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Preface

During the minor in my Bachelor's program in Data Science and Society (DSS) at the University
of Groningen, I chose to undertake an internship at Tata Steel IJmuiden in the Netherlands. From
August 5 to November 5, I worked as a data scientist in their Center of Expertise department. My
main responsibilities included data collection, cleaning, preprocessing, and visualization, as well

as identifying trends and generating insights to support operational improvements.

During my Bachelor, I developed a strong foundation in data analysis, visualization, and
computational methods. I chose to undertake this internship at Tata Steel to apply these skills in a
real-world industrial setting. I wanted to experience how data science tools and techniques could
contribute to actual industrial processes, where data-driven insights have significant operational
impacts. I found this internship position at Tata Steel through LinkedIn. After initial discussions
with the team, I was assigned a project centered around the analysis of Optical Emission
Spectroscopy (OES) and Pulse Discrimination Analysis (PDA) data. This assignment addressed
Tata Steel’s ongoing challenge with SEN (Submerged Entry Nozzle) clogging and surface
defects in Non-Grain Oriented (NGO) electrical steels, where accurate control of chemical
composition is critical.

In the following sections, I will elaborate on Tata Steel's production processes, the specific
challenges the company aimed to address, the tasks I was assigned, a summary of the results of
my work, and the key learning outcomes. I will also discuss how these experiences align with the

objectives of the DSS program.
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1. Introduction

1.1. Company Overview

Tata Steel IJmuiden, located in the Netherlands, is a leading steel production facility in Europe
and an integral part of the global Tata Steel group. Tata Steel provides high-grade steel products
to industries worldwide, including the automotive, construction, and energy sectors. The plant
produces a diverse range of steel grades, each tailored to meet the specific needs of its clients,
with a strong focus on innovation and sustainable practices throughout its production processes.
In addition to its large-scale production capabilities, Tata Steel is home to a number of
specialized departments that focus on advancing steel technologies and optimizing processes.
Approximately 9,000 employees work at Tata Steel [Jmuiden. However, I worked in the Center
of Expertise department, a specialized team of 30 experts dedicated to driving innovation and
sustainability by improving steel products, optimizing production processes, and developing

environmentally friendly steel making techniques.

1.2. Technical Context and Challanges

Among the specialized steel products manufactured at Tata Steel, Non-Grain Oriented (NGO)
electrical steels are critical for electric vehicles, where high surface quality, magnetic properties,
and electrical efficiency are essential. The UTAM grade, which is a special type of NGO steel, is
specifically engineered for this purpose. It is characterized by high silicon (Si) and aluminum
(Al) content, along with low carbon (C) levels. Despite the precision required in its production,

Tata Steel has faced challanges over the past few years in ensuring the quality of UTAM grades,



with two major challenges affecting their suitability for high-performance applications: SEN

(Submerged Entry Nozzle) clogging and surface defects.

SEN clogging occurs in the casting stage, where the SEN nozzle directs the flow of molten steel
into the caster mold. When clogging happens, the flow of steel is disrupted, causing
inconsistencies in casting and, in severe cases, it can stop or slow down production, leading to
economic losses and operational inefficiencies. Surface defects, another major problem,
compromise the final steel quality, reducing its suitability for high-performance applications in
electric vehicles. Both SEN clogging and surface defects are largely caused by the formation of
solid inclusions, such as calcium sulfide (CaS), within the molten steel during the steelmaking
process. These inclusions either accumulate within the SEN, causing blockages, or remain

dispersed in the steel, leading to surface defects that undermine product quality.

1.3. Internship Project and Objectives

In this context, my internship centered on using my data science skills to analyze Optical
Emission Spectroscopy with Pulse Discrimination Analysis (OES-PDA) data and assess its
potential to predict clogging and surface defects. The primary goal of my work was to examine
inclusion patterns, with a focus on identifying heats more prone to these issues, particularly those

with high concentrations of CaS. This involved addressing key research questions:

1. Can OES-PDA data reveal differences in CaS content between problematic and
non-problematic heats?

2. Which samples are most effective in predicting whether a heat will be problematic?



3. Are there other types of inclusions, aside from CaS, that might also contribute to clogging

and surface defects?

