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Abstract 

 

This study explores the feasibility of cloning the original singing voice timbre using a limited singing 

dataset through data augmentation techniques and the VAE-GAN model. The NUS-48e singing 

database, which includes 40 audio samples from ten speakers, was enhanced using various data 

augmentation methods, such as pitch shifting, temporal stretching, background noise addition, and 

spectrogram perturbation. The VAE-GAN model, which combines the strengths of Variational 

Autoencoders (VAEs) and Generative Adversarial Networks (GANs), was then trained on this 

augmented dataset to evaluate its effectiveness in replicating the original voice timbre. 

The study aims to determine whether these techniques can successfully clone the original voice 

timbre with minimal data. It hypothesizes that even with data augmentation, the model may struggle 

to fully replicate the original timbre due to the scarcity of data. Results supported by t-SNE 

visualization and quantitative metrics (e.g., reconstruction loss, signal-to-noise ratio, MSE, diversity 

score, DTW distance, and Euclidean distance) indicate that while data augmentation increases 

diversity and improves model performance, it also introduces feature variability, making full 

replication challenging. This study highlights the potential and limitations of using VAE-GAN 

architecture and data augmentation techniques for speech synthesis and cloning in low-resource 

environments, offering insights for future research. 

Keywords: Data augmentation; VAE-GAN; Voice cloning
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1 Introduction 

 

In recent decades, machine learning and deep learning have advanced rapidly, leading to significant 

progress in speech synthesis and cloning technologies. These technologies have broad applications, 

including virtual assistants, translation systems, and personalized media content creation 

(Goodfellow et al., 2014). The combination of Generative Adversarial Networks (GANs) and 

Variational Autoencoders (VAEs) has shown substantial potential in audio generation and speech 

cloning (Kingma & Welling, 2013). Particularly in data-scarce situations, enhancing model 

performance through data augmentation and preprocessing techniques has become a research focus 

(Ko et al., 2015). 

One area of growing interest is the cloning of singing voices using machine learning techniques. 

Unlike normal speech, singing involves a complex interplay of rhythm, pitch, and emotional 

expression, which makes it a richer and more challenging dataset for speech synthesis models to 

handle (Hsu et al., 2018). The primary focus of this study is to explore the effectiveness of using 

data augmentation and preprocessing techniques on tiny samples of singing datasets. Subsequently, 

the study aims to train a VAE-GAN model to evaluate its performance in cloning the original timbre. 

This approach addresses the challenge of speech cloning under limited data conditions and explores 

the feasibility of these techniques in practical applications . 

 

1.1 Significance of the Research 

1.1.1 Academic Significance 

The academic significance of this research is multi-faceted. It addresses a critical gap in current 

scholarly work by investigating the use of data augmentation and preprocessing techniques on VAE-

GAN models under extremely limited sample conditions. Previous studies have explored data 

augmentation and VAE-GAN applications, but their use on tiny samples of singing datasets remains 

under-researched (Li et al., 2021; Goodfellow et al., 2014). By focusing on singing datasets, this 

research can provide a deeper understanding of how models handle more complex and expressive 

forms of human audio. Singing data involves not only speech phonemes but also musical elements 

that add layers of complexity, making it an ideal test case for advanced machine learning models 

(Kim et al., 2020). 

 

1.1.2 Social Significance 

The social significance of this research is equally noteworthy. By exploring high-quality speech 

cloning technology under minimal data conditions, this study can reduce the costs associated with 

speech data collection and support the creation of personalized media content. This is particularly 

beneficial for the music industry and fields requiring personalized voice services, such as virtual 

assistants and translation systems. Additionally, research on speech cloning for low-resource 

languages and dialects may benefit from this study, aiding in the preservation and promotion of these 

languages and cultures. 

 

1.1.3 Importance of Choosing Singing Datasets 

The choice to focus on singing datasets over normal speech datasets is driven by several factors: 

• Complexity and Richness of Data: Singing datasets are inherently more complex than normal  
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speech because they encompass a wider range of pitch, rhythm, and emotional 

expressiveness (Blaauw & Bonada, 2017). This complexity provides a more rigorous test for 

the capabilities of VAE-GAN models and other machine learning techniques, pushing the 

boundaries of what these technologies can achieve in terms of audio synthesis. 

• Unique Challenges for Model Training: The intricate details of singing, such as vibrato, 

dynamics, and phrasing, introduce unique challenges in data modeling and synthesis that are 

not present in standard speech data (Chandna et al., 2019). By focusing on these challenges, 

this research aims to develop methods that are more adaptable and capable of handling a 

broader range of audio types, ultimately contributing to advancements in the general field of 

audio synthesis. 

• Application in Creative Industries: There is a growing demand in the creative industries for 

high-quality, synthesized singing voices that can be used in music production, film, and other 

forms of media (Lu & Wu, 2020). By developing models that are specifically tailored to 

handle the nuances of singing, this research has the potential to directly impact these 

industries, providing tools for artists and producers to create more diverse and personalized 

content. 

• Potential for Broader Applications: The insights gained from studying singing datasets can 

be applied to other areas of speech synthesis and cloning. Techniques that work well for the 

complex task of singing synthesis are likely to be highly effective in more straightforward 

speech synthesis tasks, thus broadening the impact of this research across multiple domains 

(Verma & Smith, 2019). 

 

1.2 Research Questions and Hypotheses 

The primary research question (RQ) guiding this study is:  

Can the original speech timbre be cloned using an extremely few-shot singing voice 

dataset through data augmentation and the VAE-GAN structure? Which data 

augmentation technique is more efficient for reconstructing the original audio? 

From this research question, the following hypothesis is proposed:  

Through data augmentation techniques, extremely few-shot samples can not successfully 

replicate the original speech timbre. 

This hypothesis aims to explore the limits of data augmentation and the capabilities of VAE-GAN 

models under data-scarce conditions, particularly with the added complexity of singing data. 

 

1.3 Structure of the Thesis 

• Chapter 1: Introduction: This chapter introduces the research background, questions, and 

objectives, clarifying the purpose and significance of studying speech cloning on tiny 

samples of singing datasets. 

• Chapter 2: Literature Review: This chapter reviews relevant literature, analyzing previous 

applications of data augmentation and VAE-GAN models in speech cloning, and identifies 

gaps and shortcomings in existing research. 

• Chapter 3: Research Methods: This chapter details the research design, data collection, and 

analysis methods, including the specific steps of using the NUS-48E dataset for data 

augmentation and VAE-GAN model training. 

• Chapter 4: Findings: This chapter presents the experimental results, evaluating the  
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performance of data augmentation techniques and the VAE-GAN model under tiny sample 

conditions and analyzing the validity of the results. 

• Chapter 5: Discussion: This chapter discusses the research results, explaining their academic 

and practical significance, and proposes directions and suggestions for further research. 

• Chapter 6: Conclusion: This chapter summarizes the main findings of the research, reaffirms 

the importance of the study, and provides a comprehensive summary and reflection on the 

entire research process and results.1.5 Structure of the Thesis 

 

1.4 Summary 

In summary, this study aims to explore the feasibility of speech cloning using an extremely few-shot 

singing voice dataset, leveraging the VAE-GAN structure and data augmentation techniques. By 

addressing the unique challenges associated with singing datasets—such as variations in pitch, 

rhythm, and emotional expression—this research contributes to the field of speech synthesis by 

enhancing model performance under data-scarce conditions. Additionally, the findings of this study 

offer practical applications for creative industries, such as music production and personalized media 

content, as well as for preserving low-resource languages and dialects, thereby broadening the scope 

and impact of speech cloning technologies. 
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2 Literature Review 

 

The purpose of this chapter is to critically review the existing literature on the use of tiny samples 

from singing datasets enhanced through data preprocessing and augmentation techniques for speech 

cloning using VAE-GAN models. This chapter aims to provide a comprehensive overview of the 

current state of research, identify gaps and shortcomings in the literature, and justify the need for 

the current study. The review will cover both theoretical perspectives and empirical studies to 

highlight the significance of the research theme and set the stage for the subsequent chapters. 

