensive evaluation of fine-tuning strategies applied to the Whisper
model for improving ASR on Dutch child speech, particularly from autistic speakers. It is organized
into four main parts. Section 4.1 reports baseline fine-tuning results across different combinations
of training data from typically developing, ADHD, and ASD children, highlighting their impact
on word and character error rates. Section 4.2 explores the effectiveness of Low-Rank Adaptation
(LoRA) as a parameter-efficient alternative and compares its performance to full fine-tuning. Section
4.3 offers a text-based recognition errors and section 4.4 offers acoustic-prosodic feature correlations
with ASR outcomes. This structure allows for both a quantitative performance comparison and a
deeper interpretive understanding of recognition challenges in neurodivergent child speech.

4.1 Baseline Fine-Tuning Results
To evaluate the impact of different fine-tuning data configurations on ASR performance for Dutch-
speaking children with autism, I conducted six baseline fine-tuning experiments using the Whisper-
medium model. Each experiment involved a different subset or combination of speech from typically
developing, ADHD, and ASD children. All models were evaluated on the same ASD test set using
two standard metrics: Word Error Rate (WER) and Character Error Rate (CER). The table below
summarizes the results.

Table 5 below summarizes the results:

Table 5: Baseline Fine-Tuning Performance Across Speech Groups

Fine-tuning Group Val-WER (%) Eval-WER (%) CER (%) WER-Drop (%)
ADHD only 19.48 28.84 16.05 14.28
ASD only 19.81 29.63 17.05 13.49
TD only 20.59 29.57 16.67 13.55
TD + ADHD + ASD 16.74 26.43 15.02 16.69
TD + ASD 21.88 26.86 14.89 16.26
ADHD + ASD 22.38 27.01 15.19 16.11
TD + ADHD 17.69 26.61 15.06 16.51

Note. Val-WER = Word error rate on the validation set. Eval-WER = Word error rate on the ASD test set.
CER = Character error rate. WER-Drop = Relative reduction in Eval-WER from the zero-shot baseline
(43.12%). All values are reported in percentages.

4.1.1 Quantitative Overview of Baseline Fine-Tuning

Among all configurations, the TD+ADHD+ASD group achieved the best performance with the low-
est Word Error Rate (WER: 26.43%) and a competitive Character Error Rate (CER: 15.02%). It also
demonstrated the largest relative WER reduction (16.69%) from the zero-shot baseline (43.12%).
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These results confirm that including a diverse range of developmental speech profiles in the fine-
tuning process improves model generalization to the atypical and heterogeneous speech patterns of
autistic children.

By contrast, the TD+ASD group, despite using a larger dataset than single-group configurations,
showed the lowest performance (WER: 26.86%, CER: 14.89%). While the CER was slightly lower
than others, the high WER suggests that excluding ADHD speech, which may contribute prosodic
diversity and disfluency variation, negatively impacts recognition performance.

Interestingly, the TD+ADHD (WER: 26.61%, CER: 15.06%) and ADHD+ASD (WER: 27.01%,
CER: 15.19%) groups also achieved strong results, reinforcing the idea that ADHD speech may pro-
vide beneficial fluency variability during training.

All three single-group configurations, TD only (WER: 29.57%), ADHD only (WER: 28.84%), and
ASD only (WER: 29.63%), performed comparably and worse than multi-group settings. This sug-
gests that training on a single population is insufficient to handle the variability found in ASD speech,
and further supports the advantage of heterogeneous data inclusion.

Although both WER and CER were evaluated, this study primarily focuses on Eval-WER (%) as
the main performance metric. This is because WER more directly reflects errors at the lexical level,
which are crucial in capturing content accuracy and communicative intent in spontaneous, atypi-
cal speech. In contrast, CER—while informative for phoneme-level fidelity—may overlook larger
unit errors such as word substitutions or deletions, which often carry more serious semantic conse-
quences.

4.1.2 Training and Validation Dynamics

In addition to final evaluation scores, it is important to examine how each model learns during
training. This section presents the training loss and validation performance curves across different
fine-tuning configurations. Analyzing these dynamics helps assess convergence behavior, model sta-
bility, and potential overfitting, providing insight into the learning process beyond static metrics.

The training loss plots (Figure 3, c and d) show that all models converged smoothly, with most
groups reaching a stable loss below 0.5 after 100 steps. While TD+ASD shows a slightly faster early
decline, the final loss levels are similar across all settings.

The validation WER trends (Figure 3, a and b) highlight some important differences. The TD +
ADHD + ASD configuration consistently achieves the lowest validation WER, suggesting stronger
generalization. Both TD-only and ASD-only models also perform competitively, with stable and
low validation WERs throughout.