By identifying patterns in the OES-PDA data, my work aimed to provide Tata Steel with
actionable insights to improve quality control measures. These insights could potentially inform
future adjustments in production processes, ultimately enhancing the reliability and quality of

UTAM steel production.

2. Overview of OES-PDA data

OES refers to Optical Emission Spectroscopy, while PDA stands for Pulse Discrimination
Analysis, which is applied within OES to measure the chemical composition of inclusions in
steel. The process involves creating a rapid series of high-energy sparks in the argon-filled gap
between an electrode (the cathode) and the steel sample's surface (the anode). These sparks
ionize the argon, forming a plasma, and simultaneously melt, evaporate, and excite the elements
within the sample. As the excited atoms return to a lower energy state, they emit light at
wavelengths specific to each element. These emissions are detected and quantified against
known standards, providing precise measurements of the sample’s composition. This sparking
process lasts only a few milliseconds. The OES-PDA dataset encompasses two distinct groups:
the old process and the new process. In the traditional (old) process, the steel is fully 'killed' by
adding aluminum after the decarburization, significantly reducing oxygen levels. In contrast, the
new process semi-kills the steel, maintaining higher oxygen levels, which alters the formation of

inclusions compared to the traditional approach.



The OES-PDA raw data used in this study includes a total of 43 heats, categorized as follows

with 5 to 9 burns collected per sample:

e 33 heats from the old process, with:

o 7 identified as problematic

o 26 identified as non-problematic
e 10 heats from the new process, with:

o 1 identified as problematic

o 9 identified as non-problematic

Samples are taken at different stages during the ladle furnace process:

e Ladle Furnace 60: Sample before the start of ladle furnace treatment

e Ladle Furnace 61: Intermediate sample taken during killed phase, mainly for sulfur (S)
and trimming adjustments.

e Ladle Furnace 62: Another intermediate sample taken during killed phase, used for fine
trimming.

e [Ladle Furnace 63/64: Sample taken during killed phase, usually due to unreliable results
from samples 61 or 62.

e [Ladle Furnace 65: Sample taken before calcium treatment, rarely taken and mostly only a
slag sample.

e Ladle Furnace 66: Typically the final sample from the ladle furnace process.

In order to classify heats as problematic or non-problematic, certain criteria—established by Tata
Steel and the client prior to the start of my internship—were used. For a detailed explanation of

these criteria, please refer to Appendix A. Primarily, heats are categorized based on surface



defect evaluations carried out by Tata Steel and the client, with defect measurements split into
two main groups: defects extending above 40 cm and those above 25 cm. Another key criterion
involves the analysis of SEN images taken after each casting sequence. These images are closely
inspected to identify clogging. Additionally, other factors, such as the stopper slope, are
considered to assess consistency in the steel flow rate, as variations in stopper positioning can

signal potential issues during casting.

Figure 1. Images taken from SEN, showing its conditions after each sequence.

3. Methodology

Since it was established that cloggings in UTAM grades were associated with CaS and elevated
sulfur (S) levels can contribute to clogging, the analysis began with defining a function to detect
common upper outliers in both calcium (Ca) and sulfur (S) levels using the three-sigma rule.
This rule identifies values that deviate significantly from the mean by considering the

distribution of the data.

The three-sigma rule classifies any data point lying more than three standard deviations away
from the mean as an outlier. To enhance the reliability of our results, the three-sigma rule was

applied iteratively over 10 iterations. During each iteration, the function recalculated the mean



and standard deviation after removing the previously detected outliers, progressively improving

the accuracy of the analysis. For all the heats, no common upper outliers were found after the

fifth iteration, indicating that the process effectively removed all significant deviations.

This analysis was further extended to include additional combinations such as CaMg, CaAl,

MgS, AIS, MgAl, CaMgS, CaAlS, CaMgAl, and MgAIS to explore whether there are other

combinations that could potentially contribute to clogging and subsequently problematic heats.

