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Abstract 
 
Human language naturally and flexibly adjusts speech rate, intonation, and voice 
intensity during communication. However, such dynamic changes are often 
inadequately modeled in current speech synthesis research. Most existing studies 
focus on generating audio with specific emotional tones (e.g., happy, sad, angry), but 
few address synthesizing audio with varied speech modifications, such as changes in 
speech speed and pitch adjustments within a single sentence. To address this gap, this 
study proposes an innovative method for multi-effect speech synthesis using the 
FastSpeech2 model by precisely modifying the training files and corresponding audio 
data. Experimental results demonstrate that this approach significantly enhances the 
model’s ability to reproduce target speech modifications, yielding excellent 
performance in Chinese, English, and Spanish. Numerical analyses and manual 
listening assessments validate the model's sensitivity and accuracy to speech rate 
adjustments. Additionally, the study demonstrates the cross-linguistic generalizability 
and validity of the method, indicating a wide range of potential applications. This 
method is expected to contribute to more emotionally expressive and diverse audio 
synthesis, advancing speech synthesis technology. 
 
Keyword: Speech Synthesis, Effect Control, Emotional Expression, Deep Learning, 
Multilingual Synthesis 
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1 Introduction 
In the field of speech synthesis, with the development of large language models (LLMs) 
such as OpenAI's ChatGPT, the interaction methods and capabilities of voice assistants 
have been significantly improved. For example, ChatGPT-powered health assistants 
can adjust the tone and speed of speech based on the patient's mood and context to 
convey an appropriate sense of empathy and urgency when reminding patients to 
take their medication on time. In contrast, traditional virtual assistants such as Siri, 
Alexa, and Google Assistant are widely used for everyday tasks such as setting 
reminders, controlling smart home devices, and providing interactive entertainment, 
but they still fall short in handling complex dialogues, understanding context, and 
expressing emotions (Mahmood et al., 2023). Traditional speech synthesis methods 
used by these assistants typically process text at an average pitch and rate of speech, 
resulting in synthesized speech that lacks the variability and emotional richness of 
human speech. In comparison, humans can naturally and flexibly adjust their speech 
rate, intonation, and voice intensity when communicating. 

For this reason, this paper proposes a simple and effective speech synthesis method 
that dynamically adjusts speech effects such as speech rate and emphasis without 
requiring significant modifications to existing models. It allows flexible adjustment of 
speech features during the synthesis process, which maintains the stability and 
efficiency of the text-to-speech (TTS) system while enhancing the expressiveness of 
the speech output to match the natural language habits of humans more closely. 

Experimental validation shows that this speech synthesis method has excellent 
reproducibility and is suitable for speech synthesis in multiple languages. Moreover, 
the method demonstrates a wide range of social value and commercial application 
potential in several fields. In the field of education, it can help students better 
understand and remember learning content by emphasizing keywords or phrases. In 
the healthcare experience, this technology can improve the quality of interaction for 
voice assistants and customer service bots, enabling them to deliver urgent 
information or provide emotional comfort more effectively, thus making 
communication more human and engaging. In the field of commercial advertising, it 
can highlight key messages and effectively capture customers' attention. These 
examples of potential applications highlight not only the practicality of the technique 
but also its wide applicability in the real world. 

To explore the specific implementation and application of this approach in more depth, 
the next chapters of this thesis will detail various aspects of the research. Chapter 2, 
Literature Review, will provide an overview of the development of speech synthesis 
modeling (Section 2.1), control techniques for emotional speech features (Section 2.2), 
and application areas of speech synthesis technology (Section 2.3), as well as 
identifying the problems and hypotheses of this research (Section 2.4). Chapter 3, 
Methodology, describes in detail the corpus selection (Section 3.1) and data pre-
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processing steps (Section 3.2), covering the configuration of the preliminary and 
formal experiments. Chapter 4, Results and Discussion, presents the results of the 
experiments (Section 4.1), including numerical analyses and artificial auditory 
evaluations, and discusses the limitations of the current study and directions for 
future improvement (Section 4.2). Finally, Chapter 5 summarizes the main findings of 
the whole study and provides a comprehensive review of the research results. 
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2 Literature Review 
 
This chapter aims to provide a comprehensive overview of the current state of speech 
synthesis technology, focusing on the evolution of the model, the methods used to 
control the effects of synthesized speech, and the various application areas. I will first 
review the evolution of speech synthesis models, highlighting the main advances and 
ongoing challenges (Section 2.1). Then, a thorough discussion of the specific 
techniques used to control emotional and rhythmic features in synthesized speech will 
be presented, assessing their effectiveness and limitations (Section 2.2). Finally, I will 
explore the various applications of speech synthesis in different fields, emphasizing 
the practical implications of these techniques (Section 2.3) and clarifying the 
questions and hypotheses of this research (Section 2.4). 
 