In contrast, the TD+ASD configuration exhibits a more fluctuating validation WER. Despite con-
verging quickly in training loss, this inconsistency in validation WER may reflect mismatched
acoustic patterns or speaker variability between the TD and ASD groups. Prior work has shown
that children with ASD often exhibit irregular prosodic timing and flatter pitch contours, which can
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(a) Val-WER (Mixed) (b) Val-WER (Single)

(c) Train Loss (Mixed) (d) Train Loss (Single)

Figure 3: Whisper Baseline Fine-tuning Training Process

interfere with acoustic-to-linguistic mapping in ASR systems (Diehl & Paul, 2013). The ADHD-
only group also shows relatively higher WER values and some instability during training, possibly
due to the exaggerated pitch and intensity variability commonly found in ADHD speech (Nilsen et
al., 2016), which can make temporal alignment more challenging for models trained on more stable
input. However, given the general downward trend across all groups, I do not overinterpret these
fluctuations.

Overall, the results suggest that the TD+ADHD+ASD configuration yields the best generalization
across speech types, achieving the lowest Eval-WER and largest WER reduction. In contrast, single-
group training performs worse, highlighting the limitations of narrow-domain fine-tuning. While the
TD+ASD group achieves the best CER, its relatively higher WER suggests that phoneme-level ac-
curacy does not necessarily translate into robust lexical recognition, especially in the presence of
disfluencies and prosodic variation.

4.2 LoRA Fine-Tuning Results
4.2.1 Quantitative Overview of LoRA Fine-Tuning

To explore the parameter-efficient fine-tuning potential of Whisper-large, I applied LoRA (Low-
Rank Adaptation) to two configurations: ASD-only and TD+ADHD+ASD due to their high per-



Section 4 RESULTS 34

formance gained in the previous experiment. Table 6 presents the results in terms of Validation
WER, Evaluation WER, Character Error Rate (CER), and WER reduction from the zero-shot base-
line (43.12%).

Table 6: LoRA Fine-tuning Evaluation Results

Fine-tuning Group Val-WER (%) Eval-WER (%) CER (%) WER-Drop (%)
TD+ADHD+ASD(baseline fine-tuning) 16.74 26.43 15.02 16.69
TD+ADHD+ASD 20.26 38.15 24.38 4.97
ASD only(baseline fine-tuning) 19.81 29.63 17.05 13.49
ASD only 15.5 23.20 13.34 19.92

Among the two configurations of LoRA fine-tuning, the ASD-only LoRA model yielded the lower
WER (23.20%) and CER (13.34%), along with the larger WER reduction (19.92%), which also per-
forms the best among baseline fine-tuning experiments. This indicating that domain-specific tuning
under LoRA constraints can be highly effective when well-aligned with the target domain.

In contrast, the TD+ADHD+ASD LoRA model resulted in higher WER (38.15%) and CER (24.38%),
which is notably worse than its baseline counterpart. This performance drop may result from a mis-
match between the diverse training inputs and the highly ASD-specific test set, which LoRA may
not be expressive enough to accommodate.

These findings suggest that LoRA performs best when the training set closely resembles the tar-
get speech profile, and its benefits diminish in more heterogeneous training contexts.

4.2.2 Training and Validation Dynamics under LoRA

Figure 4 shows that both configurations achieved consistent convergence under LoRA fine-tuning,
though the TD+ADHD+ASD model converged more slowly, likely due to data complexity. The
ASD-only model reached a stable low loss earlier, which aligns with its superior final performance.

Validation WER trends further reflect this distinction. The ASD-only curve rapidly drops and sta-
bilizes below 20%, whereas the TD+ADHD+ASD curve fluctuates and plateaus around 20%, with
minimal further gains after 4000 steps.

Taken together, the training dynamics suggest that while LoRA can maintain convergence, its sen-
sitivity to domain mismatch may impact final generalization. These results illustrate that even in
cases where final evaluation scores are suboptimal, LoRA still facilitates efficient convergence dur-
ing training. This highlights its practical value as a lightweight fine-tuning method, especially when
computational resources are limited or rapid adaptation is needed. Rather than replacing full fine-
tuning in all cases, LoRA offers a promising complementary strategy—particularly effective when
training data is well-aligned with the target domain.
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(a) Train Loss (b) Val WER

Figure 4: Whisper LoRA Fine-tuning Training Process

4.3 Text-Based Recognition Errors Analysis
To better understand the patterns of misrecognition in ASD speech, I conducted a systematic analy-
sis of recognition errors from four fine-tuned models and a zero-shot Whisper baseline. These five
experimental conditions, TD-only, ADHD-only, ASD-only, TD+ADHD+ASD, and zero-shot, rep-
resent key contrasts in training data composition and model exposure, ranging from single-group
to multi-group and from domain-matched to domain-mismatched settings. This section addresses
Research Question 2 (RQ2): Are recognition errors associated with prosodic and disfluent patterns
in the speech of children with ASD?

This part of analysis includes two dimensions: (1) word-level recognition errors categorized into sub-
stitutions (S), deletions (D), and insertions (I); and (2) disfluency recognition performance, specif-
ically for filler words (e.g., ”uh”, ”um”) and word repetitions. Each analysis is based on the same
166 utterances from autistic children.