Figure 2. Detected common upper outliers for CaS heat K3570, sample 61, for each burn.
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Figure 3. Detected common upper outliers of binary and ternary combinations of Ca, Al, Mg,

and S for heat K3570, sample 61

After identifying the common upper outliers for each burn, the average was taken to account for
the varying number of burns across different samples. This method was applied to all samples,
and as an example, the results for heat K3570 (Sample 61) are shown in Figure 4a, and for heat

K3783 (Sample 61) in Figure 4b.
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Figure 4. (a) The CaS average for heat K3570, Sample 61 (Old Process Non Problematic), (b)

the CaS average for heat K3783m Sample 61 (Old process Problematic).

4. Results and Discussion

For the first part of the analysis, sample 66 was used from each heat, as this sample was available

for almost all heats and provided a larger dataset for analysis. The total number of heat samples

was 37, categorized as follows:

Number of heats for Sample 66

Heat Type
= Non Problematic
=== Problematic
175

15.0
125

10.0

Count

75

New Process
Type

Figure 5. Number of heats for Sample 66

e Old Process: 27 samples

o Non-problematic: 20
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o Problematic: 7
e New Process: 10 samples
o Non-problematic: 9

o Problematic: 1

After identifying the common upper outliers for each heat, a boxplot for the average number of
CaS was plotted to assess potential differences in the CaS averages across different heat
categories. It is important to note that the new process problematic heat was not included, as

there was only one sample for this category.

Comparison of CaS for Sample 66

8

Avg CatS

B

10

Old Process Problematic Qld Process Non Problematic New Process Non Problematic
Type

Figure 6. Comparison of CaS for sample 66

Figure 6 reveals several important insights. First, there is a noticeable overlap between the old
process problematic and non-problematic heats. While the median CaS value for the old process
problematic heats is higher, the ranges of both categories overlap significantly. This overlap
suggests that CaS levels alone may not be useful for differentiating between problematic and

non-problematic heats within the old process. The wide spread in CaS values for the old process
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non-problematic heats, including the presence of higher outliers, further complicates the
distinction. In contrast, the new process non-problematic heats show much lower average CaS
values, indicating that these heats are less likely to experience CaS-related clogging issues.
Therefore, sample 66 does not provide a clear distinction between problematic and

non-problematic heats in the old process.

After finding that sample 66 was not a useful indicator, the focus shifted to samples taken after
the addition of aluminum (Al) and silicon (Si). For some heats, this corresponded to samples 61,
62, or 63. However, the issue with these samples was that they were unavailable for almost half
of the heats, which significantly reduced the data available for our analysis. In total, there were
20 samples: 10 from the old process (5 problematic and 5 non-problematic) and 10 from the new

process (9 non-problematic and 1 problematic).

Number of Available Heats after Al-Si addition

Heat Type
EEE  Non Problematic
mmm Problematic

24 ..
Old Process New Process
Type

Figure 7. Number of available heats after Al and Si addition

The same boxplot was plotted for samples taken after the addition of aluminum and silicon

shown in Figure 8. This time, the boxplot revealed a significant difference between the different
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categories: new process non-problematic heats, old process non-problematic heats, and old
process problematic heats. It should be noted that, similar to the sample 66 analysis, new process
problematic heats were excluded from this analysis due to the limited availability of data. The
boxplot for CaS content after the addition of aluminum (Al) and silicon (Si) reveals a much
clearer distinction between the heat categories compared to the previous analysis of Sample 66.
The new process non-problematic heats show significantly lower CaS values, tightly clustered
within the 5-10 range. While there is still some overlap between the old process problematic and
old process non-problematic heats, the separation between these two groups is more pronounced
in this analysis compared to Sample 66, where the overlap was more extensive. This indicates
that samples after Al and Si additions are a more effective differentiator between the heat

categories, especially between the old and new processes.

