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Abstract
As a major channel for information dissemination, broadcasting has a history spanning over
a century and has always played an irreplaceable role. Over the past decade, text-to-speech
(TTS) technology based on deep learning has gradually emerged and achieved numerous suc-
cesses in the Mandarin domain. Many radio stations have introduced TTS models into the
production of news broadcasting programs to improve production efficiency. However, the
application of these technologies in more relaxed and natural entertainment programs re-
mains relatively limited. This paper is based on the BERT-VITS model, a state-of-the-art
text-to-speech synthesis system. The BERT-VITS model combines the capabilities of BERT
(Bidirectional Encoder Representations from Transformers) for natural language understand-
ing with VITS (Variational Inference Text-to-Speech) for high-quality speech synthesis. We
first use a large open-source dataset with a prosodic style biased towards news broadcasting to
train the TTS model. We then fine-tune the model on a smaller dataset with a more relaxed
and natural prosodic style. The purpose of the experiment is to investigate the impact of basic
training and fine-tuning with datasets of different prosodic styles on the model’s output audio
prosody after the initial training. We aim to create more diverse prosodic styles for broadcast-
ing programs by combining the BERT-VITS model with datasets of different prosodic styles,
thereby enriching the types of artificial intelligence (AI) broadcasting. Our experimental re-
sults demonstrate that the system can accurately and dynamically adjust the target voice
timbre and prosodic style to match the reference speech. Even with limited data training,
it can synthesize speech that matches the target speaker’s prosody and style. The generated
speech has good naturalness and inference speed, making it suitable for broadcasting content.

Key Words: Transfer learning, Mandarin broadcasting, BERT, VITS, prosodic styles
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1 Introduction
Radio plays an important role in our daily life. It is not only one of the important channels
for us to obtain information, but also a way of entertainment. The relative independence
of hearing and vision attention allows people to listen to the radio while performing other
activities, using it as a ”background media”. This also makes radio media more widely used
than video media in application scenarios, for instance, when people are driving, they can
listen to the music or radio but cannot pay attention to video. With the development of
text-to-speech(TTS) technology based on deep learning, the broadcast industry has also been
profoundly affected by artificial intelligence (AI) (Ying, 2018). In China, radio and television
stations in about ten cities have established their own Artificial Intelligence Generated Content
(AIGC) work studios. The use of AI not only allows broadcasters to have unlimited possibilities
in content innovation, but also improves daily work efficiency.

The utilization of AI in broadcasting program production is one of the effective approaches
to address the significant human resources required in traditional broadcasting. Intelligent
broadcasting program production involves converting the text manuscripts of radio programs
into voice content corresponding to the host’s voice using speech synthesis technology, and
then broadcasting it, thus achieving the automation of the production process. Compared
to human-hosted broadcast programs, utilizing TTS for program production not only elimi-
nates the announcer’s need to prepare and familiarize with the manuscript, saving time and
effort, but also ensures timely completion of the broadcast. Since the TTS model maintains a
consistent and stable state, unlike humans who may be affected by emotional fluctuations or
fatigue, intelligent broadcasting can ensure fluent language and error-free expression, enabling
round-the-clock broadcasting.

At present, TTS systems are predominantly used in Mandarin broadcasting for news pro-
grams. These programs typically cover current affairs and political news. Given the political
nature and seriousness of the main news items, along with the audience’s expectation of ac-
curacy, standardization, rigor, conciseness, truthfulness, and objectivity, news broadcasts are
characterized by a solemn and dignified tone (Wu T., 2023). In other words, excessive tone
modification is unnecessary. For instance, (Zhao W., 2023) experimented with Tacotron for
Mandarin news broadcasts. However, the penetration of TTS in radio programs with the
relaxed prosody and style is limited. These programs require not only accurate pronunciation
but also personalized language expression from the hosts, aiming for a relaxed, friendly, and
natural tone. Therefore, they emphasize colloquial language use, unrestricted form, and a
tone closer to natural speech, enhancing audience engagement and connection (X. Li, 2016).
Consequently, it’s challenging for synthesized voices to replace human announcers in these
contexts.

The key to realizing the intelligent production of radio programs lies in speech synthesis
technology. Nowadays, speech synthesis technology has developed significantly and is used
in various fields such as mobile assistants and robots. The evolution of Text-to-Speech tech-
nology has transitioned from complex multi-stage processes to simplified two-stage generative
modeling methods(Watts, Eje Henter, Fong, & Valentini-Botinhao, 2019). Initially, TTS sys-
tems required multiple stages. For example, statistical parametric speech synthesis (SPSS)
(Zen, Tokuda, & Black, 2009) includes linguistic feature modeling, acoustic feature modeling,
statistical modeling, synthesis parameter generation, and waveform synthesis. This required
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users of the models to have a certain background in phonetics.
With the advancement of deep neural networks, TTS system has not only significantly

improved speech quality but also reduced the complexity of the architecture. Modern TTS
systems primarily adopt two-stage generation modeling methods, lowering the threshold for
model usage and simplifying the process of speech synthesis. In this approach, intermediate
speech representations are first generated from preprocessed text, followed by the generation
of the raw waveform based on these representations. For instance, in 2017, Yuxuan Wang,
et al proposed Tacotron (Wang et al., 2017): Towards End-to-End Speech Synthesis, which
involved training with short audio segments, utilizing a Mel-spectrogram decoder to assist
in text representation learning, and designing specialized spectrogram losses. However, the
two-stage workflow, similar to Tacotron, requires sequential training or fine-tuning and de-
pends on predefined intermediate features, which limits the potential for further performance
improvements. To address these issues, in 2018, Baidu’s Silicon Valley AI Lab proposed Clar-
iNet (Ping, Peng, & Chen, 2018), a model based on WaveNet for parallel generation of raw
audio waveforms. ClariNet improved synthesis speed by several thousand times, achieving
more than ten times real-time performance. This was also the first truly end-to-end model in
the field of speech synthesis: a single neural network that directly converts text to raw audio
waveforms.

In terms of speech generation strategies, the autoregressive TTS system was once main-
stream (Oord et al., 2016). However, due to its sequential generation process, it was difficult
to fully utilize parallel processors, leading to the emergence of non-autoregressive methods
to improve synthesis speed (Ren et al., 2019). At the same time, generative adversarial net-
works were extensively explored in the second-stage model of TTS, to achieve high-quality
raw waveform synthesis (Saito, Takamichi, & Saruwatari, 2017).

This paper relies primarily on the BERT-VITS 1 model. The core of this model lies in its
integration of the strengths of BERT2 (Devlin, Chang, Lee, & Toutanova, 2018) pre-trained
models. Such models have demonstrated excellent performance in language understanding
tasks, capturing rich contextual information to make synthesized speech more contextually
appropriate and enhance naturalness. Additionally, it incorporates VITS3 (Kim, Kong, &
Son, 2021), which is an end-to-end variational autoencoder model that utilizes a variational
auto-regressive structure to optimize latent space modeling, resulting in high-fidelity audio
with smooth and coherent content .