Zero-shot

Table 7: Speech Recognition Error Statistics

Error Type Total Count Mean per Utterance
Substitution (S) 971 5.88
Deletion (D) 282 1.71
Insertion (I) 160 0.97
Total Utterances 166

Table 8: Disfluency Recognition Accuracy

Disfluency Type Count in Reference Count in Prediction Correctly Recognized
Filler Words 51 0 0 / 51 (0.0%)
Repetitions 30 0 0 / 30 (0.0%)
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The zero-shot Whisper model, applied without any task-specific fine-tuning, performed worst among
all conditions. It produced an average of 5.88 substitutions, 1.71 deletions, and 0.97 insertions per
utterance. Notably, it failed to detect any filler words or repetitions, achieving 0% disfluency recogni-
tion. These results highlight the model’s limited ability to generalize to ASD speech from pretraining
alone, especially when prosodic irregularities are present. Prediction results are shown in appendix.

TD-only

Table 9: Speech Recognition Error Statistics

Error Type Total Count Mean per Utterance
Substitution (S) 692 4.17
Deletion (D) 137 0.83
Insertion (I) 142 0.86
Total Utterances 166

Table 10: Disfluency Recognition Accuracy

Disfluency Type Count in Reference Count in Prediction Correctly Recognized
Filler Words 51 54 28 / 51 (54.9%)
Repetitions 30 22 20 / 30 (66.7%)

The TD-only model yielded slightly better performance than the zero-shot condition, averaging 4.17
substitutions, 0.83 deletions, and 0.86 insertions per utterance. While substitution errors still dom-
inated, this model showed moderate success in disfluency recognition: 54.9% of filler words and
66.7% of repetitions were correctly identified. This suggests that exposure to typical child speech
provides some transferable knowledge, particularly for recurring disfluency patterns.

ADHD-only

Table 11: Speech Recognition Error Statistics

Error Type Total Count Mean per Utterance
Substitution (S) 653 3.93
Deletion (D) 153 0.92
Insertion (I) 141 0.85
Total Utterances 166
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Table 12: Disfluency Recognition Accuracy

Disfluency Type Count in Reference Count in Prediction Correctly Recognized
Filler Words 51 53 27 / 51 (52.9%)
Repetitions 30 21 20 / 30 (66.7%)

The ADHD-trained model demonstrated a similar substitution rate (3.93) but slightly higher dele-
tion (0.92) and comparable insertion (0.85) rates compared to the TD-only model. It detected 52.9%
of filler words and 66.7% of repetitions. These results imply that ADHD speech may share some
prosodic characteristics with ASD speech, enabling partial generalization, though decoding stability
remains a challenge.

ASD-only

Table 13: Speech Recognition Error Statistics

Error Type Total Count Mean per Utterance
Substitution (S) 696 4.19
Deletion (D) 173 1.04
Insertion (I) 104 0.63
Total Utterances 166

Table 14: Disfluency Recognition Accuracy

Disfluency Type Count in Reference Count in Prediction Correctly Recognized
Filler Words 51 42 24 / 51 (47.1%)
Repetitions 30 18 19 / 30 (63.3%)

Training on ASD speech directly reduced substitution errors slightly (4.19) but increased deletion
rates to 1.04, the highest among all fine-tuned models. Insertion errors dropped to 0.63. This model
had the lowest filler word detection rate (47.1%) but maintained a reasonably good repetition recog-
nition rate (63.3%). These results reflect the acoustic complexity and variability within ASD speech,
where even matched training data offers limited consistency.

TD-ADHD-ASD
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Table 15: Speech Recognition Error Statistics

Error Type Total Count Mean per Utterance
Substitution (S) 575 3.46
Deletion (D) 159 0.96
Insertion (I) 134 0.81
Total Utterances 166

Table 16: Disfluency Recognition Accuracy

Disfluency Type Count in Reference Count in Prediction Correctly Recognized
Filler Words 51 62 31 / 51 (60.8%)
Repetitions 30 22 20 / 30 (66.7%)

The multi-group model achieved the best overall balance, with the lowest substitution rate (3.46)
and moderate deletion (0.96) and insertion (0.81) levels. Importantly, it showed the highest filler
word detection accuracy (60.8%) and stable recognition of repetitions (66.7%). This suggests that
incorporating diverse speech sources in training enhances the model’s robustness to disfluent and
prosodically atypical input.

Summary Comparison Across all five conditions, substitution errors were the most frequent, sug-
gesting that lexical and phoneme-level mismatches are a persistent challenge in recognizing ASD
speech.

Deletion errors were more pronounced in the zero-shot and ASD-only conditions, indicating in-
stability in decoding atypical or unfamiliar speech patterns without sufficient exposure.

For disfluency recognition, only fine-tuned models demonstrated any ability to detect filler words
or repetitions, with the multi-group (TD+ADHD+ASD) model performing best overall.