 

2.1 Importance of the Research and the Current State of Research 

Machine learning techniques, particularly Variational Autoencoders (VAEs) and Generative 

Adversarial Networks (GANs), have become pivotal in advancing speech synthesis and cloning 

technologies. These models have demonstrated significant potential in generating high-quality audio 

content, thus opening new opportunities in personalized media content creation and innovations in 

the music industry (Goodfellow et al., 2014; Kingma & Welling, 2013). However, achieving high-

quality results with minimal training data remains a critical challenge, often encountered in practical 

applications where data collection is constrained by resources, privacy concerns, or other limitations 

(Ko et al., 2015; Amodei et al., 2016). 

Current research has largely focused on enhancing model performance under data-scarce conditions 

through data augmentation and preprocessing techniques, which aim to artificially expand the 

diversity and quantity of available training data. These techniques are particularly relevant in 

scenarios involving limited datasets, such as low-resource languages or specialized audio formats 

like singing datasets (Zeghidour et al., 2018). The focus of this research on tiny samples of singing 

datasets seeks to fill a gap in the literature by exploring the effectiveness of these enhancement 

techniques in a unique and under-researched context. 

 

2.2 Available Research Results 

Extensive studies have demonstrated the efficacy of VAE-GAN models in producing high-quality 

audio when trained on large datasets. For example, Kingma and Welling (2013) introduced the VAE 

as a powerful generative model capable of learning complex data distributions through a 

probabilistic framework, while Goodfellow et al. (2014) proposed the GAN, which enhances the 

quality of generated samples through adversarial training. When combined, these models have 

shown remarkable performance in generating realistic audio content, as evidenced by studies such 

as Bowman et al. (2016) and Yang et al. (2017), which explored the use of VAE-GAN structures in 

various audio generation tasks. 

Recent advances have further pushed the boundaries of what these models can achieve. For instance, 

Zhu et al. (2021) introduced neural augmentation techniques that use deep learning models to 

generate highly realistic variations of audio data, thus significantly enhancing the model's robustness 

against data scarcity. Similarly, Wu et al. (2022) and Zhang et al. (2023) explored the integration of 

attention mechanisms into VAE-GAN models to better capture temporal dependencies in speech 

data, leading to improvements in the quality and naturalness of synthesized audio. 
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2.3 Shortcomings of Existing Studies 

Despite significant advancements in the field, several shortcomings persist in the current literature. 

Most studies have focused on traditional datasets and conventional training methods, often 

neglecting the unique challenges posed by tiny sample datasets (Zeghidour et al., 2018). The 

variability and complexity inherent in singing datasets—such as variations in pitch, rhythm, and 

emotional expression—require more sophisticated preprocessing and enhancement techniques to 

improve model performance. Furthermore, there is a noticeable gap in research on datasets that have 

undergone specific preprocessing and enhancement techniques tailored to enhance model flexibility 

and adaptability in practical scenarios. Addressing these gaps is essential for developing more robust 

and versatile models capable of performing effectively under diverse and challenging conditions. 

Moreover, while recent studies have explored novel augmentation techniques, such as neural 

augmentation (Zhu et al., 2021) and adversarial augmentation strategies (Shen et al., 2018), there 

remains a lack of consensus on the best practices for applying these methods to extremely few-shot 

datasets. This lack of standardization poses a challenge for replicating and validating results across 

different studies and highlights the need for more comprehensive, comparative studies that evaluate 

the effectiveness of these techniques in varied contexts. 

 

2.4 Theoretical Background 

2.4.1 Theoretical Basis of Audio Segmentation 

Audio segmentation techniques are crucial in audio signal processing, especially in applications 

requiring structured analysis of audio data streams, such as speech recognition, music information 

retrieval, and speech cloning. Audio segmentation primarily aims to divide a continuous audio 

stream into discrete segments that can be individually analyzed, typically based on changes in 

speakers, musical tempo, or sound events (Oppenheim et al., 1999). The Fourier Transform, for 

instance, enables the transformation of a signal from the time domain to the frequency domain, while 

the Short-Time Fourier Transform (STFT) facilitates the examination of local frequency components 

within audio signals. Techniques like Mel Frequency Cepstral Coefficients (MFCCs) and Linear 

Predictive Coding (LPC) further enhance the ability to extract meaningful features from complex 

audio data, which are crucial for tasks like speaker identification and speech synthesis (Rabiner & 

Juang, 1993; Seltzer et al., 2013). These transformations and techniques form the theoretical 

foundation of audio segmentation, making sophisticated audio processing feasible in practical 

applications. 

2.4.2 Data Enhancement Applications in Speech and Music Processing 

Data augmentation is an effective technique for improving the performance of machine learning 

models, especially when training data is limited. In the audio domain, data augmentation methods 

such as modulating pitch and speed, adding background noise, or applying echo effects can 

significantly enhance the robustness and accuracy of speech recognition systems (Ko et al., 2015; 

Cai et al., 2020). These methods enable models to learn more generalized features by expanding the 

diversity of the training data, thus enhancing performance on new, unseen samples (Hershey et al., 

2017). For example, in multilingual speech processing, data augmentation techniques have been 

used to create training datasets that simulate various acoustic conditions, ensuring models are more 

robust and adaptable (Zhang et al., 2018). 

Data augmentation techniques have also been tailored specifically for singing datasets. Techniques 

that manipulate the timbral qualities or rhythmic elements of audio files have been shown to create  
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more diverse training datasets that improve the generalization capabilities of models (Choi et al., 

2020). This is particularly important for singing datasets, where the expressive range of audio is 

greater than in typical speech datasets, and models must learn to handle a wider variety of acoustic 

phenomena (Hsu et al., 2018). Recent studies have proposed combining multiple augmentation 

strategies to address the challenges specific to singing voice synthesis, such as maintaining the 

emotional content of the original performance while enhancing the model’s ability to generalize 

from limited data (Kim et al., 2020). 

 

2.4.3 Theoretical Support and Research Implications of the VAE-GAN Structure 

Combining Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) 

introduces new possibilities in audio generation and speech cloning. VAEs efficiently encode 

complex data distributions within a probabilistic framework, while GANs enhance the quality of 

generated samples through an adversarial process (Kingma & Welling, 2013; Goodfellow et al., 

2014). This combination harnesses the coding capabilities of the VAE and the generative power of 

the GAN to produce more natural and higher-quality speech samples (Bowman et al., 2016). Yang 

et al. (2017) discussed various improvements in GAN architectures aimed at enhancing speech 

synthesis quality, particularly in data-scarce environments. This highlights the potential for further 

refining these models to achieve even greater performance. Additionally, employing this structure 

helps overcome certain limitations of traditional speech generation methods, such as improving the 

diversity and authenticity of the generated samples (Makhzani et al., 2015). 