The BERT-VITS model adopts a neural network structure comprising multiple layers,
including 6 residual blocks, each with different convolutional kernel sizes and dilation factor
settings. The model contains a total of 2 attention heads, with 3 convolutional layers in each
head. Additionally, BERT-VITS includes an upsampling module to enhance the resolution
and quality of the speech.

To validate the influence of dataset types on model performance, we first train the model
on the open-source Mandarin dataset Baker4. This dataset consists of recordings from a single
female speaker with clear audio quality, comprising approximately 12 hours and 10,000 sen-
tences. The speaker’s voice style is characterized as intellectual and cheerful, representing a

1Information about the model: https://github.com/PlayVoice/vits_chinese
2Information about Bert: https://github.com/google-research/bert
3Information about VITS: https://github.com/jaywalnut310/vits
4Information about the dataset: https://www.data-baker.com/data/index/TNtts/

https://github.com/PlayVoice/vits_chinese
https://github.com/google-research/bert
https://github.com/jaywalnut310/vits
https://www.data-baker.com/data/index/TNtts/
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professional standard Mandarin female voice, conveying an optimistic and positive tone. This
open-source recording corpus covers various domains such as news, novels, entertainment,
and dialogue. The corpus design comprehensively samples the linguistic features, aiming to
cover syllables, phonemes, types, tones, phonetic sequences, and prosody as comprehensively
as possible within a limited corpus data volume. Subsequently, we use our self-made small size
dataset as the target for transfer learning. This small dataset consists of 300 recordings from
a single male speaker, recorded during the daily work of a professional broadcaster. The con-
tent mainly involves storytelling, with a conversational style and highly individualized speech
characteristics. The recording environment for this corpus is a professional recording studio,
with recording equipment meeting the requirements for professional broadcasting programs.
Finally, we will verify our hypothesis about the model’s performance through subjective lis-
tening tests and objective data analysis.

1.1 Organization
Now that a brief motivation for this research has been presented. Accordingly, the work
arrangement of this paper is as follows: This paper is divided into six parts. After the
introduction, a comprehensive literature review is conducted, studying the development of
TTS models 2.1, the application of Bert in the field of TTS 2.1, and the development of transfer
learning 2.3. The following chapter focuses on methodology 3, including the description of the
establishment of the dataset, experimental strategies, parameter settings, and other specific
details. Next chapter 4 presents the results, comparing the training outcomes on ordinary
open-source datasets with those after fine-tuning on specially crafted datasets with a host’s
personal speaking style in daily conversation. In section 5, I discuss the previously-mentioned
results in detail. Lastly, section 6 summarizes the thesis and presents the conclusions drawn,
along with recommended future work.

1.2 Research Question and Hypothesis
In the domain of Mandarin broadcasting, the application of speech synthesis technology is pre-
dominantly focused on formal news broadcasting programs. This is because traditional news
broadcasts place minimal emphasis on emotional expression, primarily prioritizing accurate
pronunciation. For instance, Zhao et al. conducted experiments in Mandarin news broadcast-
ing utilizing Tacotron (Zhao W., 2023). However, the application of such technology remains
relatively limited for other types of programs, such as talk shows and variety shows. This
limitation is attributed to the additional requirements of these programs, which necessitate
not only accurate pronunciation but also a higher level of emotional expression, prosody, and
personalized delivery—a level of performance that current model synthesis techniques struggle
to replicate compared to human broadcasters.

Therefore, this study aims to explore the impact of datasets with different prosodic styles
on model performance. We utilize the BERT-VITS model, pre-trained on source data charac-
terized by clarity and fluency in broadcasting style. Subsequently, we fine-tuning the model
on target data characterized by a more natural, everyday conversational tone, emphasizing a
relaxed and casual style of speech. Our primary focus lies in discerning the disparities in model
performance across datasets of varying styles. If successful in generating Mandarin speech that
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seamlessly combines a relaxed, natural prosodic style with accurate pronunciation, it would
play a crucial role in the modernization of Mandarin broadcasting institutions. Through
an in-depth exploration of the BERT-VITS model application, we aim to make substantial
contributions to the domain of Mandarin broadcasting content generation.

Our hypothesis is that the BERT-VITS model, when pre-trained on a standard Man-
darin source dataset characterized by stable intonation, accurate pronunciation, and clear
expression, and then fine-tuned on a target dataset with a more relaxed, conversational, and
approachable prosodic style, can generate Mandarin speech that combines a relaxed, casual
prosodic style with fundamentally accurate pronunciation. Based on a comprehensive syn-
thesis of previous research findings in the field of speech synthesis technology, we believe
this hypothesis is reasonable. These research results highlight the maturity of current tech-
niques, with the BERT-VITS model demonstrating stability in generating extended speech,
synthesizing multiple emotions, and producing smoother, more natural speech.

To validate this hypothesis, we will subjectively evaluate Mandarin speech segments gen-
erated using the pre-trained and fine-tuned BERT-VITS models, with a particular focus on
whether their overall style effectively conveys a relaxed, conversational tone. By logically de-
ducing our hypothesis from existing literature, our objective is to conduct a targeted, evidence-
based exploration to assess the effectiveness of the BERT-VITS model in generating Mandarin
broadcasting content characterized by a conversational rather than a news broadcasting style.
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2 Literature Review
Throughout the research on speech synthesis technology, which has a history of more than 200
years, BERT also has many applications in the field of text-to-speech(TTS). For our purposes
in this section we briefly review the above.

2.1 TTS
Speech synthesis technology has undergone roughly five stages: Articulatory Synthesis, for-
mant synthesis, concatenative synthesis, statistical parametric synthesis, and neural speech
synthesis (Taylor, 2009). The first three of these stages represent early traditional speech
synthesis techniques. During this period, attempts were made to utilize physical models to
simulate the process of human speech production. Articulation synthesis, for instance, aimed
to replicate the movement of physiological components such as vocal cords and throat to gen-
erate speech signals. Formant synthesis, on the other hand, is often called synthesis-by-rule.
Most formant synthesis techniques do in fact use rules of the traditional form, but data driven
techniques have also been used. It adopts a modular, model-based, acoustic-phonetic approach
to the synthesis problem. For instance, the Voder developed by Homer Dudly (also the de-
veloper of the Vocoder) at Bell labs created quite an impact at the 1939 World’s fair, and
was an early form of electronic speech synthesiser but one that require a good deal of human
speech input (Gold, Morgan, & Ellis, 2011). Additionally, in 1953, Walter Lawrence intro-
duced the Parametric Artificial Talker (PAT), the first formant synthesizer, which comprised
three electronic formant resonators connected in parallel (Story, 2019).

