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Abstract
This study investigates the effectiveness of cross-lingual transfer learning for Cantonese Automatic
Speech Recognition (ASR) by comparing a baseline wav2vec2 XLRS model pre-trained on multiple
languages with a transfer learning model pre-trained on Mandarin. The baseline model achieved a
Character Error Rate (CER) of approximately 0.3, while the transfer learning model demonstrated
a significantly lower CER of around 0.2 after 40 epochs of training. The transfer learning approach
showed enhanced training efficiency, faster convergence, and robust generalization ability, despite
the baseline model’s slight advantage in validation loss during later stages. These findings vali-
date the hypothesis that leveraging a pre-trained Mandarin model, fine-tuned with limited labeled
Cantonese data, significantly outperforms the baseline model. This study underscores the poten-
tial benefits of cross-lingual transfer learning, particularly between linguistically similar languages,
and highlights its importance for developing inclusive and diverse ASR systems for under-resourced
languages.





CONTENTS 6

Contents
1 Introduction 8

1.1 Research Question and Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature Review 12
2.1 low resource language Automatic Speech Recognition(ASR) . . . . . . . . . . . . . 13

2.1.1 Chinese Dialect Speech Recognition . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 State-of-the-Art ASR Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Wav2vec Development History . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 wav2vec 2.0 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Other Notable ASR Models . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 methodology 19
3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Common Voice dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Model Framework - wav2vec 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Large-Scale Cross-Lingual Models - XLSR-53 & XLS-R . . . . . . . . . . . 21
3.3 Evaluation - Character Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Training Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Model Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Training Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Experimental Setup 25
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Training Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Baseline Model - XLSR-53 Fine-Tuning . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Transfer Learning Model - XLSR-53 Fine-Tuned on Mandarin . . . . . . . . 25
4.2.3 Data Splitting and Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.4 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.5 Software Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Training and Evaluation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.2 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Results & Discussion 29
5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Conclusion 33
6.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Limitations and Recommendations: . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



CONTENTS 7

References 38



Section 1 INTRODUCTION 8

1 Introduction
Language is not merely a collection of grammar and vocabulary; it is a vessel for cultural heritage.
Acquiring a language entails understanding and preserving the culture and history it represents.
Languages across the world, shaped by their unique cultural and regional contexts, hold significant
cultural importance and linguistic research value. However, many languages are on the brink of
extinction. Krauss (1992) initially estimated that only 10% of the world’s languages are safe in the
long term, with up to 50% already moribund. Recent data from the Ethnologue Lewis, Simons, and
Fennig (2013), using the Expanded Graded Intergenerational Disruption Scale (EGIDS), provide
more precise estimates confirming these dire predictions.

Regional languages often face encroachment from the dominant languages of neighboring pow-
erful nations, a phenomenon exacerbated by globalization. For example, in Australia, Canada, and
the United States, over 75% of languages are now extinct or moribund. Urbanization presents a new
threat, where the necessity of acquiring dominant urban languages exerts pressure on minority lan-
guages. Besides, colonization has significantly impacted language loss. In settlement colonies, such
as Australia and North America, the large-scale settlement of colonizers led to deep and prolonged
language contact, resulting in significant language shift and loss. For instance, in North America,
colonizers decimated indigenous populations through disease and warfare or forced relocations, sev-
ering ties to their native languages. This political phonology inflicted severe harm on the languages
of vulnerable regions, highlighting the profound impact of colonial practices on language extinction
(Simons & Lewis, 2013).

China is home to a multitude of dialects, each with its own distinct phonetic and phonological
characteristics. From a linguistic perspective, many of these dialects can be considered independent
languages due to their unique pronunciation systems and strong regional identities. The primary
dialects in China include Northern Mandarin, Wu, Gan, Xiang, Min, Hakka, and Yue(Cantonese),
among others. Each of these dialects exhibits significant variation in tone, vowel, and consonant
structures. People from different regions of China often speak both their regional dialect and Man-
darin, making them multilingual individuals, but ASR systems predominantly focus on Mandarin,
leaving dialect ASR systems and data resources relatively scarceQ. Li, Mai, Wang, et al., 2024.

The Yue dialect(Cantonese) in China is a language of wider communication around the world,
originated in China, Hong Kong, and Macao. It belongs to the Sino-Tibetan language family and
is part of the Chinese macro-language. The language is used as a first language by all in the ethnic
community and used as a language of instruction in education.(Ethnologue 2024) Due to differing
political and social contexts and relative isolation, Cantonese has developed distinct spoken and
written forms across various regions.

Cantonese holds a unique cultural and political significance among the people of Guangdong in
mainland China, surpassing other Chinese dialects in its revered status and fostering a strong regional
cultural identity. The ”Protecting Cantonese Movement” (PCM), which began in 2010 and lasted
more than 10 years, was initiated as a response to a proposal by the Guangzhou Committee of the
Chinese People’s Political Consultative Conference (CCPPCC) to switch local television broadcasts
from Cantonese to Mandarin in an effort to attract global visitors during the 2010 Asian Games.Y. Li,
Kang, Ding, and Zhang 2022 Such a movement is unlikely to occur among speakers of other Chinese
dialects. Promoting Cantonese speech recognition in Guangdong can aid in the preservation and
development of linguistic information related to the regional Cantonese dialect through technological
means, amidst the widespread promotion of Mandarin. This effort supports the transmission of
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Cantonese and the protection of its associated cultural heritage.
Cantonese is the predominant and most widely used language in Hong Kong, spoken by 90%

of its approximately 6.5 million ethnic Chinese residents as their daily language. It holds a unique
status due to its distinctive vocabulary, indigenous Chinese characters, colloquial phonetic features,
conventionalized written form, extensive English loanwords, and a tradition of lexicography with
romanization. Despite its prevalence, there is a concerning trend of increasing numbers of schools
switching their medium of instruction from Cantonese to Putonghua.(Bauer 2016)And in recent
years, Language education policies in Hongkong have evolved to promote Chinese-medium instruc-
tion in schools, with recent shifts allowing more flexibility for schools to choose their medium of
instruction. Putonghua(Mandarin Chinese) was Increasingly promoted in schools, reflecting broader
national policies aiming for linguistic unification.(Bolton 2024) This shift marks a significant change
since Hong Kong’s return to Chinese sovereignty in 1997.

With such significant international influence, surpassing that of a typical Chinese ”dialect,” Can-
tonese can be recognized as an independent linguistic entity. However, its development in the field
of speech technology remains underdeveloped. This gap is particularly critical given Cantonese’s
extensive usage in regions such as Hong Kong and Guangdong, where it serves not only as a medium
of daily communication but also as a cultural identifier. Enhancing speech recognition technology
for Cantonese is essential to preserving its linguistic heritage and ensuring technological inclusivity
for its speakers.

Over the past few decades, automatic speech recognition (ASR) has made remarkable strides,
achieving impressive milestones. The evolution from Gaussian Mixture Model-Hidden Markov
Models (GMM-HMM) to Deep Neural Networks (DNN) has enabled machines to learn hierarchical
feature representations, which can capture more abstract features at higher layers. This transition
has significantly enhanced the ability of ASR systems to recognize and interpret speech with greater
accuracy and efficiency(Hinton et al., 2012). One application of this is Deep Speech 2, which re-
places the traditional pipeline of hand-engineered components (feature extraction, acoustic models,
language models, etc.) with a single end-to-end deep learning model. With such methods, DS2
matches or exceeds the transcription accuracy of human workers in several benchmarks(Amodei et
al. 2015). Another notable development is Jasper (Just Another SPeech Recognizer), created by
NVIDIA, which is a convolutional neural network-based model designed for sequence-to-sequence
ASR tasks. Jasper is known for its high accuracy and efficiency in recognizing speech(J. Li et
al. 2019). But DS2 and Jasper rely heavily on supervised learning and require large amounts of
labeled data to train their models. While they perform well with enough labeled data, their effec-
tiveness drops significantly when data is scarce. In contrary, Wav2vec 2.0, developed by Facebook
AI, leverages self-supervised learning to train on vast amounts of unlabeled audio data, followed by
fine-tuning on smaller labeled datasets(Baevski, Zhou, Mohamed, and Auli 2020a). This two-stage
training paradigm has proven effective in improving ASR performance, especially in low-resource
settings where labeled data is scarce.