These findings suggest that training data diversity enhances recognition stability and disfluency de-
tection. However, the current analysis is limited to recognition output patterns and does not directly
examine acoustic or prosodic causes of the observed errors. Further sections incorporate acoustic-
prosodic features to explore whether and how such speech characteristics may contribute to recog-
nition difficulties.

4.3.1 Summary of Fine-Tuning Improvements Compared to Zero-Shot

Compared to the zero-shot Whisper model, the fine-tuned models achieved substantial improvements
across multiple dimensions:

• Significant reduction in WER: In the baseline fine-tuning, the TD+ADHD+ASD group per-
forms the best, reduced WER from 43.12% to 26.43% (a 16.69% relative reduction). In LoRA
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fine-tuning, the ASD-only model further lowered WER to 23.20%, a 19.92% relative improve-
ment.

• Improved CER: CER was reduced from approximately 17.8% (zero-shot) to 13.34% (ASD-
only LoRA), indicating more accurate recognition at the phoneme level.

• Marked gains in disfluency recognition: The zero-shot model failed to detect any fillers or
repetitions (0% accuracy).), indicating more accurate recognition at the phoneme level. The
fine-tuned TD+ADHD+ASD model recognized 60.8% of fillers and 66.7% of repetitions, re-
flecting better retention of spontaneous speech characteristics.

• Better distribution of error types: Substitution errors decreased from 5.88 per utterance (zero-
shot) to 3.46 (TD+ADHD+ASD); Deletion and insertion errors also declined notably.

Overall, the fine-tuned Whisper model outperforms the zero-shot baseline not only in error rate
but also in retaining natural speech patterns. It demonstrates enhanced robustness and inclusivity,
especially when dealing with spontaneous, neurodivergent child speech.

4.4 Prosodic and Acoustic-Based Recognition Errors
While text-based error analysis reveals surface-level mismatches between ground truth and ASR
outputs, it offers limited insight into the acoustic or prosodic patterns that may underlie recogni-
tion difficulties. To further investigate whether such speech-level characteristics are associated with
recognition accuracy, a targeted analysis was conducted on utterances exhibiting extreme recognition
outcomes. Specifically, for each of the four fine-tuned models (TD-only, ADHD-only, ASD-only,
and TD+ADHD+ASD), the three most accurately and the three least accurately transcribed utter-
ances were identified, based on WER and CER.

For each of these 24 utterances, I extracted a set of prosodic and voice-quality features, including:

• Pitch Standard Deviation (Hz)

• Pitch Range (Hz)

• Voiced Ratio (

• Speech Rate (frames/second)

• Mean Intensity (dB)

• Intensity Standard Deviation (dB)

• Shimmer (local)

These features were selected to reflect core dimensions of speech prosody, vocal quality, and artic-
ulation dynamics. While pitch- and rate-based measures capture prosodic variability, shimmer and
intensity variation offer additional information about phonatory stability and loudness modulation.

By comparing the features of the most and least accurately recognized utterances, I aimed to identify
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patterns potentially associated with recognition performance.

TD-only

The three most error-prone utterances were asd10 007, asd38 010, and asd38 012, while the most
accurately transcribed samples were asd02 004, asd22 010, and asd46 010. Key contrasts included
a much higher pitch variation in the accurate group (Pitch SD = 61.56 Hz vs. 12.28 Hz; Pitch Range
= 363.39 Hz vs. 55.13 Hz), greater intensity variability (Intensity SD = 5.73 dB vs. 3.14 dB), and
lower shimmer values, suggesting that monotonous and acoustically flat utterances tend to yield
more recognition errors.

Table 17: Prosodic Feature Comparison

Feature Top 3 most accurate Top 3 least accurate
Pitch SD (Hz) 61.56 12.28
Pitch Range (Hz) 363.39 55.13
Voiced Ratio 43.6% 44.2%
Speech Rate (voiced/sec) 86.89 87.45
Intensity Mean (dB) 74.61 73.05
Intensity SD (dB) 5.73 3.14
Shimmer (local) 0.154 0.176

ADHD-only

Among the ADHD-trained model, the least accurate samples were asd38 011, asd38 012, and asd12 002,
while the best were asd02 008, asd22 004, and asd43 002. Accurate utterances had higher pitch
variation (Pitch SD = 55.77 Hz vs. 28.53 Hz), slightly slower speech rate, and marginally greater
mean intensity. Notably, shimmer values were nearly identical, indicating that speech tempo and
pitch modulation may matter more than voice quality in this condition. ADHD-only

Table 18: Prosodic Feature Comparison

Feature Top 3 Most Accurate Top 3 Least Accurate
Pitch SD (Hz) 55.77 28.53
Pitch Range (Hz) 218.27 173.42
Voiced Ratio 43.7% 49.8%
Speech Rate (frames/s) 86.82 97.58
Mean Intensity (dB) 75.27 74.07
Intensity SD (dB) 5.25 5.36
Shimmer (local) 0.152 0.151
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ASD-only