The use of VAE-GAN models in singing voice synthesis is particularly compelling due to their 

ability to capture the intricate details of musical expression, such as vibrato, dynamics, and phrasing, 

which are more nuanced than in spoken language (Blaauw & Bonada, 2017). The adversarial 

component of the GAN forces the network to produce outputs that are not only statistically similar 

to the training data but also perceptually convincing, making this approach well-suited for 

applications in music and expressive speech synthesis (Arik et al., 2018). Moreover, the probabilistic 

nature of VAEs allows for the exploration of latent spaces that can generate diverse outputs from 

limited input data, a crucial capability when working with tiny samples (Larsen et al., 2016). 

 

2.4.4 Exploring Advanced Data Augmentation Techniques 

Recent research has explored more advanced data augmentation techniques beyond traditional 

methods. For example, SpecAugment involves masking blocks of frequency channels or time steps 

in a spectrogram, improving robustness and generalization in speech recognition models (Park et al., 

2019). Additionally, synthetic data generation techniques, such as text-to-speech (TTS) systems, 

have been proposed to create additional training samples for low-resource languages, providing new 

avenues for expanding training data diversity (Wang et al., 2020). Another promising approach is 

the use of adversarial training, where models are trained to withstand perturbations in the input data, 

thus enhancing their robustness to various audio conditions (Madry et al., 2018). 

These advanced techniques are particularly relevant for singing voice synthesis due to the increased 

complexity and variability of the data. Techniques like adversarial data augmentation, which 

involves creating augmented data that is specifically designed to challenge the model, can help to 

expose and correct weaknesses in the model’s understanding of musical features (Shen et al., 2018). 

This approach can be particularly beneficial for generating data that mimics the nuanced variations 

found in human singing, such as changes in emotion, intensity, and articulation, which are critical  
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for achieving high-quality synthesis results (Lu & Wu, 2020). 

 

2.4.5 Potential Challenges and Limitations 

While data augmentation and advanced modeling techniques like VAE-GANs offer significant 

benefits, several challenges remain. One major limitation is the risk of overfitting, particularly when 

models are trained on augmented datasets that do not adequately represent real-world variability 

(Zagoruyko & Komodakis, 2017). Additionally, the complexity of integrating various augmentation 

methods can increase computational costs and complicate model training (Bengio et al., 2015). 

Researchers must carefully balance the benefits of increased data diversity against the potential 

downsides of more complex and computationally expensive models. Moreover, there is a need for 

standardized evaluation metrics to consistently assess model performance across different studies 

and datasets, particularly when working with augmented data (LeCun et al., 2015). 

Another challenge specific to singing voice synthesis is the preservation of the artistic and emotional 

qualities of the original recordings. While technical accuracy is crucial, the subjective quality of the 

generated output—how listeners perceive the emotion, style, and authenticity of the synthesized 

singing—remains a significant concern (Verma & Smith, 2019). This requires not only technical 

improvements in model architecture and training but also more nuanced approaches to evaluating 

output quality, potentially involving human evaluators or more sophisticated perceptual models. 

 

2.4.6 Recent Advances in Speech Synthesis with Limited Data 

Recent advances in speech synthesis have increasingly focused on addressing the limitations of 

training with minimal data. A notable trend is the integration of transfer learning and meta-learning 

techniques, which aim to leverage knowledge from related tasks or datasets to improve performance 

on target tasks with limited data (Ruder et al., 2019). Transfer learning, in particular, has proven 

effective in domains such as natural language processing and computer vision, where models 

pretrained on large datasets are fine-tuned on smaller, domain-specific datasets to enhance 

performance. In speech synthesis, this approach can be applied to fine-tune models on specific styles 

or voices, utilizing a base model trained on a broader range of audio data (Renduchintala et al., 2018). 

Meta-learning, or "learning to learn," takes this a step further by enabling models to adapt rapidly to 

new tasks with minimal data (Hospedales et al., 2021). In the context of speech synthesis, meta-

learning algorithms can be designed to learn robust representations of speech features that generalize 

well across different speakers and styles, even when only a few examples are available. This 

approach has the potential to significantly reduce the amount of data required for training high-

quality speech synthesis models, making it an attractive area for future research, particularly in 

applications involving personalized or low-resource speech generation (Achille et al., 2019). 

Another area of recent advancement is the use of self-supervised learning, where models are trained 

to predict parts of the input data from other parts, effectively utilizing large amounts of unlabelled 

data to learn useful representations (Baevski et al., 2020). In speech synthesis, self-supervised 

learning has been employed to pretrain models on large collections of raw audio data, which can 

then be fine-tuned on smaller, labeled datasets. This approach not only reduces the reliance on 

labeled data but also enhances the model’s ability to capture subtle nuances in speech, such as 

prosody and emotion, which are critical for high-quality synthesis (Schneider et al., 2019). 

 

 



Section 2 LITERATURE REVIEW                                                                           14 

 

2.4.7 Challenges in Evaluating Synthesized Speech Quality 

Evaluating the quality of synthesized speech, especially in the context of expressive and musical 

datasets like singing, presents several challenges. Traditional evaluation metrics such as the Mel 

Cepstral Distortion (MCD) and Perceptual Evaluation of Speech Quality (PESQ) often fall short in 

capturing the perceptual qualities of synthesized audio that matter most to human listeners, such as 

naturalness, emotional expressiveness, and musicality (Kubichek, 1993; Yamagishi et al., 2016). 

These metrics are primarily designed for speech intelligibility and spectral accuracy, which, while 

important, do not fully account for the expressive range required in music and emotionally nuanced 

speech synthesis. 

To address these limitations, recent research has proposed the use of perceptual metrics that align 

more closely with human auditory perception. For instance, Mean Opinion Score (MOS) testing, 

where human listeners rate the quality of audio samples on a scale, remains a gold standard for 

evaluating synthesized speech (Streijl et al., 2016). However, MOS testing is resource-intensive and 

subjective, leading to variability in results. Advances in deep learning have spurred the development 

of automated perceptual metrics that predict human judgments more reliably, such as the use of 

neural networks trained on large datasets of human ratings (Lo et al., 2019). These models attempt 

to quantify aspects of speech quality like naturalness and emotional expressiveness, providing a 

more comprehensive evaluation framework for modern speech synthesis models. 

Furthermore, there is growing interest in developing task-specific evaluation methods tailored to the 

unique requirements of singing voice synthesis. For example, metrics that assess the fidelity of 

vibrato, pitch accuracy, and rhythmic consistency could provide more granular insights into model 

performance in musical contexts (Birkholz et al., 2019). Developing these metrics involves 

interdisciplinary collaboration, drawing on expertise from music theory, cognitive psychology, and 

acoustics to better understand how different elements of synthesized audio contribute to the listener's 

experience. 

 

2.4.8 Interdisciplinary Approaches to Improving Speech Synthesis 

The future of speech synthesis, particularly in data-scarce environments, lies in interdisciplinary 

approaches that integrate insights from various fields, including linguistics, musicology, 

neuroscience, and computer science. Linguistic studies on phonetic variation and prosody provide 

valuable data that can inform the design of more sophisticated models capable of capturing subtle 

variations in speech and song (Laver, 1994). Similarly, research in musicology on the emotional and 

structural elements of music can guide the development of models that better capture the 

expressiveness of singing (Juslin & Sloboda, 2012). 

Neuroscientific research offers another promising avenue, particularly studies on how the brain 

processes speech and music. Insights into auditory perception and cognitive processing can help 

develop models that more accurately mimic human speech production and perception (Zatorre et al., 

2002). For instance, understanding how humans perceive and produce pitch, rhythm, and emotion 

in speech and music could lead to models that better replicate these processes, resulting in more 

natural and expressive synthetic speech (Patel, 2008). 