Despite the advancements in automatic speech recognition (ASR) technology, many ASR sys-
tems primarily focus on high-resource languages such as English and Mandarin, which benefit from
abundant and high-quality datasets. In contrast, under-resource languages and dialects, such as Can-
tonese, often lack sufficient training data, hampering the development of robust ASR systems.

Under-resourced languages often lack standardized writing systems, have limited online pres-
ence, and face shortages of linguistic expertise and electronic resources. Challenges include the
absence of monolingual corpora, bilingual dictionaries, transcribed speech data, pronunciation dic-
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tionaries, and sufficient vocabulary lists. Innovative methods such as crowd-sourcing for data col-
lection, cross-lingual transfer learning, and leveraging multilingual resources have been crucial
in addressing data scarcity. Successful cross-lingual acoustic modeling leverages data from well-
resourced languages to bootstrap models for under-resourced languages(Besacier, Barnard, Karpov,
& Schultz, 2014). Cantonese, spoken by over 100 million people, is considered a under-resource
language due to the scarcity of standardized textual and audio corpora.

Cantonese, like many other Chinese dialects, belongs to the Sino-Tibetan language family. Trans-
fer learning shows more significant improvements when there are stronger linguistic similarities be-
tween the high-resource language and the under-resource language being trained. Therefore, lever-
aging existing ASR models for Mandarin can provide a solid foundation for developing Cantonese
speech recognition systems. This approach exploits the linguistic commonalities within the Sino-
Tibetan language family, enabling more efficient and accurate model adaptation for Cantonese. To
achieve this, I plan to use the wav2vec 2.0 model.This model’s ability to learn powerful audio rep-
resentations from large amounts of unlabeled data and fine-tune on smaller labeled datasets makes
it particularly suitable for under-resource languages like Cantonese. By fine-tuning a pre-trained
Mandarin ASR model using wav2vec 2.0, we can effectively improve the performance of Cantonese
speech recognition, addressing the challenges posed by the limited resources available for this di-
alect. This method leverages the shared phonetic and phonological features within the Sino-Tibetan
language family, ensuring a robust and efficient adaptation process.

Now that a brief motivation for this research has been presented, the structure of the thesis is
the following: subsection 1.1 introduces the research question posed along with a hypothesis on the
outcome of the research. Section 2 provides an extensive literature review that frames the research
question and hypothesis in the state-of-the-art. In section 3, the methodology is covered and the
underlying models used are explained. Then, section 4 describes the experimental setup developed
to answer the research questions and validate the hypothesis. Section 5 describes the results obtained
in detail and compares them to the baseline. Lastly, section 6 summarizes the thesis and presents the
conclusions drawn, along with recommended future work.

1.1 Research Question and Hypothesis
In light of the preceding discussion, the research question at the core of this study can be formulated
as follows:

Can using pretrained Mandarin wav2vec2 model improve the performance of Can-
tonese ASR than using wav2vec2 XLRS as a pretrained model?

From which the following subquestions are derived:

• What is the baseline CER achieved when using wav2vec2 XLRS as a pretrained model?

• Can the model pretrained on Mandarin improve over the baseline model?

My hypothesis is that using pretrained Mandarin wav2vec2 model and fine-tune it with limited la-
beled Cantonese speech dataset will improve over using wav2vec2 XLRS as pretrained model and
fine-tune it in the same way significantly. The falsification of the hypothesis would suggest that
wav2vec2 XLRS model is better than pretrained Mandarin wav2vec2 model.
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2 Literature Review
This section is dedicated to providing a comprehensive review of the existing research pertaining
to ASR for under-resourced languages, with a specific focus on Cantonese, particularly Guangzhou
Cantonese. The emphasis of this thesis is on the transfer learning approach from Mandarin to Can-
tonese. By conducting a thorough and critical analysis of the literature in this field, this review
aims to offer valuable insights into the methods and effectiveness of applying transfer learning to
Cantonese based on Mandarin models. This approach leverages the linguistic similarities within the
Sino-Tibetan language family to improve ASR performance in low-resource settings. The review
will explore various techniques and models, including the use of state-of-the-art technologies such
as wav2vec 2.0, to demonstrate how they have been applied and the outcomes achieved in enhancing
Cantonese ASR.

To those ends, the section is structured as follows. To begin, I will delineate the keywords used
during the comprehensive literature search described above and describe the inclusion/exclusion
criteria used in selecting the literature. After that, I offer a succinct overview of the key findings and
contributions of the selected papers (in subsections 2.1-2.X).

I have grouped the keywords according to the topic they are related to. The topics are high-
lighted in bold, after which the keywords for that topic are mentioned. Thus, the topics and their
corresponding keywords are:

• Transfer learning: transfer learning ASR, transfer learning speech recognition;

• low-resource language ASR: Cantonese speech recognition, Guangzhou Cantonese, dialect
ASR, Cantonese acoustic modeling;

• Mandarin to Cantonese transfer: Mandarin to Cantonese ASR, Mandarin-based ASR for
Cantonese, language adaptation;

• wav2vec 2.0 and ASR technologies: wav2vec 2.0, self-supervised learning, end-to-end ASR,
neural network models in ASR, speech representation learning;

To streamline the paper selection process, I organized the papers based on their relevance to spe-
cific topics and keywords. However, not all retrieved literature was directly related to the research
question topic. Therefore:

1. To maintain coherence, I excluded papers that pertained to different tasks;

2. To ensure the inclusion of recent research, the publication dates were limited to papers from
2010 onwards. This decision was made to reflect the latest advancements and methodologies
in ASR for under-resourced languages;

These criteria ensured that the literature review was both current and highly relevant to the focus of
this research, providing a solid foundation for understanding the state-of-the-art in ASR technology
and its application to Cantonese.

These keywords guided the literature search and helped identify relevant studies that contribute
to the understanding and advancement of ASR for Cantonese, particularly through the use of transfer
learning from Mandarin.
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Next, I describe the inclusion and exclusion criteria used to select the literature. The inclusion
criteria were: (1) studies focusing on ASR for under-resourced languages, specifically Cantonese,
(2) research involving transfer learning techniques, (3) papers discussing the use of wav2vec 2.0 or
similar advanced models in ASR. The exclusion criteria were: (1) studies not directly related to ASR
or transfer learning, (2) papers lacking sufficient experimental results or methodological details, and
(3) non-English publications.

Following this, I provide an overview of the key findings from the selected papers, organized
by the aforementioned topics. Each subsection (2.1-2.X) will delve into specific aspects such as
the effectiveness of transfer learning techniques, the unique challenges and solutions in developing
Cantonese ASR, and the impact of utilizing advanced models like wav2vec 2.0 on performance
improvements. This structured approach aims to offer a comprehensive understanding of the current
state and future directions of ASR research for Cantonese and other under-resourced languages.