For the ASD-only model, high-error utterances included asd19 004, asd12 002, and asd38 010, and
the most accurate were asd02 008, asd02 009, and asd19 009. Here, the most reliable differentiator
was voiced ratio (50.5% vs. 25.4%), alongside significantly faster speech rate and higher mean in-
tensity in the accurate group. This suggests that utterances with sparse voicing and slow articulation
may be particularly challenging to recognize, even for models trained on ASD speech. ASD-only

Table 19: Prosodic Feature Comparison

Feature Top 3 Most Accurate Top 3 Least Accurate
Pitch SD (Hz) 59.46 60.49
Pitch Range (Hz) 250.04 359.94
Voiced Ratio 50.5% 25.4%
Speech Rate (frames/s) 99.92 50.33
Mean Intensity (dB) 75.42 72.53
Intensity SD (dB) 5.08 4.93
Shimmer (local) 0.144 0.142

TD+ADHD+ASD

The combined training model’s lowest-performing samples were asd10 007, asd12 002, and asd38 010,
while its highest-performing ones were asd02 004, asd22 003, and asd19 001. Accurate utterances
showed higher pitch variability (Pitch SD = 57.12 Hz vs. 41.19 Hz), more voiced frames, and greater
intensity variation. These patterns again point to the importance of dynamic prosody and consistent
voicing in facilitating recognition. TD+ADHD+ASD

Table 20: Prosodic Feature Comparison

Feature Top 3 Most Accurate Top 3 Least Accurate
Pitch SD (Hz) 57.12 41.19
Pitch Range (Hz) 267.32 269.45
Voiced Ratio 37.0% 32.3%
Speech Rate (frames/s) 73.67 64.14
Mean Intensity (dB) 73.59 74.85
Intensity SD (dB) 5.89 4.46
Shimmer (local) 0.157 0.142
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Across all four models, certain recurring trends emerged: utterances with greater pitch variability,
higher intensity dynamics, and more consistent voicing were more likely to be transcribed accurately.
Conversely, samples with low pitch variation, reduced voicing, or flatter intensity profiles appeared
among the least accurately recognized. However, the small sample size and descriptive nature of this
analysis limit the generalizability of these findings. While the observed feature contrasts are sugges-
tive, they do not establish causal relationships between prosodic features and ASR performance. To
address this limitation, the next section presents a large-scale, quantitative analysis that aggregates
feature values across all ASD test utterances, enabling statistical inference about their associations
with recognition error rates.

4.4.1 Aggregated Analysis of Prosodic Features and Recognition Errors

Building upon the previous case-level comparisons, this section offers a broader, statistical perspec-
tive by aggregating prosodic features across all ASD utterances evaluated by the TD+ADHD+ASD
model, the most accurate system identified in prior experiments. The objective is to determine
whether specific prosodic and acoustic-prosodic features systematically correlate with recognition
outcomes, particularly with respect to word error rate (WER) and character error rate (CER).

Correlation Analysis

Figure 5: Spearman Heatmap
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To examine monotonic relationships between prosodic features and recognition errors, Spearman’s
rank correlation coefficients (ρ) were computed between 12 acoustic-prosodic features and sentence-
level WER and CER scores. The results, visualized in a Spearman correlation heatmap (Figure),
revealed mostly weak to moderate negative correlations for pitch-related features. The results, vi-
sualized in a Spearman correlation heatmap (Figure X), revealed mostly weak to moderate negative
correlations for pitch-related features.

Spearman’s rank correlation coefficient (ρ) is a statistical method that measures whether two vari-
ables increase or decrease together in a consistent (monotonic) way. It does not assume a linear
relationship and is useful for analyzing speech data, which can be noisy or unevenly distributed.
The prosodic features include measures like pitch variation, intensity, shimmer (voice stability), and
voiced ratio, which are known to affect how clearly speech is recognized by ASR systems.

Pitch-related features demonstrated the most consistent inverse relationships:

• Pitch range (ρ = -0.19 with CER, -0.12 with WER)

• Pitch standard deviation (ρ = -0.14 with CER, -0.15 with WER)

These results suggest that flatter intonation, characterized by reduced pitch variability, is modestly
associated with increased recognition errors, reinforcing the observations from case-level analysis.
In contrast, voiced ratio and speech rate showed weak positive correlations with WER and CER
(ρ ≈ 0.07), possibly reflecting higher error risk in rapid or densely voiced speech. Other features,
such as shimmer and spectral flatness, exhibited minimal correlation (|ρ|< 0.1), suggesting a limited
direct impact on recognition performance.

Multiple Linear Regression

To further explore the combined effects of prosodic features, an ordinary least squares (OLS) regres-
sion was performed with sentence-level WER as the dependent variable and the 12 prosodic-acoustic
features as predictors.

The regression results (Figure) identified voiced ratio as a significant positive predictor of WER
(β = 2183.18, p = 0.014), suggesting that a higher proportion of voiced frames may complicate
recognition. Conversely, speech rate had a significant negative coefficient (β = -11.03, p = 0.014),
indicating that slower articulation is associated with higher recognition error.