Comparison of CaS for Samples after Al and Si addition

Old Process Problematic  Qld Process Non Problematic New Process Non Problematic
Type

Figure 8. Comparison of CaS for Samples after Al and Si addition

Since CaS outliers are more clearly visible in samples taken after aluminum and silicon additions

compared to Sample 66, further investigation was conducted into CaS outlier trends throughout
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the entire process, as shown in Figure 9 for the old process and Figure 10 for the new process.
The line graphs are divided into old and new processes, with problematic heats represented by
dashed lines and non-problematic heats by solid lines. As illustrated in Figure 9, the old process
shows more variability in CaS levels during the process, particularly between problematic and
non-problematic heats. The problematic heats (dashed lines) display significantly higher CaS
levels, especially in burn 61 and burn 66, compared to the non-problematic heats, which tend to
maintain lower and more stable CaS values. In contrast, Figure 10 reveals that in the new
process, CaS levels generally start low at the beginning of the process and gradually increase
throughout the process, with a noticeable rise in later burns (65 and 66). Notably, K8959, the
only problematic heat in the new process, exhibits the highest average CaS levels among the new
process heats. However, since it is the only problematic sample from the new process, it is
insufficient for reliably distinguishing between problematic and non-problematic heats within

this process using Sample 66.

» Avg Ca+S vs Burn for Old Process Heats
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Figure 9. Avg CaS at each sample for Old Process heats
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o Avg Ca+S vs Burn for New Process Heats
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Figure 10. Avg CaS at each sample for New Process heats.

To assess whether other combinations contribute to problematic heats and the formation of CaS
inclusions, a correlation analysis was conducted, as illustrated in Figure 11. As expected, Ca+S
showed the strongest positive correlation (0.67) with problematic heats. Similarly, Ca+Mg+S and
Mg+S exhibited notable positive correlations (0.59 and 0.56, respectively), indicating that sulfur
combined with either magnesium or both calcium and magnesium is strongly associated with
problematic heats. In contrast, combinations involving aluminum displayed negative
correlations, reflecting the presence of oxide inclusions, which are less associated with
problematic heats. An exception to this trend was Ca+Mg, which also indicated the presence of
aluminum oxide inclusions. These findings highlight the importance of inclusion types, as oxide
inclusions generally exhibit a negative correlation with problematic heats. Overall, MgS and
CaMgS appear to significantly contribute to problematic heats, emphasizing the need to monitor

and control these inclusion types.
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0.67

0.59

06

Correlation Coefficient

Features

Figure 11. Correlation between each combination and Problematic Heat

5. Limitation

A key limitation of this study is the lack of available data for samples taken after the addition of
aluminum (Al) and silicon (Si). While it has been shown that these samples are more effective in
distinguishing between problematic and non-problematic heats compared to earlier samples like
Sample 66, the limited availability of data after AI-Si addition restricts the depth of analysis.
This makes it difficult to fully explore and validate the trends seen in these later-stage samples.
Additionally, the scarcity of data for problematic heats in the new process further complicates
efforts to identify reliable indicators that can help differentiate problematic and non-problematic

heats.
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6. Evaluation

I gained valuable insights and skills during this internship, aligning closely with the learning
outcomes I initially outlined in my internship plan. In the following section, I will discuss these

key outcomes in detail.

6.1. Data Handling and Preprocessing

One of the most amazing aspects of my internship was the experience of handling and
preprocessing large datasets. Given the extensive volume of OES-PDA data, automation became
essential to efficiently process and prepare the data for analysis. Without automation, managing
such a large dataset would have been extremely time-consuming and prone to error. I developed
automated methods for data cleaning and organization, applying various preprocessing
techniques to handle missing values, inconsistent formats, and outliers. This experience
reinforced my understanding of the critical role automation plays in data science, especially
when working with large-scale industrial datasets, and allowed me to develop a more structured,
efficient approach to data handling. These skills that directly contribute to my overall learning

outcomes in data management and preprocessing.