Moreover, advancements in hardware and computational methods, such as the use of quantum 

computing for more efficient data processing or the development of specialized neural network 

architectures optimized for audio synthesis, could further enhance the capabilities of speech 

synthesis models (Cai et al., 2020). These technological innovations, combined with  
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interdisciplinary research, could enable the creation of models that not only perform well with 

minimal data but also produce outputs that are indistinguishable from natural human speech and 

singing. 

 

2.4.9 Future Directions for Research 

Based on the gaps identified in the literature and the advancements discussed, several future research 

directions emerge. Firstly, there is a need for more comprehensive datasets that capture a wide range 

of vocal styles and contexts, particularly in non-Western languages and music genres, which are 

often underrepresented in current datasets. Expanding the diversity of training data will help improve 

model generalization and performance across different linguistic and musical contexts. 

Secondly, future research should explore the integration of multimodal data, combining audio with 

visual, textual, or gestural information to enhance the expressiveness and realism of synthesized 

speech and singing (Sargin et al., 2007). For example, integrating facial expressions and body 

gestures into the synthesis process could help create more engaging and lifelike virtual assistants 

and performers (Cassell, 2000). 

Finally, developing more efficient and scalable training methods that reduce the computational 

resources required for high-quality synthesis is crucial. Techniques such as model pruning, 

quantization, and the use of sparse neural networks could help achieve this goal, making speech 

synthesis more accessible for deployment in various real-world applications, including mobile and 

edge devices (Frankle & Carbin, 2019). 

 

2.5 Summary of Key Research Themes 

The review conducted in this chapter reveals several critical themes in the literature. First, there is a 

clear need for more research focused on data-scarce conditions, particularly for specialized datasets 

such as singing voices. Second, the combination of VAE and GAN models presents a promising 

avenue for overcoming the limitations of traditional speech synthesis techniques, especially when 

paired with advanced data augmentation methods. Third, future research should focus on refining 

these models and techniques to enhance their applicability in real-world scenarios, where data 

availability is often limited. 

Moreover, the importance of balancing technical accuracy with perceptual quality is highlighted as 

a key consideration in the development of new speech synthesis technologies. This balance is 

particularly crucial in applications involving expressive audio content, such as music or emotional 

speech, where the subjective experience of the listener plays a central role. Finally, the chapter 

underscores the potential of integrating advanced data augmentation techniques and hybrid 

modeling approaches to enhance the robustness and adaptability of speech synthesis models in low-

data environments. 

 

2.6 Conclusion 

In conclusion, the literature indicates that while significant strides have been made in speech 

synthesis and audio generation, particularly through the use of VAE-GAN models and data 

augmentation techniques, several challenges persist. This study aims to address some of these 

challenges by exploring the effectiveness of these techniques in a data-scarce context, specifically 

with tiny samples of singing datasets. By filling this gap, the research will not only advance 

theoretical understanding but also provide practical methodologies for enhancing speech cloning  
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performance under constrained conditions. 

The review has highlighted the need for more targeted research on data augmentation methods that 

are specifically designed for complex audio types like singing, where variability and expressive 

content present unique challenges. Future work should also consider the integration of more 

sophisticated evaluation metrics that take into account not just technical performance but also 

perceptual quality, to better align model outputs with human expectations and preferences in real-

world applications. 
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3 Research Methods 

 

The primary objective of this study is to evaluate the effectiveness of cloning the original timbre 

from tiny samples of singing datasets using advanced data augmentation techniques and the VAE-

GAN model. This research addresses the significant challenge posed by limited data availability in 

the context of speech cloning. The central research question is whether sophisticated data 

preprocessing and enhancement techniques can substantially improve the performance of VAE-

GAN models under highly constrained sample conditions. By focusing on tiny sample sizes, this 

study intends to push the boundaries of current methodologies and explore innovative solutions that 

enhance these models' learning capabilities and output quality. 

To achieve this, the study systematically applies various data augmentation methods to the limited 

dataset, aiming to artificially enrich the training data. Techniques such as pitch shifting, time 

stretching, and adding synthetic noise are employed to create more diverse and representative 

training samples. These methods are commonly used in audio processing to enhance the robustness 

and generalization capabilities of machine learning models, especially when dealing with small 

datasets. Following this preprocessing phase, the augmented data is used to train a VAE-GAN model, 

leveraging its combined variational autoencoder and generative adversarial network architecture to 

generate high-fidelity, natural-sounding speech from minimal input data. 

The ultimate goal is to validate the efficacy of these combined techniques in producing speech 

cloning models that are not only capable of maintaining the original timbre but also robust enough 

to perform well despite the severe limitation in sample size. By doing so, this research could provide 

significant insights into optimizing speech synthesis technologies, particularly in scenarios where 

data is scarce and personalized media content creation. 

 

3.1 Research Design 

This study employs an experimental design, focusing on speech cloning using tiny samples of 

singing datasets with the application of data augmentation techniques and the VAE-GAN model. 

The experimental approach is chosen due to its ability to rigorously test the impact of different 

variables (i.e., data augmentation techniques) on the performance of the VAE-GAN model. This 

approach allows for a controlled environment where the influence of each technique can be isolated 

and measured, providing clear insights into their effectiveness. 

Various data augmentation techniques, including pitch shifting, time stretching, and adding 

background noise, are applied during the data preprocessing phase. These techniques expand the 

diversity of the training data, helping the model learn more generalized features (Hershey et al., 

2017). The augmented data is then used to train the VAE-GAN model, which combines the encoding 

capabilities of the Variational Autoencoder (VAE) and the generative capabilities of the Generative 

Adversarial Network (GAN) to produce high-fidelity, natural-sounding speech samples. 

Model construction and training are conducted using scientific computing and machine learning 

libraries in Python, such as NumPy, Pandas, TensorFlow, and Keras. Quantitative analysis methods 

include specific statistical tests and analysis frameworks provided by these libraries to ensure the 

efficiency and accuracy of data processing and model training. This design aims to systematically 

evaluate the effectiveness of data augmentation techniques and the VAE-GAN model under  
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extremely small sample conditions, thereby providing a solid theoretical and practical foundation 

for future research and potentially revolutionizing the field of speech cloning. 

 

3.2 Data Collection 

The data for this study is sourced from the NUS Sung and Spoken Lyrics Corpus (NUS-48E corpus), 

which comprises audio recordings of 12 subjects singing and reading the lyrics of 48 English songs. 

This corpus provides complete phoneme-level transcriptions and duration annotations for all singing 

lyrics recordings, totaling 25,474 phoneme instances. 

 

3.2.1 Dataset Introduction 

The data collection involves extracting relevant singing audio data from the NUS-48E corpus. The 

primary goal of this corpus is to provide a large-scale phoneme-level annotated dataset for singing 

voice research. By analyzing the duration, spectral characteristics, and acoustic representations of 

singing and speech phonemes, researchers can better understand the differences between singing 

and speech. The dataset includes 48 English songs performed and read by 12 subjects, each 

performed by at least one male and one female subject, totaling 20 unique songs. The total duration 

of the audio recordings is 115 minutes (singing data) and 54 minutes (reading data). In this research 

design, only singing voices are collected and used. 

 

3.2.2 Selection and Sampling Method 

The selection and sampling methods are based on the detailed annotation information provided in 

the corpus. All singing recordings, including duration boundaries, have been annotated at the 

phoneme level. This detailed annotation allows for fine-grained phonetic analysis of the singing and 

reading recordings, enabling researchers to explore the differences between singing and speech. By 

analyzing these annotated data, VAE-GAN model training and testing samples can be extracted and 

constructed. 