While pitch-related features such as shimmer and spectral flatness had large coefficients, they did not
reach statistical significance, possibly due to multicollinearity or limited explanatory power. Mul-
ticollinearity refers to high intercorrelation between predictors, which can inflate coefficient values
and reduce the reliability of significance testing, making it difficult to isolate the independent con-
tribution of each feature. Limited explanatory power, on the other hand, refers to the relatively low
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Figure 6: Multiple Regression

proportion of variance in WER explained by the model.

The model accounted for approximately 13% of the variance in WER (R² = 0.13), indicating that
while prosodic features influence recognition, other factors, such as linguistic complexity, phonetic
content, or background noise, also contribute.

Group-Wise Comparison: High-WER vs Low-WER
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Figure 7: Mean Pitch Hz Violin

Table 21: Mann–Whitney U Test Results for Acoustic Features

Features Mann–Whitney U p-value
mean pitch Hz 0.022
pitch range Hz 0.153
pitch SD Hz 0.161
mean intensity dB 0.196
intensity SD dB 0.345
shimmer local 0.671
voiced ratio 0.782
speech rate voiced frames per sec 0.899
spectral centroid 0.782
spectral bandwidth 0.671
spectral rolloff 0.614
spectral flatness 0.486

To statistically validate specific feature differences, ASD utterances were divided into two subsets
based on WER distribution: top 25% (high-WER) and bottom 25% (low-WER). A Mann-Whitney
U test was conducted to assess whether any of the 12 prosodic features significantly differed between
the two groups.

Among all tested features, only mean pitch exhibited a statistically significant difference (p = 0.022).
As shown in Figure 7, low-WER utterances had higher mean pitch values than high-WER utterances.
This result aligns with earlier findings and supports the interpretation that flatter intonation, reflected
by lower average pitch, may systematically hinder ASR performance on ASD speech.
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Together, the three levels of analysis, correlation, regression, and group-wise comparison, offer con-
verging evidence that pitch-related features, particularly pitch variation and mean pitch, are closely
associated with ASR of ASD children speech. Consistent with prior literature on prosodic flattening
in ASD, the results suggest that reduced pitch dynamics may present systematic challenges for au-
tomatic recognition systems.

Meanwhile, features such as speech rate and voiced ratio demonstrated model-dependent effects,
reflecting interactions with temporal segmentation and acoustic encoding. In sum, while prosodic
features alone cannot fully explain recognition performance, they represent a critical layer that future
ASR systems have to address to include neurodiverse speakers.





Section 5 DISCUSSION AND CONCLUSION 48

5 Discussion and Conclusion

5.1 Summary of Key Findings
This study set out to address two main research questions:

(1) whether fine-tuning Whisper improves ASR performance on Dutch speech from children with
ASD, and

(2) whether prosodic and disfluency features correlate with recognition errors.

In response to RQ1, whether fine-tuning improves ASR performance for Dutch-speaking autistic
children, the results provide clear evidence that both baseline and parameter-efficient fine-tuning
substantially reduce word error rates (WER) compared to zero-shot performance. Among baseline
fine-tuning configurations, the TD+ADHD+ASD group yielded the strongest generalization per-
formance, achieving a WER of 26.43%, indicating that exposure to diverse developmental speech
patterns enhances robustness. Complementarily, the LoRA fine-tuning experiments revealed that
even with ASD-only data, the model achieved the lowest WER overall (23.20%), surpassing all
baseline results. This suggests that small but domain-aligned datasets, when combined with efficient
adaptation techniques, can yield significant gains in ASR performance for neurodivergent speech.
Together, these findings demonstrate that targeted fine-tuning can meaningfully improve recognition
accuracy for autistic children’s speech, even under low-resource constraints.

Regarding RQ2, the study conducted both qualitative and quantitative error analyses to further ex-
plore the relationship between recognition errors and prosodic/disfluency features. These included
word-level error categorization (substitutions, deletions, insertions), disfluency recognition accuracy
(e.g., fillers, repetitions), and statistical analyses (e.g., Mann-Whitney U tests, regression model-
ing). The analyses revealed that key prosodic features, such as mean pitch, pitch variability, speech
rate, and voicing proportion, were significantly correlated with WER outcomes. From these results,
I concluded that prosodic irregularities and disfluencies play a central role in driving ASR errors,
particularly in zero-shot settings. Fine-tuned models, especially those trained on multi-group data,
preserved more disfluencies and reduced deletion/substitution rates. However, some outliers were
observed: for example, the ASD-only model exhibited higher deletion errors despite domain align-
ment, which may reflect intra-group variability or speaker-level idiosyncrasies. This aligns with
previous literature emphasizing the acoustic heterogeneity within the ASD population, suggesting
that even domain-specific models may benefit from more diverse or individualized training strate-
gies.