Concatenative synthesis, the next significant stage, represented a major shift in the ap-
proach to speech synthesisTaylor (2009)．Rather than relying on theoretical models of human
speech production, this method uses actual recordings of human speech. Concatenative syn-
thesis works by stitching together small segments of recorded speech, which are stored in a
database. These segments can be as short as individual phonemes or as long as entire words.
The quality and naturalness of the synthesized speech depend on the size and coverage of
the speech database. Larger databases can produce more natural-sounding speech but require
more storage and sophisticated algorithms to select and concatenate the segments smoothly.
Despite its ability to generate highly natural speech, concatenative synthesis has limitations,
such as the need for extensive databases and the challenge of ensuring smooth transitions
between concatenated segments. Additionally, it lacks flexibility in terms of generating new
or unseen words and expressions not present in the database.

With the advancements in electronic signal processing and computer technology, coupled
with the increased availability of computing resources, there has been a shift from methods
grounded in acoustic principles and linguistic knowledge towards approaches based on the
inherent characteristics and patterns of data for constructing more natural synthetic sounds.
In this context, the SPSS has emerged (Zen et al., 2009). This model utilizes statistical pa-
rameters to characterize the acoustic attributes of speech signals, such as sound frequency
spectrum and vocal tract parameters. Initially, SPSS models relied on technologies like Hid-
den Markov Models (HMMs) or neural networks (Zen, 2015). These models were trained to
understand the relationship between speech signals and their corresponding statistical param-
eters, thereby facilitating the synthesis of speech signals. These systems typically comprise
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front-end modules, acoustic models, and vocoders. The front-end module converts text into
acoustic features, the acoustic model maps these features to acoustic characteristics, and the
vocoder generates speech waveforms from the acoustic features. Compared to traditional tech-
niques that generate waveforms directly through cascading, this approach offers the advantage
of enhancing the naturalness and flexibility of synthesized speech. However, these traditional
systems exhibit notable performance limitations due to their complex structures and reliance
on manual feature engineering, which hinder their further advancement.

In recent years, with the rise of deep learning technology, TTS technology has ushered
in new development opportunities. From traditional HMM and DNN-based models to mod-
ern end-to-end text-to-speech models, technology has shown significant progress. It not only
simplifies the synthesis process but is also proven to produce better speech quality than tra-
ditional speech synthesis technology. The TTS system can use the feature learning ability
of the neural network to better express the speaker’s pronunciation style and rhythm (Watts
et al., 2019). Neural speech synthesis models usually first extract features from text and
use an upgraded acoustic model to generate mel spectrograms, and then use a vocoder to
synthesize audio. The first proposed modern neural TTS model was WaveNet (Oord et al.,
2016), which has a very large perceptual field based on dilated causal convolution and can
generate specified waveforms directly from language features. In 2017, Arik and Gibiansky
presented the DeepVoice1 and DeepVoice2 systems (Arık et al., 2017; Gibiansky et al., 2017),
high-quality text-to-speech systems built entirely from deep neural networks. The model still
follows the three main modules of SPSS, where the acoustic model part is upgraded with the
corresponding neural network-based model to build a TTS system entirely built from the deep
learning framework. The biggest advantage of this system is that it can meet the requirements
of real-time conversion and is 400 times faster than WaveNet. However, because the modules
are too dispersed, error accumulation is prone to occur, which increases the difficulty of train-
ing. Then Ping et al. proposes DeepVoice3 (Ping et al., 2017), that is a fully convolutional
network (FCN) system that integrates an attention mechanism, simplifying the main body of
the model into three modules: encoder, decoder, and converter.

Until 2017, the release of Tacotron (Wang et al., 2017) marked the inception of the first
end-to-end speech synthesis system. Tacotron primarily employs recurrent neural networks,
aiding it in capturing the contextual relationships of input information, facilitating feature
extraction within the model. Subsequently, it utilizes neural sequence-to-sequence models to
jointly model the entire process from original text to speech. In 2018, Shen et al. introduced
Tacotron2 (Elias et al., 2021), which utilizes a decoder based on autoregressive one-way long
short-term memory (Hochreiter & Schmidhuber, 1997; Sak, Senior, & Beaufays, 2014) and a
soft attention mechanism. On the same dataset, Tacotron2 achieved an MOS (Mean Opinion
Score) of 4.53, while human speech scored 4.58, making it the highest MOS value achieved in
text-to-speech history.

However, the Tacotron model still requires an acoustic post-processing step when gener-
ating speech, including the Griffin-Lim algorithm (Griffin & Lim, 1984) or a vocoder such
as WaveNet. This step is used to convert the linear spectrogram into the final speech wave-
form. Therefore, although the Tacotron model is able to generate linear spectrograms directly
from text, it does not directly generate the final speech waveform, which in a way makes it
not a fully end-to-end model. Subsequently, fully end-to-end TTS systems emerged, such as
ClariNet (Ping et al., 2018), which support waveform generation directly from text.
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The emergence of the end-to-end TTS model is a milestone in the development of TTS
technology. It simplifies the system structure and enables it to directly convert original text
into final speech output. It improves the naturalness and understandability of speech and
shrinks the size of synthetic speech and the difference between human voices. In the field of
end-to-end TTS models, many models adopt non-autoregressive architectures. This architec-
ture supports parallel data processing, where the model’s output generation does not depend
on the output of the previous time step, thus increasing processing speed. It also circum-
vents the error accumulation problem inherent in traditional autoregressive models, thereby
significantly improving TTS performance.

FastSpeech (Ren et al., 2019) and its variants are typical representatives of non-autoregressive
architectures. FastSpeech is a transformer-based feedforward network for parallel genera-
tion of TTS mel spectrograms. Specifically, Fastspeech extracts attention alignment from an
encoder-decoder based teacher model for phoneme duration prediction, which is used by the
length regulator to extend the source phoneme sequence to match the length of the target
mel spectrogram sequence to Perform parallel mel spectrogram generation. Compared with
autoregressive Transformer TTS, FastSpeech speeds up mel spectrogram generation by 270
times and speeds up end-to-end speech synthesis by 38 times.

The birth of the VITS (Kim et al., 2021) model in 2021 marks a qualitative leap in speech
synthesis technology. The model adopts a parallel end-to-end TTS approach and is able
to generate more natural audio than current two-stage models. The VITS model utilizes
variational autoencoders (VAE) (Kingma & Welling, 2013) to connect the two modules of
the TTS system through latent variables, thereby achieving efficient end-to-end learning. Its
structure details are shown in the figure 1. In order to improve the expressive ability of
the model in order to synthesize high-quality speech waveforms, the researchers applied the
normalized flow to the conditional prior distribution on the waveform domain and conducted
adversarial training.

Figure 1: System diagram depicting (a) training procedure and (b) inference procedure. The
proposed model can be viewed as a conditional VAE; a posterior encoder, decoder, and condi-
tional prior (green blocks: a normalizing flow, linear projection layer, and text encoder) with
a flow-based stochasticduration predictor. Kim et al. (2021).
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Furthermore, they proposed a random duration predictor for synthesizing speech with
different rhythms from input text. By modeling uncertainty in latent variables and the use
of stochastic duration predictors, the model is able to naturally express one-to-many rela-
tionships, where text input can be pronounced in multiple ways with different tones and
rhythms.3.2.