The literature review is organized into different subsections based on the general topics they
cover. Subsection 2.1 discusses the literature regarding low-resource language automatic speech
recognition (ASR), exploring the challenges and methodologies in developing ASR systems for lan-
guages with limited resources. Subsection 2.3 presents an overview of various techniques introduced
to enhance ASR performance, including advanced neural network models especiallly wav2vec2.
Moving towards the broader subfield of multilingual and cross-lingual approaches.

2.1 low resource language Automatic Speech Recognition(ASR)
Low-resource language ASR refers to the development and implementation of automatic speech
recognition systems for languages that lack extensive and high-quality linguistic resources, such
as large annotated datasets, comprehensive lexicons, and robust language models (Besacier et al.,
2014). These languages often have insufficient funding for large-scale data collection and annota-
tion efforts. Although some of these languages may have many speakers and significant cultural
impact, they still suffer from a lack of comprehensive linguistic resources. As a result, they are often
overlooked in the development of ASR systems, primarily due to the lack of commercial incentives.
However, developing ASR for low-resource languages remains critically important as it promotes
equal access to technology and helps preserve diverse cultural heritages (Kwon & Chung, 2023).

To address these challenges, recent studies have explored innovative approaches to improve low-
resource spoken language understanding (SLU) through multitask learning and transfer learning. For
instance, Meeus, Moens, and Van hamme (2022) proposed a multitask learning model that jointly
performs automatic speech recognition (ASR) and either intent classification or sentiment classi-
fication. Their approach showed significant improvements over single-task models, especially in
low-resource scenarios. With as few as two examples per class, their multitask model outperformed
baselines trained on text features or using a pipeline approach. Notably, their model achieved com-
parable performance to an end-to-end model with ten times fewer parameters on sentiment classifi-
cation tasks.

Building on the concept of leveraging larger datasets, Wang, Long, Li, and Wei (2023) introduced
the Aformer architecture for low-resource accented speech recognition. This approach combines a
general encoder trained on large non-accented datasets with an accent encoder adapted to limited
accented data. Their multi-pass training strategy and cross-information fusion methods effectively
utilize both large-scale non-accented and limited accented speech data. This method achieved sig-
nificant improvements in low-resource settings, with up to 24.5% relative WER reduction on unseen
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accents compared to conventional fine-tuning.
These studies demonstrate the potential of multitask learning and transfer learning approaches in

improving SLU and ASR performance for low-resource scenarios, offering promising directions for
future research in this field.

2.1.1 Chinese Dialect Speech Recognition

China is home to a rich tapestry of dialects, many of which are distinct languages from a linguistic
perspective, rather than mere dialects of Mandarin. In southern Chine, the dialects include Can-
tonese, Hakka, and Minnan, possess unique phonetic, lexical, and grammatical features. Among
these, Cantonese is particularly noteworthy due to its widespread use in multiple countries and re-
gions, its significant cultural and political influence, and its distinct dialectal variations developed in
different cultural contexts(Q. Li et al., 2024).

In Guangdong, for instance, Cantonese has developed several regional accents, each with unique
characteristics. Despite these variations, most current Cantonese automatic speech recognition
(ASR) systems focus primarily on recognizing the Hong Kong variant of Cantonese. This narrow
focus can result in suboptimal recognition performance and a lack of robustness in ASR applications
across different Cantonese-speaking regions(Yu et al., 2022).

The Common Voice dataset, developed by Mozilla, addresses this issue by incorporating contri-
butions from speakers with various accents. This crowd-sourced approach ensures that the dataset
includes a wide range of Cantonese accents, thereby maximizing the diversity of Cantonese speech
patterns. By leveraging such a rich and varied dataset, ASR systems can be trained to recognize and
accurately transcribe the different regional accents of Cantonese, leading to more robust and versatile
ASR applications across Guangdong and other Cantonese-speaking areas. This inclusivity is crucial
for improving the overall performance and user experience of Cantonese ASR systems(Ardila et al.,
2020).

2.2 Transfer Learning
Multilingual ASR models have shown great potential in improving recognition performance for low-
resource languages. In a large-scale study covering 51 languages, Pratap et al., 2020 demonstrated
that low-resource languages can significantly benefit from joint multilingual training. Their multi-
headed model achieved an average relative Word Error Rate (WER) reduction of 28.76% on low-
resource languages. Furthermore, they proved that such multilingual models can effectively transfer
to unseen low-resource languages, further improving recognition performance.

Building on these findings, recent approaches to low-resource ASR have explored multilingual
training strategies to leverage shared acoustic and linguistic properties across languages. For in-
stance, Diwan et al., 2021 demonstrated this approach using six Indian languages from different
language families. Their work employed hybrid DNN-HMM models, specifically time-delay neural
networks (TDNNs) with the lattice-free MMI objective function for acoustic modeling. Addition-
ally, they showed that transfer learning, where pre-trained multilingual models are fine-tuned on new
low-resource languages, can significantly improve ASR performance with limited data.

Transfer learning has further shown significant promise in improving ASR performance for low-
resource languages. In particular, the use of self-supervised pre-trained models, such as wav2vec
2.0 (Baevski, Zhou, Mohamed, & Auli, 2020b), has emerged as a powerful approach. Bartelds
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and Wieling (Bartelds & Wieling, 2022) demonstrated the effectiveness of fine-tuning wav2vec 2.0
models for low-resource ASR tasks. Building on this, recent work by Bartelds, San, McDonnell,
Jurafsky, & Wieling, 2023 explored the application of the multilingual XLS-R model, which is
based on the wav2vec 2.0 architecture, to extremely low-resource scenarios. They found that fine-
tuning this pre-trained model on as little as 24 minutes of transcribed speech from the target language
could yield substantial improvements over traditional approaches. Furthermore, they investigated the
potential of continued pre-training on the target language, although the gains from this method were
limited compared to the computational cost. These findings underscore the power of transfer learning
from large-scale multilingual models to resource-scarce languages, particularly when leveraging the
wav2vec 2.0 architecture.

Additionally, Gupta & Boulianne, 2022 explored multilingual training approaches for low-resource
ASR, focusing on three morphologically complex languages: Kurmanji Kurdish, Cree, and Inuktut.
They investigated the transfer of knowledge from 12 languages by comparing separate language-
specific phone sets versus merged common phones, finding that the optimal strategy varies depend-
ing on the target language. The authors demonstrated significant improvements through transfer
learning, achieving word error rate (WER) reductions of up to 10.5% absolute for Kurmanji Kurdish
and 8.6% absolute for Inuktut compared to monolingual training. Furthermore, they showed that
fine-tuning the multilingual model with target language data for just one epoch can lead to substan-
tial WER reductions, highlighting the effectiveness of transfer learning in low-resource scenarios.

While these transfer learning approaches have shown significant promise, the field of ASR con-
tinues to evolve rapidly with the development of more advanced models. These state-of-the-art
models leverage self-supervised learning and large-scale training to further improve performance,
especially in low-resource scenarios. Among these models, wav2vec 2.0 stands out for its effective-
ness in low-resource settings and will be the focus of our study.

2.3 State-of-the-Art ASR Models
In the field of automatic speech recognition (ASR), significant advancements have been made with
the development of models like wav2vec2 and Whisper. This section will provide an overview of
many cutting-edge ASR models, highlighting their development, architecture, and contributions to
the field.