6.2. Statistical Analysis

Another learning outcome from my internship was the application of statistical analysis

techniques, particularly in identifying common upper outliers within the OES-PDA dataset.
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Initially, I employed the interquartile range (IQR) method to detect outliers. However, I found
that this approach did not capture all common upper outliers in the dataset. To address this, I
applied the three-sigma rule, which allowed for a more refined identification of extreme upper
outliers. Additionally, the choice of correlation analysis methods was based on the characteristics
of the dataset, ensuring that relationships between variables were accurately assessed. This
experience directly contributed to my learning outcomes in statistical analysis, highlighting the
importance of selecting appropriate methods based on data characteristics to achieve reliable

results.

6.3. Data Analysis and Pattern Recognition

The third key learning outcome from my internship was developing the ability to analyze data
effectively and interpret patterns and trends within the OES-PDA dataset. By examining different
samples, | identified trends that offered insights into the behavior of inclusions across various
stages of the steelmaking process. This experience significantly enhanced my skills in data

analysis, pattern recognition, and the interpretation of complex datasets.

6.4 Programming and data visualzation

The fourth learning outcome of my internship was the significant improvement in my data
visualization and programming skills. I performed extensive data visualization to communicate
findings effectively, creating clear visuals such as box plots, line charts, and bar charts to

highlight trends and differences across process categories. This work enhanced my ability to
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translate raw data into meaningful insights. Additionally, my programming skills improved
significantly during this internship. I became more proficient in automating data processing
workflows, optimizing scripts for handling large datasets, and implementing statistical and
visualization libraries to streamline analysis. These enhancements have provided me with a

stronger foundation to tackle complex data challenges in the future.

However, I should mention that due to limited data for the new processes and samples taken after
aluminum and silicon additions, as well as time constraints, I was unable to develop a machine
learning model as initially outlined in my internship plan. Nevertheless, there is still an
opportunity to pursue this aspect of the project. If Tata Steel can provide a more comprehensive
and analysis-ready dataset, I would be eager to continue this work by developing a machine
learning model that could offer deeper insights into inclusion behaviors and quality outcomes.
This extension could allow me to further contribute to the project and potentially use it as the

foundation for my bachelor’s thesis.

7. Contribution Reflection

The internship has given me a lot of valuable experiences. However, I believe I was a valuable
intern at Tata Steel as well. During my time there, [ was able to provide a fresh perspective from
the data side of the project. Although my knowledge of materials and chemistry was limited, my
skills in data science were highly valuable to the team. By identifying patterns in the data, I
helped the team, who are experts in materials and chemistry, to conduct research and better

understand the reasons behind these patterns. I believe my contribution filled a significant gap
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within the team, as they required someone proficient in data techniques and programming to

enhance their understanding of production processes.

8. Usefullness of knowledge and skills connected to DSS

The knowledge I gained during my internship has been highly relevant and valuable to the core
principles of the Data Science program I have been studying. Through handling and analyzing
the extensive OES-PDA dataset, I applied essential data science concepts from my coursework,
including data cleaning, preprocessing, and statistical analysis, in a real-world industrial context.
Working with large datasets, applying automation, and identifying patterns and trends reinforced
my understanding of data-driven decision-making and analytics. Additionally, using statistical
methods allowed me to enhance my practical skills in statistical analysis. All in all, this
internship provided an amazing opportunity to bridge theory and practice, deepening my

understanding of how data science techniques can address complex, real-world challenges.

Furthermore, as I plan to pursue a master’s degree in data science, this experience has provided
invaluable preparation. The practical foundation I built during this internship will be
instrumental as I continue my studies and move into a more specialized area within the field of

data science.
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9. Appendix A: Classification Criteria for Heats

This appendix provides an overview of the criteria used to classify heats as problematic or
non-problematic in NGO electrical steel production. For detailed standards and examples, please
refer to the 202040416 UTAM data for OES-PDA study AA document.

Heats were labeled as problematic or non-problematic based on five criteria:

1. Canoe-shaped defects > 40 cm

2. Canoe-shaped defects > 25 cm

3. Stopper slope

4. Surface defect count by the client

5. SEN images taken after each sequence
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