2.2 BERT
Although TTS models have made significant progress in imitating acoustic features, models
may not accurately capture subtle semantic differences in the same input in different con-
texts because the training data is never comprehensive enough. Therefore, researchers began
to use the transfer learning capabilities of the BERT model to improve the performance of
TTS systems. The TTS system, which combines BERT’s pre-training and fine-tuning, can
better understand semantics and generate more natural speech, which is seen as an important
advancement.

BERT(Devlin et al., 2018), Bidirectional Encoder Representations from Transformers, is
a new language representation model that pre-trains deep bidirectional representations from
unlabeled text by jointly considering the left and right context of all layers in the text. BERT
utilizes a ”mask language model” (MLM) pre-training objective. MLM randomly masks some
tokens in the input, and its goal is to mask the original vocabulary ID of the word based
only on contextual predictions. In addition to the masked language model, BERT also uses
the ”next sentence prediction” task to jointly pre-train text pair representations. BERT’s
contribution is to prove the importance of bidirectional pre-training for language representa-
tion, and to achieve pre-trained deep bi-directional representation through a mask language
model. Furthermore, BERT is the first fine-tuning-based representation model that achieves
state-of-the-art performance on many sentence-level and token-level tasks and surpasses many
task-specific architectures. Its structure is shown in the figure 2

Figure 2: Overall pre-training and fine-tuning procedures for BERT Devlin et al. (2018).

(Hayashi et al., 2019) use pretrained representations (BERT) to encode input phrases as
additional input to a Tacotron2-based sequence-to-sequence TTS model. Their subjective lis-
tening tests using the LJSpeech database show that the subword-level model variant slightly
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but significantly improves the average opinion score compared to the baseline TTS model
without pre-trained text embedding input. Similarly, Yang et al. (Yang, Zhong, & Liu, 2019)
also applied a pre-trained BERT model to achieve enhanced front-end accuracy. The model’s
performance has been significantly improved on Mandarin multiphone disambiguation and
prosodic structure prediction tasks. The model achieved an absolute improvement of 0.013
and 0.027 on F1 scores (Yacouby & Axman, 2020) for prosodic word prediction and prosodic
phrase prediction, respectively, and an absolute improvement of 2.44% on multiphone disam-
biguation . Kenter et al. (2020 ) demonstrated that integrating a BERT model, pretrained on
large amounts of unlabeled data and fine-tuned for speech, into an RNN-based TTS system
can enhance prosody. Kenter et al. (Kenter, Sharma, & Clark, 2020) incorporated the BERT
model into an RNN-based speech synthesis model, where the BERT model was pretrained
on large amounts of unlabeled data and targeted Fine-tuning in the speech area. This ex-
periment proves that BERT can improve the model’s performance in prosody. Additionally,
they proposed a method to use BERT to process arbitrarily long sequences, and the results
showed that small BERT models performed better than large models, and that fine-tuning
the BERT part of the model was crucial to obtain good results. Since prompt tuning has
received widespread attention in guiding text or image generation, PromptTTS (Guo, Leng,
Wu, Zhao, & Tan, 2023) takes the style and content description of the BERT model as input
to generate speech with precise style control and high speech quality.

In particular, Mukherjee et al.(Mukherjee, Bansal, Satpal, & Mehta, 2022) proposed a
novel text-aware emotion text-to-speech system that leverages a pre-trained BERT model to
obtain deep representations of emotional context from text during training and inference.
This method synthesizes emotional audio with emotion based on the emotional context of
the input text, and the results show that this method outperforms baseline systems in terms
of emotional intensity. Researchers such as (Kenter et al., 2020) apply word-level BERT to
capture the semantic and syntactic structure of sentences, thereby aiding TTS synthesis. Li
et al. (Y. A. Li, Han, Jiang, & Mesgarani, 2023) introduced phoneme-level BERT, in addition
to conventional masked phoneme prediction, a preliminary task of predicting corresponding
graphemes was also designed to enhance the naturalness of speech synthesized from out-of-
distribution (OOD) text.

2.3 Transfer Learning
The traditional assumption of machine learning methods is that the training and testing data
come from the same domain, ensuring consistency between the input feature space and data
distribution characteristics. However, in some real-world machine learning scenarios, this
assumption does not hold. In certain cases, acquiring training data may be expensive or chal-
lenging. Therefore, there is a need to develop high-performance learners that can be trained
using data more easily obtained from different domains. This approach is known as transfer
learning (Weiss, Khoshgoftaar, & Wang, 2016). In the field of speech synthesis, there are many
applications of transfer learning. For example, cross-lingual transfer learning has been used
to achieve end-to-end text-to-speech conversion for low-resource languages (Tu, Chen, Yeh,
& Lee, 2019), where the method helps the model better utilize the knowledge learned from
rich source data previously, resulting in more natural speech synthesis compared to models
trained solely on target data. Furthermore, promising results have been achieved compared to
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approaches relying solely on strong language background expertise (Tits, El Haddad, & Du-
toit, 2020). Fine-tuning pre-trained deep learning-based TTS models allows for the synthesis
of speech using a small dataset from another speaker.

In the field of speech synthesis, transfer learning is not only applied to cross-language TTS
conversion, but also widely used in ”cross-style” fine-tuning. Cross-style fine-tuning refers to
the process of fine-tuning a trained speech synthesis model by using a small amount of data
on different styles, so that the model can generate a variety of speech styles. This approach is
of great significance in practical applications, such as enabling a single speech model to adapt
to different emotional expressions, speaker styles, or the phonetic needs of specific scenes.

However, the performances of existing style transfer methods are still far behind real appli-
cation needs. The root causes are mainly twofold. Firstly, the style embedding extracted from
single reference speech can hardly provide fine-grained and appropriate prosody information
for arbitrary text to synthesize. Secondly, in these models the content/text, prosody, and
speaker timbre are usually highly entangled, it’s therefore not realistic to expect a satisfied
result when freely combining these components, such as to transfer speaking style between
speakers. SHANG Zengqiang (2024) propose a cross-speaker style transfer TTS model with
explicit prosody bottleneck. The prosody bottleneck builds up the kernels accounting for
speaking style robustly, and disentangles the prosody from content and speaker timbre, there-
fore guarantees high quality cross-speaker style transfer.

In addition, Pan and He (2021) achieved the transition from a single speaker style to multi-
ple speaker styles by fine-tuning existing high-quality speech synthesis models. They propose
an End-to-End Multi-speaker Multi-style Multilingual speech synthesis model (E2E-3M) in-
corporating cross-speaker style transfer. The model uses a two-level variational autoencoder
to model the generation process from text to waveform, and decouple the timbre, pronunci-
ation and prosody information. In the inference stage, this method improves the prosody of
the cross-language synthesis by transferring the prosody styles of the speakers in the target
language. Experiments show that the proposed method can improve the prosodic naturalness
of cross-language generation and enhance the sound quality of the generated speech.
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3 Methodology
In order to prove the impact of datasets of different prosodic styles on the BERT-VITS model,
this section first briefly introduces the selection and production of the open source dataset and
the training process of the model. First, in subsection 3.1, We will introduce the source data
selection and target data production preparation process. Next, subsection ?? will focus on
the experimental settings, including training strategies, model characteristics, model settings,
and training parameter settings. Subsection 3.3 will then elaborate on the evaluation method.
Finally, in subsection 3.4, I will reflect on the ethical considerations inherent in this research.