2.3.1 Wav2vec Development History

wav2vec: The original wav2vec model introduced a self-supervised framework for learning speech
representations directly from raw audio data. It focused on predicting future audio samples from
past ones, using a contrastive loss to distinguish between true and false samples. This model demon-
strated that useful speech features could be learned without extensive labeled data, setting the stage
for future developments in unsupervised and self-supervised learning for ASR.(Schneider, Baevski,
Collobert, and Auli (2019))
wav2vec2: Building on the success of wav2vec, the wav2vec2 model introduced several key im-
provements. baevski(Baevski et al. (2020b)) utilized a two-stage training process: self-supervised
pretraining on unlabeled audio followed by supervised fine-tuning on a smaller labeled dataset. The
model architecture incorporated a convolutional neural network (CNN) feature encoder and a trans-
former network, enabling it to capture more complex and contextually rich speech representations.
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The wav2vec2 model significantly improved ASR performance, especially in low-resource settings
where labeled data is scarce.
wav2vec2 XLSR: The wav2vec2 XLSR (Cross-Lingual Speech Representation) model represents a
further advancement, specifically designed for multilingual ASR. This model is pretrained on a large,
diverse set of languages, leveraging cross-lingual transfer to improve recognition performance across
different languages. By learning from a wide array of linguistic data, wav2vec2 XLSR is particu-
larly effective for low-resource languages, benefiting from the shared features across languages.(von
Platen (2021))

2.3.2 wav2vec 2.0 Architecture

wav2vec 2.0 consists of a multi-layer convolutional feature encoder that transforms raw audio into
latent speech representations. These representations are then passed through a Transformer-based
context network, which generates contextualized embeddings by capturing long-range dependencies
in the audio sequence. The model also includes a quantization module that discretizes the latent
speech representations, which are used as targets during pre-training.(Schneider et al. (2019))

In conclusion, the advancements in the wav2vec framework, particularly with the introduction
of wav2vec 2.0 and XLSR, offer promising solutions for improving ASR systems in low-resource
languages. By leveraging these state-of-the-art models, we aim to enhance the recognition perfor-
mance and robustness of Cantonese ASR, contributing to the preservation and accessibility of this
linguistically rich language.

2.3.3 Other Notable ASR Models

While our study focuses on wav2vec 2.0, it’s important to contextualize it within the broader land-
scape of ASR models:

Hinton et al. (2012) introduce several significant architectural innovations in acoustic modeling
for automatic speech recognition (ASR) using deep neural networks (DNNs). The key advancements
include the use of deep belief networks (DBNs) for unsupervised pre-training of DNNs, which ini-
tializes network weights through layer-wise stacking of restricted Boltzmann machines (RBMs),
addressing the challenges of training deep architectures.

The authors propose replacing traditional Gaussian mixture models (GMMs) with multi-layer
DNNs, typically consisting of 5-7 layers, enabling more complex feature representations. A crucial
innovation is the integration of DNNs with hidden Markov models (HMMs) to form hybrid DNN-
HMM systems, where DNNs compute posterior probabilities of HMM states. Hinton et al. employ
context-dependent states as output targets, often numbering in the thousands, enhancing discrimina-
tive capability. They also utilize extended context windows for input features, usually spanning 11
frames, to better capture long-term speech dependencies. In some tasks, they show that log mel-filter
bank features outperform traditional MFCCs as DNN inputs.

The paper also introduces an autoencoder bottleneck (AE-BN) feature extraction method for
GMM-HMM systems and explores the application of convolutional neural networks in speech recog-
nition, particularly using convolution and pooling operations in the frequency domain. These innova-
tions collectively lead to significant performance improvements in ASR systems, consistently outper-
forming traditional GMM-HMM approaches across various benchmark tests including Switchboard,
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Bing Voice Search, and Google Voice Input. The proposed approaches demonstrate effectiveness and
robustness in large vocabulary continuous speech recognition tasks.

Similar to wav2vec2, Whisper, developed by OpenAI, is another notable ASR model that has
been applied to low-resource scenarios. Whisper was trained on a large and diverse dataset, com-
prising 680,000 hours of supervised multilingual and multitask data. This extensive training al-
lows Whisper to perform well in various acoustic conditions and linguistic contexts (Radford et al.
(2022a)).

Whisper’s zero-shot learning capability is particularly noteworthy. It can significantly reduce
error rates across different datasets and languages without needing fine-tuning for specific datasets.
Whisper achieves a 50% reduction in errors compared to other models in zero-shot settings. Addi-
tionally, Whisper is capable of handling multiple tasks such as speech transcription, voice activity
detection, and speaker diarization, which simplifies the overall speech processing pipeline (Radford
et al. (2022a)).

In another study, Whisper demonstrated robustness in noisy environments and with adversar-
ial inputs, maintaining high accuracy and low WER under challenging conditions (Radford et al.
(2022b)). These attributes make Whisper a powerful tool for ASR, particularly in low-resource and
multilingual scenarios.

In addition to transfer learning approaches, significant progress has been made in the develop-
ment of end-to-end Automatic Speech Recognition (ASR) models. These models aim to simplify
the ASR pipeline by directly mapping input audio to text, eliminating the need for separate acous-
tic, pronunciation, and language models. A notable contribution in this area is the Jasper model,
introduced by J. Li et al. (2019). Jasper is an end-to-end convolutional neural acoustic model that
achieves state-of-the-art results on LibriSpeech among models without external language models.
The authors demonstrate that deep convolutional neural networks can be highly effective for ASR
tasks, challenging the notion that recurrent or transformer-based models are necessary for achieving
top performance. Jasper’s architecture, consisting of blocks of 1D convolutions, batch normaliza-
tion, ReLU, and dropout, provides a streamlined approach to ASR that is both efficient and accurate.
This work exemplifies the ongoing trend towards more integrated and efficient ASR systems, poten-
tially offering new avenues for improving recognition in low-resource scenarios.

The choice of wav2vec2 as the model for our experiments is driven by its proven effectiveness
in low-resource settings, robust architecture, and successful application in various languages. The
advancements in the wav2vec framework, particularly with the introduction of wav2vec 2.0 and
XLSR, provide a solid foundation for enhancing Cantonese ASR. By leveraging these state-of-the-
art models, we aim to enhance the recognition performance and robustness of Cantonese ASR, con-
tributing to the preservation and accessibility of this linguistically rich language. Wav2vec 2.0’s
self-supervised learning approach allows it to leverage large amounts of unlabeled data, making it
particularly suitable for languages with limited transcribed resources. Its proven effectiveness in
low-resource settings, robust architecture, and successful application in various languages make it
an ideal choice for our experiments on Cantonese ASR.
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3 methodology
In this section, I will outline the methodology used to address the research question and validate the
hypothesis on a high level. First, in subsection 3.1, I will discuss the datasets utilized for training and
testing the models. Next, subsection 3.2 will focus on the feature extractor employed in the models,
namely wav2vec 2.0. Following that, in subsection 3.2.1, I will delve into the XLSR models and
provide a comparative analysis. Subsection 3.3 will then elaborate on the evaluation method and
metric employed, specifically the character error rate (CER), and justify why CER is preferred over
word error rate (WER) for Cantonese. Finally, in subsection 3.4.2, I will illustrate the concrete steps
of the experiments.

3.1 Dataset
3.1.1 Common Voice dataset

For this study, I utilized the Common Voice dataset developed by Mozilla. Common Voice is an
open-source, multilingual voice dataset designed to address the under-representation of various lan-
guages and demographics in voice technology. The data collection process is community-driven,
involving volunteers who contribute voice recordings by reading predefined sentences in their native
languages. This crowd-sourced approach creates a more diverse and extensive dataset compared to
most commercial datasets, and it has been particularly beneficial in gathering and organizing speech
data for under-resourced languages and dialects.