In the following subsections, the results will be contextualized through comparison with prior liter-
ature, critical discussion of methodological limitations, and proposals for future research directions.
By situating the findings within the broader landscape of speech technology and clinical ASR re-
search, this section aims to clarify the implications and potential impact of the current study.



Section 5 DISCUSSION AND CONCLUSION 49

5.2 Comparison with Previous Research
This study’s findings both confirm and extend several strands of prior research outlined in the litera-
ture review.

First, the observed improvement in WER and CER after fine-tuning supports earlier work suggesting
that ASR systems can benefit from domain adaptation when dealing with non-typical speech. For
example, Tobin et al. (2024) and Lee et al. (2024) highlighted the limitations of off-the-shelf models
on neurodivergent children’s speech and advocated for task-specific training. Our results reinforce
this, showing that even lightweight fine-tuning methods like LoRA lead to substantial WER reduc-
tions (from 43.12% to 23.20%), thereby validating prior claims.

Second, this study builds on and adds empirical depth to the work of Asghari et al. (2021); Liu
et al. (2024), who hypothesized that prosodic irregularities in ASD speech, such as flattened into-
nation and altered speech rate, are a key cause of recognition failures. By statistically correlating
prosodic features (e.g., pitch variance, speech rate, voicing ratio) with recognition errors, our study
provides concrete evidence for these assumptions, which were previously more theoretical or qual-
itative. Third, unlike Gale et al. (2019) who mainly relied on read speech and observed moderate
gains from fine-tuning, this study uses spontaneous speech from Dutch-speaking ASD children and
still achieves significant error reduction. This suggests that spontaneous speech may contain more
prosodic cues useful for model adaptation, especially when combined with multi-group training data
(TD+ADHD+ASD).

However, one finding that partially diverges from prior work is the unexpectedly strong perfor-
mance of ASD-only fine-tuning under LoRA, which contrasts with literature suggesting broader
data diversity leads to better generalization (e.g., Q. Liu et al. (2024)). A explanation is that, in our
low-resource setting, domain-specific consistency (ASD-to-ASD) outweighs generalization benefits,
especially when test and training data are matched.

In summary, this study largely supports existing findings while providing quantitative verification
and new nuance. It emphasizes that successful ASR adaptation for ASD speech must consider both
acoustic-phonetic irregularities and data alignment strategies.

5.3 Limitations and future research
While this study offers valuable insights into ASR performance on Dutch speech from children with
ASD, several limitations should be acknowledged across the dataset, model design, and experimen-
tal setup.

Corpus Limitations

First, the ASDBank corpus used in this study is limited in size, comprising approximately 2.4 hours
of speech data in total, with restricted speaker diversity and content variation, averaging only about
two minutes of speech per speaker. Although this study applied speaker-independent splits, the small
number of speakers constrains the generalizability of findings. In addition, the dataset includes only
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children with mild to moderate ASD symptoms and consists largely of picture description tasks,
which may not capture the full diversity of speech styles or disfluency patterns in natural conversa-
tion.

Prosodic Feature Extraction and Analysis

Second, the analysis of prosodic features was conducted post hoc, using Praat to extract averaged
values for each audio segment. This approach may oversimplify temporal dynamics or interactions
between features (e.g., pitch and speech rate). Furthermore, while this study focused on a subset
of prosodic features, additional descriptors such as jitter, shimmer, and pause duration were not in-
cluded. Future work could benefit from incorporating these features, as they may capture relevant
acoustic cues associated with recognition errors and further enhance model performance in neurodi-
vergent speech contexts.

Additionally, not all statistical comparisons employed standard parametric tests such as the t-test.
For instance, Mann-Whitney U tests were used to compare prosodic patterns between high- and
low-WER utterance groups, due to the non-normal distribution and small sample size of acoustic
features. Spearman’s rank correlation and OLS regression were used to explore associations be-
tween prosodic features and recognition error rates. However, no t-tests were conducted to directly
compare performance metrics (e.g., WER) across all training conditions or experimental groups. Fu-
ture studies with larger and more balanced datasets could incorporate parametric tests to enable more
robust statistical comparisons and confidence estimates. Model Configuration and Evaluation

Although the use of LoRA fine-tuning helped improve performance under low-resource settings,
the model was only partially adapted by modifying parameters in the higher layers. This narrow
parameter space might have limited the model’s ability to adapt to complex ASD-specific prosodic
patterns. Additionally, the training steps (70-100) and small batch size (16) may have underutilized
the learning capacity of the Whisper-medium model.

In terms of evaluation, the primary metric used was Word Error Rate (WER), without incorporat-
ing phoneme-level analysis or listener-based intelligibility assessments. Expanding the evaluation
framework to include these additional dimensions in future work could help capture more subtle im-
provements in speech naturalness and semantic preservation that may not be reflected by WER alone.