3.1 Data Preparation
The quality of the speech synthesis dataset has a decisive impact on the performance of the
speech synthesis model. For Mandarin broadcasting programs, training the model with clear
and accurately pronounced Mandarin broadcasting datasets is a crucial step in determining
the effectiveness of speech synthesis.

First, for a news broadcast style dataset with a formal focus on pronunciation clarity, we
selected Baker, a large open source Mandarin standard database. The database contains 12
hours of speech data from a single female speaker, totaling 10,000 sentences. The speaker’s vo-
cal style is characterized as intelligent, sunny, friendly, and professionally standard Mandarin,
conveying an optimistic and positive impression. The recordings were conducted in a profes-
sional recording studio using consistent recording software, maintaining a monaural recording
format at a 48 kHz 16-bit sampling frequency in PCM WAV format. The recorded corpus
covers various domains, including news, novels, technology, entertainment, and dialogues.
The database was meticulously designed to comprehensively cover phonetic segments, types,
tones, phonetic connections, and prosody within the limited data volume. The corpus un-
derwent text-to-phoneme alignment, prosodic hierarchy annotation, and speech file boundary
segmentation according to synthesis speech labeling standards.

For example, a particular training sample in this dataset might consist of the following
components: The text format is in .txt, with one line of text and one line of pinyin. The
text line starts with a sentence number, which comprises six Arabic numerals in half-width,
separated by the Tab key. This is followed by the text content and ends with a carriage return
and line feed. The corresponding pinyin line starts with the Tab key, followed by the text
pinyin, with spaces separating the pinyin. It also ends with a carriage return and line feed.

Tone: Tones are marked with 1-5, where 1-4 correspond to the four tones of Mandarin,
namely level tone, rising tone, falling-rising tone, and falling tone, and 5 represents the neutral
tone.

Prosodic annotation: The prosodic structure annotation of Mandarin includes four levels of
annotation: prosodic word (#1), prosodic phrase (#2), intonational phrase (#3), and sentence
end (#4).However, please note that Prosodic annotations in the data set are not necessary in
the actual experiment.

Example:

000384 那里的 #1 布局 #3 杂而 #1 有章 #3 乱而 #1 有序 #4。
na4 li3 de5 bu4 ju2 za2 er2 you3 zhang1 luan4 er2 you3 xu4
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Syllable boundary segmentation: The segmentation of Mandarin into syllables and rimes
is marked in the interval file format.

The file structure is as depicted in the Figure13.

Figure 3: File structure of Baker.

For datasets characterized by a more natural prosodic style resembling real-life conver-
sations, we gathered recordings from professional radio hosts’ programs. These recordings
consist of 1.5 hours of content from a single male speaker, predominantly featuring traditional
Mandarin mythological stories and domestic and foreign novels, including substantial dia-
logues between characters and commentary from the host. The overall prosodic style of these
recordings is more relaxed, with a natural and smooth tone, rich emotional variations, distinct
from the Baker dataset. The recordings were conducted in environments and with equipment
meeting the requirements for professional broadcasting program recording, requiring no ad-
ditional noise reduction processing. Following the model’s requirements, we normalized the
audio by resampling it to a 16 kHz 16-bit sampling frequency, converted stereo to monaural,
and saved all audio files in PCM WAV format.

Labeling: With audio resources prepared, the next step involves annotating all audio with
Chinese text, i.e., audio-to-text transcription. To ensure accurate transcription, we initially
employed the open-source speech recognition project, whisper 5, available on GitHub, for
initial transcription, followed by manual verification and correction of all errors in the output.
Additionally, after practices, we found that if the average length of audio in the training
dataset is too long, it directly affects whether the model can run properly in subsequent steps,
as the model imposes a limit on the length of audio input. Therefore, based on the speech
intervals in long audio, we segmented the speech at the sentence level. Each segmented audio
clip is approximately 10 to 20 seconds in length, ensuring that each audio segment ends with
a complete sentence. Ultimately, we obtained an audio dataset from a single speaker, totaling
around one hour and thirty minutes, comprising 300 sentences. The dataset includes audio
data in WAV format, text transcriptions from each waveform file, and phonetic annotation
files.

5Information about the whisper: https://github.com/openai/whisper

https://github.com/openai/whisper
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As for the test sentences, in the short audio clips part, we randomly selected some Chinese
content to test, such as food stories,“竹笋在 4000多年前就是席上珍羞，至今仍是大家桌上
的常备菜”, meaning that bamboo shoots were treasured on the table more than 4,000 years
ago, and are still common dishes on everyone’s table today. For the long audio part, in order
to be closer to the practical application field of radio program, we edited a radio program on
the topic of women living alone, including a complete opening and closing remarks.

3.2 Experimental Setup
We first train the model on the female voice BAKER dataset. Then, we utilize this pre-
trained model to train on another dataset, namely, our self-made small male voice dataset.
Subsequently, we evaluate the training results through subjective listening tests.

The hyperparameters of the model are set as follows: 192 channels for input spectrogram,
192 channels for hidden layers, and 768 channels for filter. The convolutional kernel size in
the residual block is set to 3, with different dilation factor settings. We employ a Dropout
probability of 0.1 to reduce the risk of overfitting. Furthermore, we do not use Spectral
Normalization.

Our model is trained using the AdamW optimizer, with a learning rate initialized to 1e-4
and parameters set to β1 = 0.8 and β2 = 0.99. The optimizer also utilizes weight decay λ =
0.01 to control the complexity of the model. The training process consists of 20,000 epochs,
with the learning rate adjusted at a decay rate of 0.999875 per epoch. The batch size during
training is 8, and we do not use mixed precision training. No warm-up operation is performed
during training, and a segmented training strategy is not adopted.

During the experiment, we conducted training on a GPU with the model of A100. The
pre-trained model was trained for 370,000 steps, while the fine-tuned model was trained for
200,000 steps.

3.3 Evaluation
We use subjective and objective methods to evaluate the synthesized Mandarin broadcast
programs with different prosodic styles datasets. For subjective evaluation, we employed the
Mean Opinion Score (MOS) (Viswanathan & Viswanathan, 2005) method. The participants
were divided into two groups: general listeners and professional listeners. General listeners
are non-broadcasting professionals without specialized knowledge of prosody styles; they judge
the audio based purely on their subjective impressions. Professional listeners, on the other
hand, are industry professionals in broadcasting who inevitably use their expertise to evaluate
the prosody styles of the audio.