As of the latest release, the Common Voice dataset comprises over 31,000 recorded hours of
voice data, with more than 20,000 validated hours covering 124 languages. Each data entry consists
of an MP3 audio file and its corresponding text file, accompanied by demographic metadata such
as age, sex, and accent. This rich dataset allows for comprehensive analysis and training of speech
recognition models, ensuring inclusivity and diversity.

Despite making it possible to collect a significant amount of speech data for low-resource lan-
guages, the quantity and quality of data still vary greatly among different languages. For exam-
ple, the Common Voice dataset includes over 2,000 hours of English recordings and more than
1,000 hours of Mandarin recordings. In contrast, Cantonese only has about 177 hours, and Minnan
(Hokkien) even less, with only around 22 hours. This discrepancy highlights the ongoing challenges
in achieving balanced and comprehensive language representation in speech datasets.

Utilizing the Common Voice Cantonese dataset allows me to leverage both the pre-existing Man-
darin ASR model and the extensive Cantonese-specific data. This approach aims to enhance the
performance of the Cantonese ASR system by incorporating the linguistic similarities between Man-
darin and Cantonese, thus making efficient use of available resources and addressing the challenges
associated with low-resource languages.

3.2 Model Framework - wav2vec 2.0
Wav2Vec 2.0, developed by Facebook AI, introduces a novel approach to Automatic Speech Recog-
nition (ASR) through self-supervised learning. As illustrated in Figure 1, the model architecture
comprises three main components: a shared CNN encoder, a shared quantizer, and a shared Trans-
former encoder.
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Figure 1: The model structure of wav2vec2

Shared CNN Encoder: The CNN encoder processes the raw audio waveform, extracting latent
speech representations. These representations are crucial for capturing the essential features of the
audio signal.

Shared Quantizer: The quantizer discretizes the latent speech representations into a finite set of
learned speech units. This step helps in transforming continuous audio signals into discrete repre-
sentations that are easier to handle in subsequent steps.

Shared Transformer Encoder: The Transformer encoder further processes these quantized rep-
resentations to capture long-range dependencies and contextual information. are easier to handle in
subsequent steps.

During pre-training, the model solves a contrastive task, which involves distinguishing true la-
tent speech representations from distractors. This self-supervised pre-training enables Wav2Vec 2.0
to learn powerful audio representations from unlabeled audio data. These representations can then
be fine-tuned with labeled data for specific ASR tasks, significantly improving the model’s perfor-
mance.

The Gaussian Error Linear Unit (GELU) is an activation function used in neural networks, par-
ticularly in Transformer models like Wav2Vec 2.0. The GELU activation function is defined by the
formula:

GELU(x) = xP(X ≤ x) = xφ(x)

where Φ(x) is the cumulative distribution function (CDF) of the standard normal distribution.

Explanation of the Formula

• x is the input to the activation function.

• P(X ≤ x) represents the probability that a standard normal random variable X is less than or
equal to x.

• Φ(x) is the cumulative distribution function (CDF) of the standard normal distribution.

The GELU activation function combines linear and non-linear components, preserving the prop-
erties of the input signal while introducing smooth non-linearity. This helps reduce the likelihood
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of dead neurons and enhances the model’s learning capabilities. By integrating the GELU activation
function, models like Wav2Vec 2.0 benefit from improved convergence and performance, contribut-
ing to state-of-the-art results in speech recognition tasks.

3.2.1 Large-Scale Cross-Lingual Models - XLSR-53 & XLS-R

The XLSR (cross-lingual speech representations) model extends this approach by pre-training on
multiple languages, thereby enhancing its ability to generalize across different linguistic contexts.
This multilingual pre-training framework has shown promising results in cross-lingual and low-
resource ASR tasks, making it a suitable candidate for fine-tuning on Cantonese speech recognition.

3.3 Evaluation - Character Error Rate
In this study, the evaluation of the Cantonese Automatic Speech Recognition (ASR) system is con-
ducted using Character Error Rate (CER) rather than Word Error Rate (WER). The primary reason
for this choice lies in the unique linguistic characteristics of Cantonese, which make CER a more
suitable and accurate metric for assessing ASR performance. Character Error Rate (CER) is a com-
mon metric used to evaluate the performance of Automatic Speech Recognition (ASR) systems.
CER is calculated by comparing the recognized text (hypothesis) with the reference text (ground
truth) at the character level. The formula for CER takes into account the number of substitutions (S),
deletions (D), and insertions (I) needed to transform the hypothesis into the reference text, divided
by the total number of characters (N) in the reference text.

CER =
S+D+ I

N
(1)

where:

• S is the number of substitutions,

• D is the number of deletions,

• I is the number of insertions,

• N is the total number of characters in the reference text.

Cantonese, like Mandarin Chinese, does not use spaces to separate words in written text. Instead, it
relies on characters that form words and phrases, which can vary significantly in length and meaning.
This lack of clear word boundaries complicates the use of WER, as it is based on the accurate recog-
nition of individual words, typically separated by spaces in languages such as English. In contrast,
CER measures the accuracy at the character level, evaluating the number of character insertions,
deletions, and substitutions needed to match the reference text.

Furthermore, the use of CER is particularly relevant for Cantonese ASR due to the high vari-
ability and complexity of Cantonese characters. These characters often carry significant meaning on
their own, and errors at the character level can drastically alter the intended message. By focusing on
CER, we ensure a more granular and precise assessment of the ASR system’s performance, capturing
the nuances of character recognition that are critical for accurate transcription in Cantonese.
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3.4 Training Setup
In this subsection, I will provide details about the setup and configuration used for training the speech
recognition models. The code for my model is publicly accessible on GitHub1.

3.4.1 Model Configuration

The model configuration for both the baseline and transfer learning models is designed to leverage
the powerful capabilities of the Wav2Vec 2.0 architecture and the XLSR model for cross-lingual
speech recognition tasks.

• Architecture: Both models are based on the Wav2Vec 2.0 architecture, utilizing the XLSR
model pre-trained on multiple languages. The architecture consists of 24 hidden layers, each
with a hidden size of 1024 units and 16 attention heads. Activation functions used include
GELU, with layer normalization and dropout techniques applied to improve model robustness
and generalization.

• Pre-trained Weights: The models are initialized with pre-trained weights from the Wav2Vec
2.0 and XLSR models. For the baseline model, the pre-trained weights are from ”face-
bookwav2vec2-large-xlsr-53”. The transfer learning model uses weights fine-tuned on Man-
darin data, with additional tokens added for commonly used Cantonese characters. This
Mandarin-wav2vec2.0 model is pre-trained using 1000 hours of data from the AISHELL-2
dataset Du, Na, Liu, and Bu (2018). This pre-training process involves using the wav2vec 2.0
framework, which is a self-supervised learning approach allowing the model to leverage large
amounts of unlabeled speech data. The detailed steps for pre-training include segmenting raw
audio into discrete units and training the model to predict these units from masked segments
of the audio Lu and Chen (2022). This model is then fine-tuned on 178 hours of labeled data
from the AISHELL-1 dataset Bu, Du, Na, Wu, and Zheng (2017) to improve its performance
for Mandarin ASR tasks2.

• Hyperparameters: Key hyperparameters include a learning rate of 3× 10−4, batch size ad-
justed through gradient accumulation steps (effectively increasing the batch size without re-
quiring additional memory), and the number of training epochs set to 40. Optimization is
performed using the Adam optimizer, with a warm-up period of 500 steps to stabilize training.
Dropout rates for attention and hidden layers are set to 0.1, with additional configuration for
gradient checkpointing to manage memory usage during training.