Explanation for Suboptimal Results in Some Settings

Finally, models fine-tuned solely on TD or ADHD data underperformed, likely due to differences in
prosodic profiles and disfluency patterns relative to the ASD test set. Similarly, the LoRA fine-tuned
model trained on the combined TD+ADHD+ASD data also showed suboptimal results, due to its
limited adaptation capacity in handling heterogeneous input profiles. These findings underscore the
importance of both domain-relevant data and training-target alignment, especially when employing
parameter-efficient methods like LoRA for neurodivergent speech modeling.
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5.4 Future Work

Based on the limitations discussed above, several directions for future research are proposed, span-
ning dataset expansion, model improvements, and advanced evaluation methods, many of which are
grounded in findings from prior literature.

Expanding Dataset Diversity and Task Complexity

To address the current corpus limitation, future work should collect larger, more diverse datasets
of Dutch children with ASD. This includes:

• Speech samples from children with a broader range of ASD severity, including those with
co-occurring language impairments.

• A variety of speaking contexts (e.g., free conversation, storytelling, interactional dialogue) be-
yond picture descriptions, to capture a richer array of disfluency types and prosodic dynamics.

• Inclusion of more speakers to improve generalization and reduce overfitting risks.

These expansions would help model more realistic and complex communication behaviors, as advo-
cated by Patel et al. (2023) and Plate (2025).

Improving Prosody-Aware Modeling

As suggested in the literature (e.g., Sohn, Knutsen, and Stromswold (2025)), ASR performance
for neurodivergent speakers can benefit from explicitly modeling prosodic and acoustic markers.
Future models could incorporate:

• Multimodal input that fuses raw speech with extracted prosodic features (pitch, energy, pause,
speech rate).

• Feature-conditioned decoding, where the ASR decoder attends to rhythmic and prosodic con-
tours.

• Integration with emotion or stress detection models to better capture atypical speech modula-
tions in ASD.

Furthermore, freezing fewer layers in the model during fine-tuning (i.e., beyond q proj and v proj)
and using more targeted parameter-efficient tuning (e.g., LoRA+PEFT) may enable better adaptation
to the ASD-specific prosodic patterns.

Improved Error and Disfluency Analysis through Visualization

A particularly promising direction is the visualization of word-level recognition aligned with prosodic
timelines. This could include:

• Dynamic word-pitch overlays (e.g., pitch contours aligned with transcript timelines).
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• Disfluency heatmaps showing where fillers, hesitations, and self-corrections occur relative to
recognition errors.

• Comparison dashboards of Whisper predictions vs ground truth with aligned acoustic-prosodic
patterns.

Such visualization tools would not only enhance interpretability of model errors but also support
clinical applications, such as helping therapists or educators analyze speech in therapeutic settings.

5.5 Main Contributions
Collectively, the findings presented in this thesis provide experimental evidence that fine-tuning
not only reduces surface-level transcription errors but also enhances model sensitivity to the nu-
anced prosodic and disfluency characteristics of speech produced by children with Autism Spectrum
Disorder. These improvements were observed even under low-resource constraints, using small,
domain-relevant datasets.

Beyond the technical contributions, this study offers meaningful implications for both academic
research and practical applications. From an academic perspective, it extends the current understand-
ing of automatic speech recognition performance on neuron-degenerative child speech, particularly
in underrepresented languages such as Dutch. By integrating LoRA-based fine-tuning with detailed
prosodic analysis, the study demonstrates the feasibility of adapting large-scale ASR models like
Whisper to atypical speech domains, establishing a replicable and scalable pipeline for future re-
search involving disordered or diverse speech populations.

From a practical standpoint, the improved recognition accuracy on Dutch ASD speech lays the foun-
dation for more inclusive and accessible speech technologies. Potential applications include digital
therapeutic tools, personalized educational platforms, and speech feedback systems that can better
support the needs of neurodivergent children. Furthermore, this study highlights the critical role of
domain-specific training data and interpretability tools—such as prosody-informed visualizations,
in facilitating real-world deployment within healthcare and education contexts.
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Appendices

A Declaration of AI Use
During the preparation of this thesis, I used ChatGPT (OpenAI, GPT-4, 2025) to support the devel-
opment and presentation of this work in the following ways:

• Improving academic writing quality by refining grammar, clarity, and formal tone across all
chapters.

• Assisting with Python implementation for parameter-efficient fine-tuning of Whisper (LoRA),
including restructuring scripts to reduce memory usage and improve reproducibility.

• Offering guidance on the interpretation of ASR metrics such as WER and CER, and how to
format them consistently across different model configurations.

• Providing support in structuring prosodic error analysis results, including identifying mean-
ingful patterns and organizing appendix tables.

• Helping format and generate LaTeX-compatible tables for prosodic summaries and prediction
comparisons across conditions.

All AI-generated suggestions were critically reviewed and revised by me. The design of the experi-
ments, interpretation of the results, and final conclusions reflect my own work and judgment. I take
full responsibility for the content presented in this thesis.

Name: Hantao Yu

Date: 11.06.2025
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