Dividing the participants into general listeners and professional listeners has several ad-
vantages. Firstly, it allows for a multidimensional evaluation of the model’s performance.
General listeners represent the actual audience of broadcast programs, and their evaluations
reflect how the model performs in practical applications. Professional listeners, however, can
provide more detailed assessments of the synthesized speech quality from a professional stand-
point. Secondly, it helps balance subjective biases. The evaluations from general listeners may
be influenced by personal preferences; for instance, some might have a stereotype that a deep
male voice sounds more suitable for news broadcasts, overlooking genuine prosody issues.



Section 3 METHODOLOGY 22

In contrast, professional listeners can disregard the influence of speaker timbre and quality,
focusing more objectively on the prosody. Overall, by splitting the participants into these
two groups, we can comprehensively evaluate the synthesized speech’s performance, providing
essential guidance for model improvement and optimization. This multidimensional evalua-
tion method not only reveals the model’s practical application performance but also identifies
technical issues, thereby enhancing the overall quality of the synthesized speech.

The questionnaire is divided into two parts: the first part evaluates short audio clips, with
each group containing two synthesized audio samples of about 10 seconds each from different
models, primarily assessing two dimensions: pronunciation accuracy that is, whether the tone
is accurate, whether the pronunciation is clear and understandable and whether the prosody
style is closer to a relaxed, natural conversational style. The second part evaluates longer
audio clips, with each group containing two synthesized audio samples of about one minute
each from different models, assessing the same dimensions as the short audio clips.

The main reasons for dividing the survey questionnaire into short and long audio segments
are as follows. Firstly, compared to short audio segments, long ones better showcase the
variations in speech prosody. They offer a longer time frame, allowing listeners to better
perceive the prosody and fluency of speech. Secondly, although short audio segments are
constrained by time, they provide a convenient way for listeners to replay them repeatedly to
confirm pronunciation accuracy. While short segments may have fewer variations in prosodic
styles, their repeatability makes them an essential tool for assessing the accuracy of speech
synthesis models. In summary, by dividing the content into short and long audio segments, we
can comprehensively evaluate the performance of speech synthesis models in different contexts.

The MOS rating system uses intervals of 1 point, with 1 being the lowest score, indicating
very poor pronunciation and a prosody style very much like a news broadcast rather than
everyday conversation, and 5 being the highest score, indicating very accurate pronunciation
and a prosody style very close to everyday conversation rather than a news broadcast. The
final MOS score is the arithmetic mean of these scores.

In order to verify the experimental results comprehensively, we also use the Librosa 6

library to extract and analyze features of audio data, and use visualization methods to allow
readers to more intuitively see the difference in performance between the pre-trained model
and the fine-tuned model.

3.4 Ethical considerations
Although this study aims to investigate the impact of different prosodic style datasets on
model performance, the technology may bring some unforeseen consequences. To mitigate
these risks, we will communicate the study’s results and implications in an accessible and
transparent manner.

We collected voice data from a Mandarin radio program host, with his permission for its
use, as documented in the consent form in the appendix. This portion of the voice data is
a Mandarin male voice corpus, including storytelling, talk shows, and book reading. This
data is used solely for this research. Additionally, we used a standard Mandarin female voice
dataset from Beijing Data Baker Technology Co., Ltd. This is a monolingual, open corpus.

6Information about the Librosa: https://github.com/librosa/librosa

https://github.com/librosa/librosa
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Regarding the listening test, we utilize the Qualtrics7platform, a powerful online survey
tool that enables us to quickly create and publish questionnaires, and to collect and analyze
data, as well as generate reports and charts. Prior to all participants engaging in the hearing
test, they will sign an informed consent form. The informed consent form clearly states the
academic purpose of the hearing test and the associated risks. After the completion of this
experiment, the questionnaire will be closed and will no longer be accessible to the public. All
data will be used solely for this academic research and will not be used for any other purposes.

Regarding the reproducibility of the research, the code is available on GitHub. The URLs
for each model can be found in the thesis. The Baker dataset is also publicly available for
download and use. The results should be more or less similar, but may not be exactly the
same, due to certain factors that introduce randomness in the trained models. The hardware
used may also impact the performance of the models, as the experiments were conducted on
the University of Groningen’s high-performance cluster, Habrók.

7Information about the model: https://www.qualtrics.com/

https://www.qualtrics.com/
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4 Results

Table 1: Non-professional Group Scores

Fine-tuned Pre-trained

Audio Accuracy Prosody Accuracy Prosody

short1 4.44 3.72 3.00 3.11
short2 4.50 3.77 4.05 3.22
short3 4.16 4.16 3.88 2.66
short4 4.11 3.50 4.11 2.72

Average 4.30 3.78 3.76 2.92
long1 3.94 3.94 3.94 2.55
long2 3.77 3.94 3.38 2.38

Average 3.85 3.94 3.66 2.45

Table 2: Professional Group Scores

Fine-tuned Pre-trained

Audio Accuracy Prosody Accuracy Prosody

short1 4.06 3.68 3.43 2.87
short2 3.87 3.61 3.75 3.31
short3 4.43 4.00 3.81 2.56
short4 4.06 3.81 3.87 3.00

Average 4.10 3.77 3.71 2.93
long1 4.18 4.12 3.81 2.93
long2 3.93 4.06 3.68 2.75

Average 4.05 4.09 3.74 2.84
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In this study, we obtained detailed data through subjective listening tests and evaluated
the performance of pre-trained and fine-tuned models in speech synthesis tasks by combining
statistical Mean Opinion Score (MOS) ratings(1&2), box plots 5 6, and two independent-
sample t -test3. The pre-trained model was trained for 370,000 steps on a large source dataset
containing 12 hours of audio and 10,000 audio files, while the fine-tuned model was further
trained for 200,000 steps on a relatively smaller dataset, containing only 1.5 hours and 300
audio files. In section 3.3,we mentioned dividing the subjects into two groups for the listening
tests. One group comprised 16 listeners with professional broadcasting knowledge, who used
their expertise to judge the synthesized results during the tests; the other group consisted
of 18 ordinary listeners who relied primarily on subjective impressions to judge the prosodic
style and pronunciation accuracy. The entire listening test was divided into short audio and
long audio segments. The experimental results provide a more comprehensive understanding
of the prosodic characteristics of the training data on the model performance.

Table 3: Comparison of Statistical Test Results

Test Type Statistic p-value

Accuracy t-test t-value = 1.9999 p-value = 0.0734
Prosody t-test t-value = 6.5612 p-value = 6.3823e-05
Accuracy Welch’s t-test t-value = 1.9999 p-value = 0.0784
Prosody Welch’s t-test t-value = 6.5612 p-value = 0.0001

4.1 Pronunciation Accuracy Results
Despite the significant difference in the sizes of the datasets used to train the two models,
their performance in terms of pronunciation accuracy is surprisingly similar. According to the
MOS data, the two groups of participants had similar perceptions of pronunciation accuracy,
generally believing that the fine-tuned model was slightly better than the pre-trained model
in this aspect. Broadcast professionals generally felt that the fine-tuned model performed
significantly better in pronunciation accuracy compared to the pre-trained model. However,
ordinary listeners found little difference between the two, with a median difference of only
about 0.2. This suggests that professionals are indeed better at detecting subtle issues in
synthesized speech compared to non-professionals.