2.1 The Evolution of Speech Synthesis Models 

The development of speech synthesis techniques has gone through a revolution from 
traditional methods to deep learning-driven, which in turn evolved into real-time and 
end-to-end efficient models. 

Traditional speech synthesis models, such as HTS and Merlin, are mainly based on 
Hidden Markov Models (HMM) for forced alignment. While these systems can learn 
efficiently on limited datasets, the speech they generate usually lacks a sense of 
naturalness and fluency, sounding more mechanical and monotonous. Since this 
alignment is fixed and the architecture relies on manual feature engineering and 
acoustic modeling, they have limited learning capabilities, which limits their 
expressiveness and naturalness (Wu et al., 2016). 

With the rise of deep learning, neural network-based systems, especially Tacotron 2, 
are becoming a hot research topic. These models adopt an end-to-end approach to 
directly convert text to speech, dramatically simplifying the speech synthesis process. 
Tacotron2 effectively maps complete input sequences to speech by introducing an 
attention mechanism. It incorporates an improved WaveNet vocoder, which 
significantly improves the naturalness and expressiveness of synthesized speech (Shen 
et al., 2018). However, although Tacotron2 enhances the naturalness of synthesized 
speech, it may face coherence and consistency issues when processing longer texts, 
and it has a high demand for computational resources. These drawbacks limit its 
application in resource-constrained environments. 

Furthermore, the emergence of end-to-end acoustic models such as WaveNet and 
WaveGlow marks a further leap in the technology. The main innovations of WaveNet 
are the use of dilated causal convolution to increase the receptive field and the 
optimization of the network training through residuals and jump connections. This 
approach allows WaveNet to maintain high-quality audio synthesis results when 
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generating raw audio waveforms. However, its autoregressive nature leads to slower 
inference. Despite the high quality of generation, it may be limited by computational 
resources in real-time applications (van den Oord et al., 2016). WaveGlow, on the 
other hand, combines the ideas of Glow and WaveNet to generate high-quality speech 
from mel spectrograms using a flow network. This approach avoids the computational 
bottleneck of autoregressive models, making the training and inference process more 
efficient (Prenger et al., 2019). However, despite the excellent performance of the 
model in terms of generation speed and quality, training still requires significant 
computational resources and the ability to generalize to different datasets has not 
been fully validated. 

In the field of real-time speech synthesis, FastSpeech2 solves the latency problem of 
previous models by predicting phoneme duration and pitch. FastSpeech2 not only 
retains the high efficiency of FastSpeech, but also introduces the prediction of key 
speech features, such as pitch, duration, and energy, which greatly enhances the 
control of synthesized speech. This results in synthesized speech that is not only highly 
natural but also more accurately expresses different phonetic emotions and 
intonation variations, which is crucial for high-quality speech synthesis (Ren et al., 
2020). For example, when synthesizing sentences with different phonological features, 
the model can accurately control pitch and duration, which is crucial for simulating 
different emotional states or emphasizing specific words (Shen et al., 2018). In 
addition, by controlling the energy, FastSpeech2 can adjust the intensity of speech, 
further increasing the dynamic range and infectiousness of speech expression. 

In summary, the evolution from traditional HMM models to modern deep learning 
models such as Tacotron2 and FastSpeech2 highlights the ongoing efforts to improve 
the naturalness and expressiveness of synthetic speech. These advances are crucial to 
address our first research question of whether precisely modifying TextGrid files and 
their corresponding audio affects the learning process of speech synthesis models 
(Section 2.4). This historical perspective lays the foundation for evaluating how our 
proposed modifications can further enhance these models. Thus, FastSpeech2 was 
chosen for this study, both as a means of exploiting its advanced performance and as 
an anticipation of its future potential. 
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2.2 Control Techniques for Synthesis of Emotional 

Speech Features 

Speech synthesis technology is a complex multi-stage process, which mainly includes 
the stage of preparing files, the stage of model training, and the stage of speech 
synthesis.  