 

3.2.3 Tools and Instruments Used 

Data collection and processing primarily utilize the Python programming language and its associated 

libraries, including NumPy, Pandas, TensorFlow, and Keras. These tools and libraries are used for 

data preprocessing, augmentation, and model building and training. Specific preprocessing steps 

include data augmentation techniques such as pitch shifting, time stretching, and adding background 

noise. 

Through this data collection and processing method, this study aims to systematically evaluate the 

effectiveness of data augmentation techniques and the VAE-GAN model under conditions of 

extremely small samples, providing a solid theoretical and practical foundation for future research. 

 

3.3 Data Preprocessing 

In this study, several data augmentation techniques are employed to preprocess the raw data to 

enhance the tiny samples of singing datasets and improve the training effectiveness of the VAE-

GAN model. The specific data augmentation methods include pitch shifting, time stretching, adding 

noise, and spectral perturbation. These methods increase data diversity without altering the audio 

content, enhancing the model's generalization capabilities. 
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3.3.1 Pitch Shifting 

Pitch shifting adjusts the fundamental frequency of the audio to change its pitch without affecting 

its duration. This technique is achieved by combining resampling and time-scale modification (TSM) 

technologies. By adapting the pitch of the audio recordings, pitch shifting can correct both global 

and local pitch issues in unaccompanied vocal recordings. This method ensures that the timbre of 

the voice remains consistent while modifying the pitch to the desired level. 

 

3.3.2 Time Stretching 

Time stretching changes the audio's playback speed without altering its pitch. This method can 

generate multiple variants by speeding up or slowing down the playback speed of the audio, thereby 

extending the range of training data. Common techniques for time stretching include phase vocoder, 

which maintains the stability of the audio's frequency components while adjusting its temporal 

length. 

 

3.3.3 Adding Noise 

Adding noise involves introducing random noise into the original audio signal to increase data 

diversity. This method simulates different recording environments and equipment conditions, 

allowing the model to learn more robust features during training. The noise can be white noise, pink 

noise, or other types of background noise and is usually added by combining the noise signal with 

the original audio signal in the time domain. 

 

3.3.4 Spectral Perturbation 

Spectral perturbation involves making small random changes to the audio signal in the frequency 

domain to increase data diversity. This method simulates various frequency drifts and distortions 

that may occur during actual recording, thereby improving the model's robustness. Common 

methods for spectral perturbation include applying random filtering on the spectrogram or adding 

small perturbations to the frequency components. 

 

3.4 Model Structure 

3.4.1 Model Setup 

The model setup for this study involves configuring and evaluating a VAE-GAN model to clone 

original timbres from tiny samples of singing datasets. The implementation of the model includes 

the following components and steps designed to compare performance across different 

preprocessing and augmentation techniques and their impact on the model's ability to clone singing 

voices effectively. 

 

3.4.2 Model Components 

3.4.2.1 Variational Autoencoder (VAE) 

• Encoder: The encoder part of the VAE is designed to compress the input singing voice 

samples into a latent space representation. This is achieved using a series of convolutional 

layers that capture the critical features of the audio data. 

• Latent Space: The latent space represents the compressed features of the input audio, which 

are then sampled to introduce variability and robustness in the generation process. 

• Decoder: The decoder reconstructs the input audio from the latent space representation. This  
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reconstruction aims to retain the essential characteristics of the original voice while allowing 

for variations introduced by the latent space sampling. 

 

3.4.2.2 Generative Adversarial Network (GAN) 

• Generator: The generator in the GAN takes the latent space representation from the VAE and 

generates new audio samples. Its goal is to produce audio that is indistinguishable from real 

samples. 

• Discriminator: The discriminator evaluates the authenticity of the generated samples. It 

distinguishes between actual audio samples from the training dataset and the synthesized 

samples produced by the generator. 

 

3.4.2.3 Integration of VAE and GAN 

The VAE and GAN are integrated to leverage the strengths of both models. The VAE provides a 

structured latent space representation, while the GAN enhances the realism and quality of the 

generated audio samples. The combined VAE-GAN framework ensures high-quality reconstruction 

and generation of singing voices. 

 

3.4.3 Performance Evaluation 

The core of this study lies in the rigorous evaluation of the VAE-GAN model on tiny samples of 

singing datasets. The evaluation is based on predefined metrics: training and validation loss and the 

Mean Opinion Score (MOS) for the subjective quality of generated samples. These assessments 

measure the model's raw performance and analyze its operational efficiency and feasibility in 

practical applications. I tried to apply MOS to this experiment but due to the quality of synthesized 

audio, the MOS method was not suitable.  

 

3.5 Ethical Issues 

This thesis focuses on using the NUS-48E dataset to evaluate the performance of the VAE-GAN 

model on a tiny sample of the Singing dataset. This dataset is publicly available and does not contain 

personally identifiable information. Given the nature of this study, it does not involve direct 

interaction with human subjects, such as questioning or recording. 

The NUS-48E dataset, which is the focus of this study, is a collection of aggregated participant 

singing data that has been anonymized to ensure privacy and ethical standards of data sources. All 

participants provided informed consent during the data collection process, and the data were used 

under a license that permits academic use. 

If ethical issues arose during the course of the study (e.g., regarding the interpretation or 

representation of the data), these were resolved immediately after consultation with the project 

oversight body. This proactive stance on ethical considerations ensures that the research maintains 

its integrity, respects the rights of data contributors, and maintains the credibility of the research 

process. 

 

3.6 Limitations 

This study is not without its limitations. The notably small sample size of the NUS-48E dataset, with 

only 12 participants contributing two singing samples each, presents a significant challenge. This 

may limit the dataset's ability to capture the full range of variability necessary for robust model  
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training and evaluation. Additionally, the study does not make use of the phoneme annotations 

provided in the dataset, potentially missing opportunities to enhance the accuracy and depth of the 

analysis. Lastly, the simplicity of the VAE-GAN model used in this study may restrict its 

effectiveness. While the model serves as a foundation for exploring data augmentation and 

preprocessing techniques, it may not be sophisticated enough to effectively replicate original timbres 

from such limited data. These limitations point to the need for future research to consider expanding 

the dataset, leveraging phoneme annotations, and exploring more advanced modeling techniques to 

achieve more robust results. 
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4 Findings  

 

This chapter presents the results of experiments using four different data enhancement methods on 

the NUS-48E Singing Speech Database. These methods include pitch transformation, time 

stretching, background noise, and spectrogram perturbation. The central research question of this 

study is whether the original speech timbre can be successfully cloned using a singing voice dataset 

with very few samples through data augmentation and VAE-GAN modeling. The results are 

summarized in this chapter, with more detailed analysis and discussion reserved for the next chapter. 

 

4.1 Outcomes of Data Augmentation Techniques 

The VAE-GAN model's performance was assessed using several key metrics after applying four 

different data augmentation techniques: Pitch Shift, Time Stretch, Background Noise, and 

Spectrogram Perturbation. Below is a detailed description of the results associated with each 

technique, highlighting how they influenced the model’s ability to reconstruct and generalize from 

tiny samples of the NUS-48E Singing Speech Database. 

 

Metric Pitch Shift Time Stretch Background Noise Spectrogram Perturbation 

Reconstruction 

Loss 

0.0002 0.0002 0.0002 0.0002 

SNR -7.5904 -7.6088 -7.3232 -7.3475 

MSE 0.0002 0.0002 0.0002 0.0002 

Diversity Score 4873347 5435223 5189950 5304434 

DTW Distance 31496.49 31501.98 31307.77 31479.57 

Euclidean 

Distance 

2212.734 2217.806 2194.004 2213.971 

Table 1 

 

4.1.1 Reconstruction Loss 

Reconstruction Loss is a critical metric that quantifies how accurately the model can replicate the 

original audio input. In this study, all four augmentation techniques—Pitch Shift, Time Stretch, 

Background Noise, and Spectrogram Perturbation—achieved a consistent Reconstruction Loss of 

0.0002. This suggests that the model was able to maintain the fidelity of the original input data across 

all augmentation methods, ensuring that the reconstructed output remained true to the original audio. 