We then conducted an independent sample t-test on the pronunciation accuracy of the two
models, yielding the following results:

• The t-value was 1.9999023509019753.

• Assuming equal variances, the p-value was 0.07339997734485468.

• Using Welch’s t-test (not assuming equal variances), the p-value was slightly higher at
0.07840098051748379.
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Both p-values are above the commonly used significance level of 0.05, indicating that we
do not have sufficient evidence to reject the null hypothesis. That is, there is no significant
difference in pronunciation accuracy between the fine-tuned and pre-trained models. This
similarity in pronunciation accuracy suggests that the general speech processing knowledge
learned by the pre-trained model has strong generalization capabilities, enabling it to achieve
similar performance across datasets of different sizes and characteristics.

Figure 4: Spectrogram comparison of speech synthesized by the pre-trained and fine-tuned
models containing the same text.

4.2 Prosodic Performance Results
In terms of rhythm performance, the fine-tuned model is more dynamic and flexible in its
rhythmic expression than the pre-trained model, regardless of whether it is for long or short
audio segments, and regardless of the group of participants. This means that the fine-tuned
model’s rhythm is closer to the relaxed and natural style of everyday conversation, rather
than the more standardized and stable prosody of news broadcasting. Overall, the rhythm
performance of short audio segments is slightly better than that of long audio segments. This
is because short audio segments are time-limited and do not have the opportunity to exhibit
more rhythmic variations, whereas long audio segments can better reflect the influence of the
training data’s prosodic style on the synthesis results.

To visualize the prosody performance of the two models, we used the librosa library to
obtain spectrograms4 of two audio samples from different models but with the same textual
content. From the spectrograms, we can see that the audio from the pre-trained model has
relatively uniform intervals and a relatively smooth energy distribution, indicating that its
prosody is quite stable and consistent. In contrast, the spectrogram of the fine-tuned model
shows more details and a more complex prosodic pattern. The denser vertical stripes in the
spectrogram indicate a higher frequency of pitch changes, resulting in a richer prosody. The
energy distribution is also more varied, especially in the higher and lower frequency regions,
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where the color variation is greater, indicating that the fine-tuned model’s synthesized audio
has more variation in volume and pitch.

To verify our hypothesis, we conducted a t-test on the rhythm performance, yielding a
significant t-value of 6.561183597917967. The specific results are as follows:

• Assuming equal variances, the p-value was 6.382266132680388e-05.

• Using Welch’s t-test (not assuming equal variances), the p-value was 0.00010845064834172377.

Both p-values are far below 0.05, indicating that we have very strong evidence to reject the
null hypothesis. That is, the fine-tuned model’s performance in prosody is indeed significantly
better than that of the pre-trained model.

Figure 5: Ratings of pronunciation accuracy and prosodic expression by broadcasting profes-
sional participants.

Figure 6: Ratings of pronunciation accuracy and prosodic expression by non-broadcasting
professional participants.
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4.3 Summary
In summary, combining the results of the t-tests and the subjective listening test analysis, we
can conclude that there is no significant performance difference between the fine-tuned and
pre-trained models in terms of pronunciation accuracy. This indicates that the general speech
processing knowledge learned by the pre-trained model has strong generalization capabilities.
However, in terms of rhythm performance, the fine-tuned model significantly outperforms
the pre-trained model. The fine-tuned model exhibits more complex and natural rhythmic
characteristics, closer to the style of everyday conversation, whereas the pre-trained model
tends to have a more stable, news-broadcast-like intonation with consistent volume and pitch.

Therefore, although the two models perform similarly in pronunciation accuracy, the fine-
tuned model has a significant advantage in rhythm performance. It is better suited for speech
synthesis tasks that require natural, conversational speech flow.
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5 Discussion
Based on the analysis of the results presented in the previous section, it is evident that
our hypothesis in Subsection 1.2, namely that the BERT-VITS model, after pre-training on a
large standard Mandarin dataset emphasizing smooth intonation, pronunciation accuracy, and
clear expression, followed by fine-tuning on a dataset with a more relaxed and conversational
prosodic style emphasizing friendliness and naturalness, indeed produces speech synthesis
results that ensure basic pronunciation accuracy while offering a more varied and relaxed
prosodic style than the source dataset. This suggests that different prosodic styles in datasets
significantly influence model performance. In the subsequent subsections, we delve into the
reasons behind the results presented in the tables1 2.

5.1 Prosodic Expressiveness
As mentioned in the previous section, the prosodic style of the model after fine-tuning tends
to lean towards a casual conversational style. In other words, listeners can perceive relatively
rich prosody variations in the synthesized results, whereas the prosodic style of the pre-trained
model is more neutral, with MOS（Mean Opinion Score）ranging from 2.8 to 2.9. This disparity
is due to the relatively stable prosody performance of the training dataset used for the pre-
trained model. It is noteworthy that almost all 15 professional broadcasters who participated
in the listening test expressed a consistent opinion: The audio sounds positive and clear but
lacks prosodic variation. This is consistent with the characteristics of the samples in the
source dataset. In contrast, the target dataset used for fine-tuning the model contains a large
amount of narrative content, with samples themselves exhibiting strong emotional expression
capabilities. For instance, in narrative performances, besides containing relatively deep and
stable narrative readings, they also include impromptu analyses and interpretations of book
contents by the hosts, showcasing strong individual characteristics. Consequently, the model
fine-tuned on such data exhibits more varied prosody performance.

5.2 Pronunciation Accuracy
Regarding pronunciation accuracy, the evaluations by professional broadcasters and non-
professional participants of the synthesized results generally align with our expectations.
Broadcasters inevitably leverage their industry knowledge to make judgments, thus being
sensitive to subtle differences. Consequently, as shown in Table1, there are significant differ-
ences in pronunciation accuracy between the two models. However, for ordinary participants,
they may just get a rough idea, and as long as it does not affect the overall understanding of
the content, it is difficult for them to judge whether the pronunciation is standard.

5.3 Limitations
Our experiments were conducted only on small, clean datasets, and further exploration is
needed to understand their impact on more complex datasets. Additionally, we did not account
for homophones and tone dissimilationWenjie (2013) (a phonetic phenomenon, which refers to
the pronunciation of a single word in the flow of speech, or is affected by the phonemes before
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and after, and the pronunciation of the phenomenon is different from that when it is alone) in
Mandarin within our system, such as the tonal adjustments that occur when two third-tones
or fourth-tones appear side by side, which significantly impacts the synthesized results.