In the preparation of files phase, researchers provide basic data for subsequent model 
training by collecting a large amount of speech data and performing careful labeling 
work. For example, Kayte and his colleagues, in developing a text-to-speech (TTS) 
system for the Marathi language, used a variety of manual and automated 
methods for collecting and labeling speech data. They recorded important prosodic 
information such as phonemes, pitch, intensity, and duration, the accurate recording 
of which is crucial for subsequent model training (Kayte et al., 2015). In addition, an 
automated tool developed by Gibbon and Bachan based on the TextGrid feature of 
the Praat software greatly improves the efficiency and accuracy of speech data 
labeling. This tool allows subsequent model training to capture subtle changes in 
speech data more accurately through precise temporal labeling and text alignment 
(Gibbon & Bachan, 2008). By using TextGrid labeled data, researchers have been able 
to train a variety of speech synthesis models that rely on accurate speech annotation 
to learn the acoustic features and linguistic patterns of speech. For example, in the 
Festival and Festvox systems, TextGrid-labeled data was used to train models for 
synthesizing speech to produce natural and fluent speech (Kayte et al., 2015). 

Moving on to the model training phase, the researchers used these accurately labeled 
speech data to train speech synthesis models. The main task of these models is 
to predict and control the acoustic and linguistic features of speech to generate 
natural and fluent speech output. On the MaryTTS platform, Steiner and Le Maguer 
detail how the temporal annotation and text alignment information in TextGrid files 
can be utilized to train highly accurate speech models. These models are capable of 
automatically adjusting features such as the intensity, loudness, and rate of 
speech according to the input text to generate speech with diverse linguistic features 
(Steiner & Le Maguer, 2017). In addition, Šimko et al. introduce a novel approach to 
enhancing the precision of speech synthesis through meticulous modification of 
TextGrid and lab files during the training phase, enabling the generation of audio with 
distinct linguistic features such as intonation, stress, and rhythm within a single 
sentence. Using the FastSpeech2 model, this approach allows dynamic control of 
these speech effects without requiring major changes to the existing model structure. 
This is a substantial improvement over traditional approaches that typically focus on 
the overall emotional state rather than subtle speech effect changes (Šimko et al., 
2023). 
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In the speech synthesis stage, the trained model generates the 
corresponding speech output based on the input text and can adjust the speech 
features in real time according to different application scenarios. Steiner and Le 
Maguer further discuss the advantages of deep neural networks in this stage. They 
show how trained deep neural network models can be utilized to generate high-
quality speech output by adjusting various features of speech, such as intensity, 
loudness, and speech rate, in real time according to different text inputs. These deep 
learning-based models, such as Tacotron2 and WaveNet, not only better capture and 
reproduce the complex features of speech, but also significantly improve the 
naturalness and smoothness of speech synthesis (Steiner & Le Maguer, 2017). In 
addition, Eyben et al. introduced the application of the openSMILE tool in speech 
synthesis, which can achieve high-precision control of speech features by extracting 
multimodal features of speech and video and combining them with a machine learning 
model. openSMILE's modular design allows it to be flexibly integrated into a variety 
of speech synthesis systems, which can effectively adjust and control speech features, 
improving the adaptability and scalability of the system (Eyben et al., 2013). 

Nonetheless, while many existing platforms and software provide convenient speech 
effect tuning functions, these functions usually focus on tuning the overall speech 
effects only, and less on the ability to generate a mixture of different effects in the 
same synthesized speech. For example, EmoVoice, described by Vogt et al. is a speech 
emotion recognition and synthesis tool that allows users to create personalized 
emotion recognizers that can be used in real-time emotion classification. Although 
EmoVoice can adjust the emotional characteristics of speech in real-time, it is 
primarily geared towards overall emotion adjustment and does not support the 
generation of a mixture of speech with different emotional characteristics in the same 
speech (Vogt et al., 2008). Similarly, the WISE system developed by Eskimez et al., a 
web-based interactive speech emotion classification system, lacks support for 
blending different effects in a single synthesized speech, although it allows the user to 
upload speech data and automatically classify emotions, as well as adjusting emotion 
labels based on user feedback (Eskimez et al., 2016). 