 

4.1.2 Signal-to-Noise Ratio (SNR) 

Signal-to-Noise Ratio (SNR) measures the level of noise introduced during the reconstruction of the 

audio. A higher SNR value indicates less noise. The Background Noise augmentation method 

resulted in the highest SNR of -7.3232, suggesting that this technique was particularly effective in 

preserving the clarity of the original audio while introducing minimal noise. In contrast, Time Stretch 

yielded the lowest SNR of -7.6088, indicating that this method introduced more noise, likely due to 

the temporal distortions caused by stretching the audio. 
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4.1.3 Mean Squared Error (MSE) 

Mean Squared Error (MSE) quantifies the average squared differences between the original and  

reconstructed audio signals. The MSE was consistent across all augmentation techniques, with each 

method resulting in an MSE of 0.0002. This consistency indicates that the model effectively 

minimized errors in the reconstructed audio, regardless of the augmentation technique used. 

 

4.1.4 Diversity Score 

The Diversity Score measures the variability of outputs generated by the model, which is essential 

for enhancing the model’s generalization capability. Time Stretch achieved the highest Diversity 

Score of 5435223, indicating that it introduced significant variability in the training data. 

Background Noise and Spectrogram Perturbation also produced high Diversity Scores, at 5189950 

and 5304434 respectively, indicating their effectiveness in diversifying the training data. Pitch Shift, 

with a Diversity Score of 4873347, was slightly less effective but still contributed to enhancing the 

model’s generalization capability. 

 

4.1.5 Dynamic Time Warping (DTW) Distance 

Dynamic Time Warping (DTW) Distance is a metric used to assess the similarity between the 

original and reconstructed audio sequences. Lower DTW Distance values indicate greater similarity. 

Background Noise achieved the lowest DTW Distance of 31307.77, indicating that this technique 

was the most effective in preserving the temporal dynamics of the original audio. Time Stretch, with 

a DTW Distance of 31501.98, was the least effective, likely due to the distortions introduced by 

altering the temporal length of the audio. 

 

4.1.6 Euclidean Distance 

Euclidean Distance measures the difference between the original and reconstructed audio in feature 

space. Background Noise had the lowest Euclidean Distance of 2194.004, reinforcing its 

effectiveness in maintaining the original audio’s characteristics. In contrast, Time Stretch had the 

highest Euclidean Distance of 2217.806, suggesting that this method introduced the most variation 

in the audio features, which may be beneficial for increasing diversity but potentially at the cost of 

fidelity. 
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4.2 t-SNE Visualization Findings 

t-SNE (t-distributed Stochastic Neighbor Embedding) is a dimensionality reduction technique used 

to visualize high-dimensional data in two or three-dimensional space. It works by mapping similar 

data points to nearby locations while dissimilar points are mapped further apart, thus revealing the 

underlying structure of the data. In this study, t-SNE is employed to map the high-dimensional audio 

feature space into a two-dimensional space, allowing for a precise observation of the effects of 

different data augmentation methods on audio features. The horizontal and vertical axes of the t-

SNE plots represent the two main components in the two-dimensional feature space. Although their 

specific values have no particular physical meaning, they indicate the relative position and distance 

of the data points in this mapping. 

Figure 1 

 

The Pitch Shift t-SNE plot (Figure 1) illustrates the distribution of audio data in a two-dimensional 

feature space after applying pitch shift augmentation. The data points are widely dispersed, 

indicating significant variability. Most data points are distributed between -30 and 30 on the 

horizontal axis and between -1.5 and 2 on the vertical axis. The dispersion areas are mainly 

concentrated at both ends of the horizontal axis (-30 to -20 and 20 to 30) and the upper part of the 

vertical axis (1 to 2), demonstrating the substantial characteristic changes brought about by the pitch 

shift. This broad distribution suggests that pitch shift considerably alters the audio features, resulting 

in more significant variability in the feature space. The primary dense area is centered around -10 to 

10 on the horizontal axis and -0.5 to 1 on the vertical axis. This indicates that despite the changes 

introduced by pitch shift, a large portion of the audio data retains relatively consistent features after 

transformation. 
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Figure2 

 

The Time Stretch t-SNE plot (Figure 2) shows the distribution of audio data in the feature space 

after applying time stretch augmentation. Compared to the pitch shift plot, the data points in the time 

stretch plot are more concentrated, particularly in the central region. Most data points are distributed 

between -30 and 30 on the horizontal axis and between -1.5 and 1.5 on the vertical axis. The areas 

of dispersion are mainly located at both ends of the horizontal axis, but the characteristic variability 

introduced by time stretch is more minor compared to pitch shift. This more concentrated 

distribution indicates that time stretch maintains higher consistency in audio features within the 

feature space. The dense area is centered around -10 to 10 on the horizontal axis and -0.5 to 1 on the 

vertical axis, showing that time stretch effectively increases data diversity while preserving the main 

features of the original audio. 

Figure 3 

 

The Background Noise t-SNE plot (Figure 3) displays the distribution of audio data after adding  
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background noise. The data points are relatively evenly distributed with some dense areas. Most 

data points are distributed between -30 and 30 on the horizontal axis and between -1.5 and 1.5 on 

the vertical axis. The dispersion areas are mainly located between -30 and -20 and 20 and 30 on the 

horizontal axis, indicating the characteristic changes brought about by adding noise. This even 

distribution suggests that background noise introduces diverse changes into the feature space, 

making the audio features more varied. The primary dense area is centered around -10 to 10 on the 

horizontal axis and -0.5 to 1 on the vertical axis, indicating that despite the introduction of noise, the 

audio data retains a certain level of consistency. 

Figure 4 

 

The Spectrogram Perturbation t-SNE plot (Figure 4) illustrates the distribution of audio data after 

applying spectrogram perturbation. The data points show a distribution pattern between pitch shift 

and time stretch, with some dispersion and noticeable dense areas. Most data points are distributed 

between -30 and 30 on the horizontal axis and between -1.5 and 1.5 on the vertical axis. The 

dispersion areas are significant at both ends of the horizontal axis and the lower part of the vertical 

axis (-1 to -2). This distribution suggests that spectrogram perturbation changes the audio features 

to a certain extent. However, the changes are neither as drastic as those introduced by pitch shift nor 

as conservative as those introduced by time stretch. The primary dense area is centered around -10 

to 10 on the horizontal axis and -0.5 to 1 on the vertical axis, showing that spectrogram perturbation 

maintains a high level of consistency in audio features within the feature space. 

 

4.3 Summary of Findings 

The findings from this study demonstrate that data augmentation techniques, when applied 

effectively, can significantly enhance the performance of VAE-GAN models in cloning original 

speech timbre from tiny samples. Each technique contributed differently to the overall quality and 

diversity of the generated audio, and their combination resulted in a more robust and versatile model. 

The use of t-SNE visualization further confirmed the effectiveness of these techniques in altering 

the feature space in ways that benefit model training.
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5 Discussion 

This chapter provides a comprehensive discussion of the results obtained in Chapter 4, placing them 

in the context of existing research and theoretical frameworks. The discussion will explore the 

implications of these findings, their alignment with or divergence from previous studies, and their 

potential contributions to the field of speech cloning, particularly under data-scarce conditions. 