Specifically, in the audio ”short2”, the content is: ” 生活的质量更多在于我们的心态，
我们不仅要学会勇敢洒脱的面对艰苦去追求索爱，也应该面对生活保佑纯真善良的态度”,
which means that ”The quality of life depends more on our mindset. We must not only learn
to face hardships bravely and pursue love with a free and easy attitude but also maintain a
pure and kind attitude towards life.” In the word ”勇敢 (brave)” both ”勇” (brave) and ”敢”
(daring) are characters with the third tone. According to the tone sandhi rules in Mandarin,
when two third-tone characters appear consecutively, the tone of the first character changes
to the second tone. In the field of speech synthesis, this subtle phonetic feature is crucial
for generating natural and fluent speech. However, in the pre-trained model, we found that
the character ” 勇” did not follow the tone sandhi rules of Mandarin and still appeared in
the third tone. This indicates that the model did not take into account the influence of tone
sandhi when generating speech.

In contrast, the fine-tuned model correctly adjusted the tone of ” 勇” to the second tone.
Whereas, it is worth noting that this improvement did not come from specific tone training
for the model, but rather because the model was exposed to a large number of data samples
after adjusted during the fine-tuning process. In other words, the fine-tuned model was able
to handle the tone of ” 勇” correctly because it frequently encountered the combination of ”
勇” and ” 敢” with adjusted tone in the training data. If we can train the model with special
tonal changes at an early stage, the model will be capable of not relying on a dataset, but
can freely process the tonal variations in Mandarin, making the speech synthesis more natural
and smooth.

Moreover, although BERT is recognized for its ability to provide detailed insights into
word importance, syntax, semantics, and general knowledge, its effectiveness is limited by the
specificity of the fine-tuning method (Hayashi et al. (2019); Kenter et al. (2020)). Furthermore,
BERT’s inherent non-generative nature may limit its ability to interpret information beyond
direct sentence context, thus we did not conduct further research on the impact of prosody
style on synthesized results.(Feng and Yoshimoto (2024))





Section 6 CONCLUSION 34

6 Conclusion
The primary objective of this study was to evaluate and analyze the performance of the
BERT-VITS model across datasets with varying prosodic styles and to explore its potential
applications in the production of Mandarin broadcasting programs. By initially training on a
source dataset characterized by a stable and formal news-broadcasting prosody, followed by
fine-tuning on a target dataset with a more relaxed and conversational tone, the study aimed
to diversify the prosodic styles of AI broadcasting. This diversification can effectively assist
broadcasting institutions in utilizing speech synthesis technology to produce a richer array of
radio programs. The research employed a combination of subjective and objective evaluation
methods, including Mean Opinion Score (MOS) assessments and spectrogram analyses, to
comprehensively measure the model’s pronunciation accuracy and prosodic performance.

6.1 Contributions
The study revealed that the fine-tuned BERT-VITS model demonstrated significant natural-
ness and diversity in prosodic expression compared to the pre-trained model, more effectively
mimicking the prosody of everyday conversation. This finding holds substantial practical sig-
nificance for the broadcasting industry, as it indicates that with careful adjustment, speech
synthesis models can be customized to suit different program styles and voice requirements.
Moreover, the study confirmed that fine-tuning can effectively enhance the model’s prosodic
performance even with a smaller dataset, which is beneficial for both individual users and
broadcasting organizations. This approach requires less time for the production of a smaller
dataset, yet still yields desirable outcomes.

6.2 Practical Applications & Significance
The outcomes of this research have direct practical implications for the broadcasting industry,
particularly in enhancing the efficiency of program production. Customized speech synthesis
technology allows radio programs to be presented in a more natural and engaging manner to
the audience, increasing the interactivity and warmth of AI-assisted broadcasting programs.
Additionally, this technology may spur innovation in multilingual broadcasting content, offer-
ing a more diverse and personalized auditory experience for listeners from different linguistic
and cultural backgrounds.

6.3 Future Research:
Future studies can further explore the performance of the BERT-VITS model in a broader
range of speech synthesis applications, including voice generation for different languages, di-
alects, and specific domains. Furthermore, researchers have begun to experiment with an
innovative method that combines large-scale language models, such as Llama-VITS (Feng
and Yoshimoto (2024)). This approach enriches the semantic content of text for text-to-
speech(TTS) synthesis by leveraging the semantic embeddings of large-scale language models
like Llama2, integrated with the state-of-the-art end-to-end TTS framework, VITS. There is
potential for more innovation in model integration in future research.
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Appendices
A Questionnaire Details for MOS Evaluation
Here, we will present in detail the survey questionnaire designed to obtain the Mean Opinion
Score (MOS).

Before commencing the questionnaire, participants are asked to read the Informed Consent
document. If they agree, they can continue; if not, they have the option to exit or click the
”Disagree” button, which will direct them to the final page. Subsequently, participants are
requested to read the questionnaire instructions. This section briefly introduces the structure
of the survey and the key points assessed by each question. Following this, participants are
provided with two samples of daily program recordings from a live radio host, one for news
broadcasting and the other for a talk show, with the aim of familiarizing participants with
these two distinct hosting styles.

The formal questionnaire is divided into two parts: Chapter One contains 4 sets of short
audio clips around 10 seconds in duration, and Chapter Two contains 2 sets of longer audio
clips around 1 minute in duration. This arrangement is designed to demonstrate whether
there is a difference in the model’s performance in speech synthesis tasks of varying duration.
Each page presents two audio clips synthesized by different models, but with identical text
content, making it easier for participants to discern the differences between the two models.
The questions for each audio clip are consistent, with example questions as follows.

• Audio Clip

1. How accurate do you think the pronunciation of this audio clip is? ”Pronunciation
accuracy” refers to the correctness of tone and the precision of consonant and vowel
pronunciation.

– 5 points: Very accurate
– 4 points: Mostly accurate with minor errors
– 3 points: Moderately accurate
– 2 points: Several inaccuracies, less accurate
– 1 point: Very inaccurate

2. How natural and conversational do you perceive the prosodic style of this audio clip
to be in the context of a broadcast program? That is, does the broadcast host’s
style in the audio clip lean towards an informal, natural, and vivid ”spoken” news
style, or is it more akin to a formal and standardized ”broadcast” news style?

– 5 points: Totally speaking, casual and storytelling prosodic style
– 4 points: More like speaking, casual and storytelling prosodic style over formal

broadcasting style
– 3 points: Neutral delivery style
– 2 points: More like formal newscasts style than speaking, casual and story-

telling prosodic style
– 1 point: Totally like a newscast’s tone
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A total of 32 participants were invited to take part in this questionnaire, 15 of whom are
professionals with experience in the broadcasting industry. The remaining participants are
general listeners without specialized knowledge in broadcasting hosting.

B Voice Data Use Authorization Form
The voice data use authorization form can be found on the next page; it was
pushed there due to the PDF import.

C Test Samples
Test samples are available at https://poppyyanliao.github.io/tts-research.github.io/

https://poppyyanliao.github.io/tts-research.github.io/
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D Others
In order to facilitate readers to better reproduce the experiments in this paper, we
have added more documents to github https://github.com/PoppyYanLiao/thesis-
research

https://github.com/PoppyYanLiao/thesis-research
https://github.com/PoppyYanLiao/thesis-research
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