3.4.2 Training Process

• Data Loading: The training and validation datasets are loaded from the local disk using the
load from disk function. Unnecessary columns such as ”accent,” ”age,” and ”up votes” are
removed to streamline the dataset. Special characters are filtered out from the text data to
ensure clean input for training. The audio files are resampled to a uniform sampling rate of

1https://github.com/Erin-lab-design/Cantonese-ASR-Wav2vec2-XLRS-transfer-learning-project
2The pre-trained Mandarin-wav2vec2.0 model is publicly available at https://github.com/kehanlu/mandarin

-wav2vec2

https://github.com/Erin-lab-design/Cantonese-ASR-Wav2vec2-XLRS-transfer-learning-project
https://github.com/kehanlu/mandarin-wav2vec2
https://github.com/kehanlu/mandarin-wav2vec2
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16 kHz to maintain consistency. A custom vocabulary is created from the dataset and used
to tokenize the data. This preprocessing ensures that the model receives high-quality and
standardized input data.

• Optimization: The optimization of the model is performed using the Adam optimizer with
a learning rate of 3× 10−4. The learning rate is warmed up over the first 500 steps to allow
the model to adjust gradually to the training data. Gradient accumulation is used to effectively
increase the batch size without requiring additional memory, which is particularly useful given
the large size of the model and the extensive dataset. These techniques help in efficiently
updating the model weights and improving the training stability and convergence.

• Validation: The validation process includes evaluating the model’s performance at regular
intervals during training. Specifically, the Character Error Rate (CER) metric is computed
on the validation set every 400 steps. This frequent evaluation allows for monitoring the
model’s progress and making necessary adjustments during training. The CER is calculated
by comparing the predicted transcriptions to the ground truth labels, providing a measure of the
model’s accuracy at the character level. This metric is particularly suitable for the Cantonese
language due to its unique linguistic characteristics.

3.5 Objective
This study aims to develop a robust ASR system for Cantonese by fine-tuning the Wav2Vec 2.0
XLSR-53 model on the Common Voice Cantonese dataset as a baseline model. Following this,
transfer learning techniques are employed using an existing Mandarin ASR model, specifically the
Wav2Vec 2.0 model fine-tuned on Mandarin, and applying the same Cantonese dataset for further
fine-tuning. The primary objectives include:

• Evaluating the performance of the fine-tuned XLSR-53 model on Cantonese ASR tasks as the
baseline.

• Investigating the impact of applying transfer learning from the Mandarin ASR model to Can-
tonese on model performance.

• Identifying potential challenges and proposing solutions for improving Cantonese ASR sys-
tems.

By addressing these objectives, this research seeks to contribute to the broader effort of developing
effective ASR systems for low-resource languages and dialects, ultimately enhancing the accessibil-
ity of speech recognition technology to a more diverse range of speakers.

This concludes the methodology section which explains at a high-level the methods employed
during this research. In the next section, the experimental setup will be presented which will include
more low-level details about the dataset used and the parameters of the models.





Section 4 EXPERIMENTAL SETUP 25

4 Experimental Setup

4.1 Overview
In this section, I provide a detailed breakdown of the experimental setup used for our study on
Cantonese Automatic Speech Recognition (ASR) using the Wav2Vec2.0 XLSR-53 model. The sub-
sections cover the following aspects:

• Training Setup: This part details the baseline and transfer learning models, data splitting
strategy, and dataset used for training and evaluation.

• Experimental Setup: Here, I discuss the hardware and software environment, including the
computing resources, frameworks, and dependencies used for the experiments.

• Training and Evaluation Process: This subsection outlines the training procedures, evalu-
ation methods, and performance monitoring strategies employed to assess the models’ effec-
tiveness.

Each subsection is designed to provide a thorough understanding of the methodologies and tools
applied in this research, ensuring transparency and reproducibility of the results.

4.2 Training Setup
4.2.1 Baseline Model - XLSR-53 Fine-Tuning

For the baseline model, I utilize the Wav2Vec2.0 XLSR-53, pre-trained on 53 languages, and fine-
tune it with the Common Voice Cantonese dataset. This step serves as the foundation for evaluating
the initial performance of cross-lingual transfer learning for Cantonese ASR.

4.2.2 Transfer Learning Model - XLSR-53 Fine-Tuned on Mandarin

Next, I fine-tune the XLSR-53 model, which has been pre-trained on Mandarin, using the Common
Voice Yue dataset. This model aims to leverage the linguistic similarities between Mandarin and
Cantonese to improve performance.

4.2.3 Data Splitting and Subsets

The dataset used for this study is the Common Voice Cantonese dataset as of March 2024, with a
total duration of approximately 177 hours.

To ensure a balanced evaluation, the dataset was split into three subsets:

• Train Dataset: Consisting of 80% of the total data, the training dataset contains about 142
hours of audio.

• Dev Dataset: The development dataset, used for validation during training, makes up 10% of
the total data and contains round 17 hours of audio.

• Test Dataset: The test dataset, also comprising 10% of the total data, is used to evaluate the
final model performance and contains round 17 hours of audio.
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This splitting strategy ensures that the model is trained, validated, and tested on distinct and appro-
priately proportioned datasets, facilitating robust and reliable performance assessment.

4.2.4 Hardware

• Computing Resources: The experiments were conducted using computing resources with 64
GB of GPU memory. Jobs were submitted to a cluster with these specifications to ensure
adequate processing power for the models.

4.2.5 Software Environment

• Frameworks and Libraries: The models were implemented using PyTorch and the Hugging
Face Transformers library.

• Dependencies: Key dependencies include Python 3.6.8, PyTorch 1.10.1, and Transformers
4.18.0. Additional libraries used for data handling and processing include NumPy 1.19.5,
pandas 1.1.5, and SciPy 1.5.4. The dataset management and processing were facilitated
using the datasets library version 2.4.0. Other notable libraries include torchaudio 0.10.1
for audio processing, librosa 0.9.2 for music and audio analysis, and pycantonese 3.3.1 for
handling Cantonese language data.

• Operating System: The experiments were conducted on a Linux system with kernel version
4.18.0-513.24.1.el8 9.x86 64, indicating a variant of Red Hat Enterprise Linux (RHEL) 8 or
CentOS 8.

4.3 Training and Evaluation Process
4.3.1 Training Procedure

The training procedure for each model would be illustrated as follows:
Recreate the Wav2Vec2 Cantonese model: The baseline model for this study is fine-tuned from

the Wav2Vec2.0 XLSR -53 model. The pre-trained model used for this process can be accessed at
the huggingface3. The training script I used to reproduce the model is available on GitHub4. For the
baseline model, I utilized the Wav2Vec2.0 XLSR - 53, pre-trained on 53 languages. This model was
fine-tuned on the Common Voice Cantonese dataset. The fine-tuning process involved training the
model over 40 epochs. The training script was executed as follows: After setting up the necessary
environment and dependencies, the pre-trained XLSR-53 model was loaded and fine-tuned using the
specified Cantonese dataset. The model parameters were updated through back-propagation over 40
epochs, allowing the model to learn the characteristics of Cantonese speech. This process was crucial
in adapting the multilingual pre-trained model to perform well on Cantonese ASR tasks.