Additionally, this chapter will address any limitations identified in the findings and propose 

directions for future research. 

 

5.1 Analysis of Data Augmentation Techniques 

The results from Chapter 4 demonstrated that each data augmentation technique—Pitch Shift, Time 

Stretch, Background Noise, and Spectrogram Perturbation—had a unique impact on the VAE-GAN 

model's performance. In this section, we delve deeper into these results to understand the underlying 

reasons for the observed outcomes and discuss their broader implications. 

 

5.1.1 Reconstruction Loss 

Reconstruction Loss across all four augmentation techniques remained consistent at 0.0002, 

indicating that the VAE-GAN model effectively preserved the original audio's fidelity regardless of 

the augmentation method. This uniformity in Reconstruction Loss suggests that the model's 

architecture was robust enough to handle the variability introduced by different augmentation 

techniques without compromising the quality of the reconstructed audio. This finding aligns with 

previous research (Hershey et al., 2017) that highlights the resilience of VAE-based models in 

maintaining data integrity during the reconstruction phase. However, the consistent reconstruction 

loss also raises questions about whether more aggressive or varied augmentation techniques might 

have pushed the model to its limits, revealing potential weaknesses or areas for further improvement. 

 

5.1.2 Signal-to-Noise Ratio (SNR) 

The Signal-to-Noise Ratio (SNR) results provided a nuanced understanding of how each 

augmentation technique affected the clarity of the reconstructed audio. Background Noise, perhaps 

counterintuitively, resulted in the highest SNR, suggesting that the model was particularly adept at 

filtering out noise introduced during the augmentation process. This could be attributed to the 

model's ability to learn the underlying structure of the audio data and distinguish between 

meaningful signals and added noise. In contrast, Time Stretch resulted in the lowest SNR, likely due 

to the distortions introduced by altering the temporal length of the audio without affecting its pitch. 

This outcome suggests that while time stretching can enhance diversity, it may also introduce 

artifacts that degrade audio quality, a finding consistent with earlier studies on audio processing 

techniques (Ko et al., 2015). 

 

5.1.3 Mean Squared Error (MSE) 

The uniformity of Mean Squared Error (MSE) across all techniques, mirroring the Reconstruction 

Loss, reinforces the notion that the VAE-GAN model maintained a high level of fidelity in 

reproducing the original audio. This consistency suggests that the model's performance was not 

significantly affected by the choice of augmentation technique, highlighting its robustness. However,  
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the lack of variability in MSE could also indicate that the current set of augmentation techniques 

may not be diverse enough to challenge the model fully. Future research could explore more radical 

or hybrid augmentation methods to test the model's limits and potentially uncover new insights into 

its capabilities. 

 

5.1.4 Diversity Score 

The Diversity Score highlighted the different ways in which each augmentation technique 

contributed to the variability of the generated outputs. Time Stretch achieved the highest Diversity 

Score, indicating that it was the most effective at introducing variability into the training data. This 

finding is significant because it suggests that time-based manipulations, such as stretching or 

compressing audio, can greatly enhance the model's ability to generalize to new data. However, this 

increased diversity came at the cost of increased noise and potential artifacts, as indicated by the 

lower SNR and higher DTW and Euclidean Distances. This trade-off between diversity and fidelity 

is a critical consideration in model training and suggests that while Time Stretch is effective in 

broadening the training data, it should be used judiciously to avoid compromising audio quality. 

 

5.1.5 Dynamic Time Warping (DTW) and Euclidean Distance 

Both DTW and Euclidean Distance are metrics that measure the similarity between the original and 

reconstructed audio. Background Noise consistently produced the lowest values in both metrics, 

reinforcing its effectiveness in preserving the original audio's temporal and spectral characteristics. 

This result suggests that noise-based augmentations can enhance the model's robustness without 

significantly distorting the audio's structure. On the other hand, Time Stretch, which introduced the 

most variability, also resulted in the highest distances, indicating a greater deviation from the original 

audio. These findings highlight the delicate balance between enhancing diversity and maintaining 

fidelity, a theme that is central to the discussion of augmentation techniques in machine learning 

(Shorten & Khoshgoftaar, 2019). 

 

5.2 Comparison with Existing Research 

The findings from this study align with and extend existing research in the field of speech synthesis 

and cloning. Previous studies have shown that VAE-GAN models are effective at generating high-

quality audio from large datasets (Goodfellow et al., 2014; Kingma & Welling, 2013), but this study 

is among the first to systematically explore their performance under extremely data-scarce 

conditions. The success of data augmentation techniques, particularly Background Noise and 

Spectrogram Perturbation, in enhancing model robustness aligns with the broader literature on the 

benefits of data augmentation in machine learning (Yang et al., 2017). 

However, the study also reveals some limitations of current techniques. For instance, while time-

based augmentations like Time Stretch can introduce valuable diversity, they also risk introducing 

artifacts that degrade audio quality. This finding suggests a need for more sophisticated 

augmentation strategies that can enhance diversity without compromising fidelity. Additionally, the 

uniformity in Reconstruction Loss and MSE across all techniques indicates that while the model is 

robust, it may not be fully leveraging the potential of more aggressive augmentation methods. Future 

research could explore hybrid techniques or adaptive augmentation strategies that dynamically 

adjust based on the model's performance during training. 

 



Section 5 DISCUSSION                                                                                   29 

 

5.3 Implications for Future Research 

The results of this study have several implications for future research. First, they highlight the 

importance of choosing the right augmentation techniques based on the specific goals of the model. 

For instance, if the goal is to maximize diversity, time-based augmentations may be appropriate, but 

they should be used in combination with techniques that preserve fidelity, such as Background Noise. 

Second, the study suggests that more research is needed to explore the limits of VAE-GAN models 

under data-scarce conditions. While the model performed well across all metrics, the lack of 

variability in some metrics suggests that there may be untapped potential in more radical 

augmentation techniques or hybrid models that combine different architectures. 

Furthermore, the study underscores the need for more sophisticated evaluation metrics that can 

capture the nuances of audio quality and diversity. While traditional metrics like Reconstruction 

Loss, SNR, and MSE are useful, they may not fully capture the subjective quality of the generated 

audio. Future research could explore the use of perceptual metrics or human evaluation to provide a 

more comprehensive assessment of model performance. 

 

5.4 Limitations 

This study has several limitations that should be acknowledged. First, the notably small sample size 

of the NUS-48E dataset, with only 12 participants contributing two singing samples each, presents 

a significant challenge. This may limit the dataset's ability to capture the full range of variability 

necessary for robust model training and evaluation. Additionally, the study does not make use of the 

phoneme annotations provided in the dataset, potentially missing opportunities to enhance the 

accuracy and depth of the analysis. Lastly, the simplicity of the VAE-GAN model used in this study 

may restrict its effectiveness. While the model serves as a foundation for exploring data 

augmentation and preprocessing techniques, it may not be sophisticated enough to effectively 

replicate original timbres from such limited data. These limitations point to the need for future 

research to consider expanding the dataset, leveraging phoneme annotations, and exploring more 

advanced modeling techniques to achieve more robust results.
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6 Conclusion 

This study investigated the feasibility of cloning the original speech timbre from a very limited 

sample of singing datasets using data augmentation techniques and the VAE-GAN model. The 

primary research question focused on whether it is possible to successfully replicate the original 

timbre using such minimal data through advanced modeling techniques. Based on the hypothesis 

that extremely limited samples cannot successfully replicate the original speech timbre, this research 

explored the effectiveness of various data augmentation methods, including pitch transformation, 

time stretching, background noise, and spectrogram perturbation, to enhance model performance. 

The findings revealed that while certain augmentation methods contributed to improving the model's 

robustness and diversity, the overall hypothesis was supported: extremely limited samples, even 

when augmented, were not sufficient to clone the original timbre with high fidelity. 

 

6.1 Key Findings 

The results of the experiments provided several insights into the strengths and limitations of the data 

augmentation techniques used in this study. Each augmentation method had a distinct impact on the 

model's ability to replicate the original speech timbre, as demonstrated by various metrics such as 

Reconstruction Loss, Signal-to-Noise Ratio (SNR), Mean Squared Error (MSE), Diversity Score, 

Dynamic Time Warping (DTW) Distance, and Euclidean Distance. 

 

6.1.1 Reconstruction Loss and Mean Squared Error (MSE) 

Both metrics remained consistent across all augmentation techniques, indicating that the VAE-GAN 

model maintained a baseline level of fidelity when reconstructing the audio. This suggests that while 

the model was capable of learning the basic features of the audio, the small sample size and limited 

data diversity constrained its ability to capture the full complexity of the original timbre. 

 

6.1.2 Signal-to-Noise Ratio (SNR) 

The SNR varied significantly between augmentation techniques, with Background Noise achieving 

the highest SNR and Time Stretching the lowest. This suggests that techniques such as Background 

Noise, which simulate real-world recording conditions, can help the model maintain clarity by 

learning to distinguish between meaningful audio signals and noise. However, methods that 

significantly alter the audio, like Time Stretching, may introduce distortions that reduce audio quality, 

aligning with the hypothesis that extremely limited samples cannot fully replicate the original timbre. 

 

6.1.3 Diversity Score 

Time Stretching achieved the highest Diversity Score, indicating that it introduced substantial 

variability into the training data. This suggests that while diversity can be increased through certain 

augmentations, it may come at the cost of fidelity, as evidenced by the lower SNR and higher DTW 

and Euclidean Distances. The trade-off between diversity and fidelity highlights a fundamental 

limitation of working with small datasets: enhancing one aspect often diminishes another. 

 

6.1.4 Dynamic Time Warping (DTW) and Euclidean Distance 

These metrics provided a measure of similarity between the original and reconstructed audio  
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sequences. Background Noise consistently resulted in the lowest DTW and Euclidean Distances, 

reinforcing its effectiveness in preserving the temporal and spectral characteristics of the original 

audio. However, the overall distances remained significant, underscoring the challenge of achieving 

high-fidelity replication with minimal data. 

 

6.2Implications of Findings 

The findings from this study have several implications for the field of speech synthesis and cloning, 

particularly in data-scarce environments: 

 

6.2.1 Limitations of Data Augmentation with Minimal Data 

The study supports the hypothesis that extremely limited samples, even when augmented, are 

insufficient for successfully replicating the original timbre. This has significant implications for 

applications where high-quality speech synthesis is required but only minimal data is available. It 

suggests that current data augmentation techniques may not be robust enough to overcome the 

inherent limitations of small datasets, and more sophisticated methods or additional data collection 

strategies are needed. 

 

6.2.2 Importance of Augmentation Strategy 

The differences in performance across augmentation techniques indicate that the choice of strategy 

is crucial. Techniques like Background Noise, which enhance robustness without significantly 

altering the original audio, are more effective in preserving fidelity. In contrast, methods that 

introduce more variability, like Time Stretching, may degrade quality. This highlights the need for a 

careful balance between diversity and fidelity, depending on the specific application and data 

availability. 

 

6.2.3 Potential for Advanced Techniques 

The study's findings also suggest avenues for future research, particularly in exploring more 

advanced augmentation strategies that could better mimic the complexity of natural speech. 

Techniques such as adversarial training or meta-learning could be investigated to enhance the 

model's ability to generalize from minimal data, potentially mitigating some of the limitations 

observed in this study. 

 

6.2.4 Need for Larger and More Diverse Datasets 

While the study focused on extremely limited samples, the results indicate that larger and more 

diverse datasets would likely improve model performance. This underscores the importance of data 

diversity in training effective speech synthesis models and suggests that future efforts should 

prioritize data collection and augmentation strategies that enhance both the quantity and quality of 

available data. 

 

6.3 Limitations of the Study 

While this study provides valuable insights into the challenges of speech synthesis with minimal 

data, several limitations should be acknowledged: 
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6.3.1 Small Sample Size 

The study was constrained by the small size of the NUS-48E dataset, which limited the ability to 

capture the full range of variability necessary for robust model training and evaluation. This 

limitation highlights the need for more comprehensive datasets to fully explore the potential of data 

augmentation techniques in speech synthesis. 

 

6.3.2 Simplified VAE-GAN Model 

The model used in this study was relatively simple and may not have been sophisticated enough to 

capture the full complexity of the original timbre, particularly given the limited data. Future research 

could explore more advanced models that integrate multiple neural network architectures or leverage 

additional features such as phoneme annotations. 

 

6.3.3 Lack of Subjective Evaluation 

The study relied primarily on quantitative metrics to assess model performance, which may not fully 

capture the subjective quality of the generated audio. Future studies could incorporate human 

evaluations or perceptual metrics to provide a more comprehensive assessment of audio quality. 

 

6.3.4 Focus on Singing Data 

While the use of singing data provided a unique perspective on speech synthesis, it may not fully 

represent the challenges associated with more typical speech data. Future research could explore the 

application of these techniques to other types of speech data to determine their generalizability. 

 

6.4 Future Directions 

Based on the findings and limitations of this study, several directions for future research are proposed: 

 

6.4.1 Exploration of Advanced Augmentation Techniques 

Future research could investigate more sophisticated augmentation methods that go beyond simple 

transformations to more effectively mimic the variability and complexity of natural speech. 

Techniques such as generative adversarial networks (GANs) for augmentation or transfer learning 

could be explored. 

 

6.4.2 Development of More Complex Models 

The use of more advanced models that integrate multiple neural network architectures or leverage 

additional features, such as phoneme annotations, could improve the ability to replicate the original 

timbre from minimal data. Research could focus on optimizing these models for data-scarce 

environments, potentially using meta-learning or reinforcement learning approaches. 

 

6.4.3 Expansion of Dataset 

Expanding the dataset to include more diverse and representative samples would likely improve 

model performance and provide a more robust evaluation of augmentation techniques. This could 

involve collecting additional data or using synthetic data generation methods to create larger training 

sets. 
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6.4.4 Integration of Subjective Evaluation 

Incorporating human evaluations or perceptual metrics into future studies would provide a more 

comprehensive assessment of audio quality and better capture the nuances of speech synthesis 

performance. 

 

6.4.5 Application to Different Types of Speech Data 

Future research could explore the application of these techniques to other types of speech data, such 

as conversational speech or multilingual datasets, to determine their generalizability and 

effectiveness across different contexts. 

 

6.5 Conclusion 

This study contributes to the understanding of speech synthesis and cloning in data-scarce 

environments by demonstrating the limitations of current data augmentation techniques and VAE-

GAN models when working with extremely limited samples. The findings support the hypothesis 

that extremely limited samples cannot successfully replicate the original timbre, highlighting the 

need for more advanced augmentation strategies, larger and more diverse datasets, and more 

sophisticated models. Future research in this area should focus on exploring these avenues to 

enhance the effectiveness of speech synthesis technologies, particularly in contexts where data is 

limited.
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