Transfer Learning Model - XLSR-53 Fine-Tuned on Mandarin: For the transfer learning
model, I utilized a Wav2Vec2.0 XLSR-53 model that had been specifically fine-tuned on Mandarin.
The pre-trained Mandarin model used as the starting point for this fine-tuning process can be found

3Wav2vec2 XLRS Cantonese model is on: https://huggingface.co/ctl/wav2vec2-large-xlsr-cantonese
4Training script available at: https://github.com/chutaklee/CantoASR/blob/main

https://huggingface.co/ctl/wav2vec2-large-xlsr-cantonese
https://github.com/chutaklee/CantoASR/blob/main
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at the huggingface main page5. This approach leverages the model’s ability to learn general acoustic
features across multiple languages, combined with the linguistic similarities between Mandarin and
Cantonese, to potentially enhance ASR performance for Cantonese.

To address the challenge of recognizing Cantonese-specific characters not included in the Man-
darin fine-tuned model’s vocabulary, I extracted characters from Cantonese Wikipedia articles that
were missing from the model’s existing vocab.json. These additional characters include many
commonly used Cantonese expressions and colloquial terms, essential for accurate Cantonese ASR.

The same Common Voice Cantonese dataset used for the baseline model was employed to fine-
tune this transfer learning model, ensuring a consistent basis for comparison. The training process
involved running 40 epochs, during which the model parameters were updated to learn the specific
features of Cantonese speech. The best model was saved based on the lowest Character Error Rate
(CER) achieved during the training process.

4.3.2 Evaluation Method

The evaluation of the models is conducted using the Character Error Rate (CER) metric, which is
calculated by comparing the predicted transcriptions to the ground truth labels at the character level.
This metric is particularly suitable for Cantonese due to its unique linguistic characteristics.

• Validation Frequency: The CER is computed on the validation set at the end of each epoch.
This frequent evaluation allows for monitoring the model’s progress and making necessary
adjustments during training.

• Performance Monitoring: The performance of the models is logged using Weights & Biases
(W&B), providing real-time monitoring and comparison of different runs. Detailed logs cap-
ture essential information such as training and validation metrics, system resource utilization,
and any anomalies encountered during the runs.

• Hyperparameter Tuning: Automated hyperparameter tuning is conducted using tools such
as Optuna, allowing systematic exploration of the hyperparameter space to identify optimal
settings for the models.

This section provides a comprehensive overview of the training and evaluation processes for both
the baseline and transfer learning models, detailing the key steps and methods used to ensure robust
and reliable ASR performance.

5The pre-trained Mandarin model: https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53
-chinese-zh-cn

https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn
https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn
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5 Results & Discussion

5.1 Results
This section presents the results of our experimental setup, comparing the performance of the base-
line model and the transfer learning model on Cantonese Automatic Speech Recognition (ASR). The
comparison is based on three key metrics: training loss, evaluation loss, and Character Error Rate
(CER).

Training Loss Comparison: The training loss for both models across 40 epochs is illustrated
in Figure 2. The baseline model, fine-tuned from the Wav2Vec2.0 XLSR-53 pretrained on 53 lan-
guages, shows a higher initial training loss which decreases significantly over the epochs. The
transfer learning model, fine-tuned from the Wav2Vec2.0 XLSR-53 pretrained on Mandarin, demon-
strates a much lower initial training loss and converges more quickly. This indicates that the transfer
learning model benefits from the linguistic similarities between Mandarin and Cantonese, leading to
faster adaptation during training.

Figure 2: Training Loss Comparison between Baseline and Transfer Learning Models

Evaluation Loss Comparison: Figure 3 presents the evaluation loss for both models. Similar
to the training loss, the transfer learning model achieves much lower evaluation loss compared to
the baseline model at the starting point and the early stage of the training. But the baseline model
converges a little bit better than the transfer learning one afterwards. This suggests that the transfer
learning model trains faster but may not generalizes better to unseen data during validation compared
to the baseline one.

Figure 3: Evaluation Loss Comparison between Baseline and Transfer Learning Models



Section 5 RESULTS & DISCUSSION 30

Evaluation Character Error Rate (CER) Comparison: The CER is a critical metric for
assessing the performance of ASR models. Figure 4 shows the CER for both models over the
epochs. The transfer learning model consistently outperforms the baseline model, achieving lower
CER values across most epochs. And at the end of the training process the transfer learning model
still get apparent lower CER results than the other, with the transfer learning model gets around
0.2 CER while the baseline model gets a CER about 0.3. This demonstrates the effectiveness of
leveraging the pre-trained Mandarin model to enhance the ASR performance for Cantonese.

Figure 4: Evaluation CER Comparison between Baseline and Transfer Learning Models

5.2 Discussion
This finding validates our hypothesis that leveraging a pre-trained Mandarin wav2vec2 model would
improve the performance of Cantonese ASR. The lower initial training loss and faster convergence
observed in the transfer learning model suggest that it benefits from the linguistic similarities be-
tween Mandarin and Cantonese. This supports the notion that cross-lingual transfer learning can be
particularly effective when the source and target languages share phonetic and syntactic characteris-
tics.

The results indicate several key advantages of the transfer learning approach. The transfer learn-
ing model demonstrates much lower initial training loss and faster convergence compared to the
baseline model, indicating enhanced training efficiency. Despite a slight advantage of the base-
line model in validation loss during later stages of training, the transfer learning model consistently
achieves better Character Error Rate (CER), suggesting a robust generalization ability to unseen
data. The significant reduction in CER from around 0.3 to around 0.2 at the last epoch highlights the
superior overall performance of the transfer learning model.

These findings underscore the potential benefits of cross-lingual transfer learning, particularly
between linguistically similar languages. The use of a pre-trained Mandarin model provides a strong
foundation for recognizing Cantonese speech, demonstrating how prior knowledge from a related
language can be effectively transferred to improve ASR performance. This approach not only en-
hances the training process but also contributes to the development of more inclusive and diverse
speech recognition systems, capable of supporting under-resourced languages and dialects. In con-
clusion, the study confirms that a pre-trained Mandarin wav2vec2 model, when fine-tuned with
Cantonese data, significantly outperforms the baseline model pre-trained on multiple languages.
This validates the effectiveness of cross-lingual transfer learning and highlights its potential in mul-
tilingual ASR tasks. The results emphasize the importance of leveraging linguistic similarities to
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improve model performance and advance speech recognition technology for under-represented lan-
guages.

This integrated discussion encapsulates the results, validates the hypothesis, and highlights the
implications and benefits of the research, providing a comprehensive understanding of the study’s
outcomes and significance.
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6 Conclusion
This section provides a comprehensive illustration of the key aspects and outcomes of the study. It
is divided into three main parts: Challenges, Limitations and Recommendations, and Future Work.

6.1 Challenges
Throughout the course of this study, several significant challenges were encountered, primarily re-
lated to technical capabilities and data handling. These challenges are outlined as follows:

Technical Challenges in Code and Environment Configuration: The most substantial chal-
lenge I faced was related to my coding skills, particularly in configuring the necessary environment
for the experiments. The existing Python version on the server did not support some of the required
packages, which necessitated the search for and implementation of alternative solutions. Managing
the dependencies between various packages and Python versions proved to be exceptionally time-
consuming and demanding. Resolving these compatibility issues consumed a considerable amount
of effort and focus, often requiring creative problem-solving to find suitable alternatives that would
not compromise the functionality of the experimental setup.

Data Collection and Processing Issues: Another significant challenge was related to the col-
lection and processing of the dataset. Initially, the available disk space on the server was insufficient
to download the entire Common Voice dataset directly. As a workaround, I resorted to using a series
of .arrow files, which are essentially cache files, to load the dataset in parts. This method, while
effective temporarily, was not ideal. Eventually, I managed to secure additional disk space, which
allowed for the full download and proper handling of the dataset.

Challenges in Tokenization and Model Adaptation for Cantonese: When incorporating Can-
tonese tokens into the pre-trained Mandarin model, I faced significant challenges in the task of
gathering appropriate Cantonese text proved to be more complex than initially anticipated. Unlike
Mandarin, which has abundant standardized text resources, Cantonese, being primarily a spoken
dialect, lacks a standardized written form and has limited digital text corpora.

The process of organizing the collected text into usable tokens was equally challenging. Can-
tonese, with its unique phonetic and tonal system, required careful consideration in tokenization.
The technical aspects of this task stretched the limits of my coding abilities. It required scripting for
web scraping to gather Cantonese text from various online sources, such as wikipedia. Data cleaning
was another crucial step, involving the normalization of different written forms of Cantonese, and
removing punctuations. For the tokenization process itself, I had to modify the existing tokenizer to
recognize and properly handle Cantonese-specific tokens while maintaining compatibility with the
pre-trained Mandarin model.

Despite these challenges, the study successfully demonstrated the potential of using a pre-trained
Mandarin wav2vec2 model to improve Cantonese ASR. The experience underscored the impor-
tance of robust coding skills and adequate computational resources in conducting advanced machine
learning research. Future work could focus on overcoming these technical barriers and exploring the
integration of auxiliary language models to further enhance ASR performance.
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6.2 Limitations and Recommendations:
A notable limitation of this study is the absence of fixed random seeds during experiments. This
omission affects the reproducibility of the results, as variations in randomness can lead to different
outcomes in data shuffling, weight initialization, and training processes. Consequently, it may be
challenging for others to replicate the exact findings of this study. Future research should incorporate
fixed random seeds to ensure consistent and reproducible results.

Due to time constraints, both models were only trained for about 40 epochs. While further train-
ing could potentially yield better results, the current performance is sufficiently robust for effective
comparative analysis.

Another limitation of the study is the exclusive reliance on Character Error Rate (CER) as the
evaluation metric. While CER is useful, it does not provide a complete picture of the model’s perfor-
mance. Other metrics, such as Word Error Rate (WER), Phoneme Error Rate (PER), and Sentence
Error Rate (SER), can offer additional insights. For instance, in Cantonese speech recognition, WER
can effectively gauge the overall sentence recognition accuracy, as it assesses word-level errors and
thus captures practical usability issues of the ASR system. PER, on the other hand, provides a finer
granularity by focusing on phonetic accuracy, which might show lower error rates if many recog-
nized phonemes are correct, even if the resulting characters are incorrect.

Additionally, employing different methods of calculating CER, such as the Levenshtein distance,
offers advantages by accounting for insertions, deletions, and substitutions needed to transform one
string into another. This approach gives a more detailed measure of the similarity between the tran-
scribed text and the reference, thereby providing a nuanced understanding of the model’s accuracy.

Including a range of these metrics would yield a more comprehensive assessment of the models’
performance, helping to identify specific strengths and weaknesses in different aspects of speech
recognition. This multi-metric approach would facilitate a more nuanced understanding and guide
more targeted improvements in future research.

Last but not least, one significant limitation I encountered in this research was the inability to
successfully integrate a language model with the acoustic model, despite extensive efforts. Initially,
I trained a Cantonese BERT language model with the intention of incorporating it into the post-
processing stage of the ASR pipeline. This approach was motivated by my observation that while
the ASR system often made accurate phonetic predictions, it frequently selected incorrect characters
due to the high degree of homophony in Cantonese.

My goal was to develop an end-to-end acoustic-language joint model, combining the strengths of
the wav2vec2.0-based acoustic model with the contextual understanding provided by the Cantonese
BERT model. In theory, this integrated approach would allow for more holistic processing of speech
input, considering both acoustic features and linguistic context simultaneously.

However, I faced significant technical challenges in implementing this joint model:

• Lack of computational resources for training joint ASR model

• Integrating the fundamentally different architectures of wav2vec2.0 and BERT models

• Developing an effective algorithm for joint inference

Despite dedicating approximately four weeks to this endeavor, I was unable to overcome these hur-
dles within the project’s timeframe and available resources. Consequently, I had to abandon the
planned end-to-end acoustic-language joint model.
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If given more time, additional computational resources, and access to a wider range of Python
versions on the server, I believe I could potentially complete this integration. Extended time would
allow for more thorough exploration of different integration techniques and optimization strategies.
Greater computational resources would enable more extensive experimentation with model archi-
tectures and hyperparameters. Access to various Python versions would provide flexibility in using
different libraries and frameworks that might be crucial for successful integration. Furthermore, with
these additional resources, I could explore more sophisticated approaches such as:

• Developing custom layers or modules to bridge the gap between acoustic and language models

• Implementing more advanced training techniques to better align the two models

• Experimenting with alternative language model architectures that might be more compatible
with the acoustic model

• Investigating dynamic fusion techniques that adaptively balance the contributions of acoustic
and linguistic information

While the implementation of this joint model remains an aspirational goal, the insights gained from
this attempt have deepened my understanding of the challenges in integrating acoustic and linguistic
processing in ASR systems. Future work in this area could build upon these lessons, potentially
leading to more effective and efficient ASR systems for Cantonese and other languages with complex
phonological characteristics.
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6.3 Future Work
Future work will explore several promising directions to enhance ASR systems for under-resourced
languages. This includes investigating the efficacy of transfer learning for Hokkien ASR using a
Mandarin pre-trained model, integrating task-specific language models to improve performance in
specialized environments, and developing ASR systems capable of handling code-switching and
dialect recognition. These efforts aim to create more versatile, accurate, and user-friendly ASR
systems, promoting linguistic diversity and inclusion in speech technology.

Transfer Learning for Hokkien ASR: One potential direction is to investigate the efficacy of
transfer learning using the wav2vec2 model pre-trained on Mandarin for Hokkien, another low-
resource language. Both Cantonese and Hokkien exhibit significant linguistic similarities with Man-
darin, particularly in their phonetic systems and vocabulary. These similarities can be exploited to
facilitate more effective transfer learning. For instance, both Cantonese and Hokkien have tones
and phonemic structures that, while distinct, are sufficiently similar to Mandarin to benefit from a
shared pre-training phase. By understanding these linguistic relationships, we can better tailor trans-
fer learning techniques to maximize performance improvements. Exploring how the pre-trained
Mandarin model can be adapted for Hokkien with a smaller dataset will provide insights into the
scalability and versatility of transfer learning approaches for different Chinese dialects.

Task-Specific Language Models: Another area for future research is the integration of task-
specific language models, such as BERT, to enhance ASR performance in specialized environments.
For example, in automotive settings where there is a demand for robust Cantonese and other low-
resource language ASR systems, incorporating a language model fine-tuned for such specific tasks
can significantly improve recognition accuracy. This approach leverages contextual understanding
and domain-specific vocabulary, making the ASR system more reliable in practical applications.

Handling Code-Switching and Dialect Recognition: In many regions where low-resource lan-
guages like Cantonese are spoken, there is often a prevalence of code-switching with dominant
languages such as Mandarin. Addressing this phenomenon requires the development of ASR sys-
tems capable of recognizing and seamlessly switching between languages and dialects. Future work
should focus on creating models that can detect and adapt to code-switching, ensuring accurate
recognition and improving user convenience. Additionally, incorporating dialect recognition capa-
bilities will further enhance the system’s usability in multilingual environments.

By addressing these areas, future research can contribute to the development of more versatile,
accurate, and user-friendly ASR systems for under-resourced languages, ultimately promoting lin-
guistic diversity and inclusion in speech technology.
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