In summary, although current speech synthesis techniques have made significant 
progress in various aspects through advanced annotation, training, and synthesis 
methods, they have mainly focused on tuning overall speech effects and have not yet 
been able to effectively handle the hybrid generation of complex effects in the same 
synthesized speech. My research will start from the file preparation stage, by precisely 
modifying the TextGrid file and its corresponding audio files. This will explore whether 
these adjustments can significantly affect the speech effects learned by the model 
during the training stage and be able to accurately synthesize emotionally expressive 
target speech during the synthesis stage (Section 2.4). This research is expected to 
address the challenge of simultaneously capturing and expressing diverse speech 
effects in a single synthesized speech (Steiner & Le Maguer, 2017; Šimko et al., 2023). 
In addition, this study will validate the cross-linguistic universality and effectiveness of 
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this approach to extend it to speech synthesis practices in different languages (Section 
2.4). Through these explorations, I hope to contribute to the creation of more 
expressive and characteristically diverse speech audio, particularly in terms of 
providing multilingual support and fine-grained emotional expression. 
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2.3 Application Areas of Speech Synthesis 

With the rapid development of artificial intelligence and computer technology, speech 
synthesis technology has been widely used in various fields and has demonstrated 
significant value in business, education, and society. As an important part of human-
computer interaction, speech synthesis technology not only makes intelligent voice 
assistants possible but also improves the convenience and efficiency of work and life 
in a variety of scenarios. 

In the commercial field, speech synthesis technology is especially widely used. Firstly, 
in the field of smart homes and smart speakers, speech synthesis technology enables 
users to control home appliances, play music, set reminders, etc. through voice 
commands, thus greatly facilitating daily life. In addition, by generating natural and 
attractive voice advertisements, enterprises can more effectively convey information 
and attract potential customers. Another important application of speech synthesis 
technology in the commercial field is the customer service system. Through speech 
synthesis technology, enterprises can provide 24-hour uninterrupted customer 
service, significantly improving customer satisfaction and service efficiency. For 
example, in the hospitality industry, the application of voice assistants has improved 
customer service quality and operational efficiency (Hoy, 2018). 

In the field of education, speech synthesis technology has also shown significant value. 
Speech synthesis technology can help students in lower grades improve their writing 
skills and interest in learning (Plummer & Beckman, 2016). Through voice feedback, 
students can more intuitively understand their pronunciation and grammatical errors, 
thus improving their learning efficiency. In addition, speech synthesis technology 
has been used to develop educational software and tools to provide students with a 
personalized learning experience. 

Applications in the social field are equally noteworthy. Speech synthesis technology 
plays an important role in healthcare management. For example, when helping people 
with disabilities, speech synthesis technology can provide audiobooks for the visually 
impaired and real-time subtitles for the hearing impaired, thus greatly improving their 
quality of life (Hoy, 2018). In addition, speech synthesis technology is widely used in 
the intersection of AI and healthcare. For example, through the development of 
intelligent health voice assistants, patients can be helped to monitor their health 
status, manage medication use, and provide health advice (Buhalis et al., 2022). It is 
also possible to make communication more empathetic and humane by adjusting the 
speed and tone of voice to suit the patient's emotional state when providing health 
guidance or psychological support dialogue, enhancing patient comfort and 
satisfaction. 

Although speech synthesis technology has shown great potential in many fields, it still 
faces some problems and challenges. The main problems are the monotony of 
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synthetic speech, the lack of emotional expression, and the inconsistency of speech 
speed. Usually, the speech generated by the speech synthesis system appears to 
be mechanical and indifferent, lacking the emotional fluctuations of natural language, 
and it is difficult to establish an emotional connection with users. In addition, 
intonation, emotion, and pitch variation in natural language are extremely complex, 
which remains a huge challenge for existing speech synthesis technologies. Currently, 
while most speech synthesis systems can generate neutral speech, they often lack 
emotional richness and variety. For example, it is difficult for synthetic speech to 
accurately express emotions such as happiness, sadness, or anger in human speech, 
which limits its ability to effectively convey emotions in interpersonal communication. 
In addition, speech synthesis systems have trouble simulating natural intonation and 
prosody. In natural languages, intonation and prosody changes are complex and highly 
uncertain, and existing technologies have not been able to effectively mimic this 
complexity. As a result, synthetic speech is often monotonous and mechanical, lacking 
the dynamics and expressiveness of natural speech. Finally, the complexity of 
spontaneous language requires speech synthesis systems to be able to process 
unstructured inputs and produce smooth and natural outputs, but current systems 
generally only perform well in limited and predefined contexts (Kuligowska et al., 
2018). 

In summary, speech synthesis technology has demonstrated significant value in a 
variety of fields, including business, education, and society, and is changing the way 
we live by enhancing the user experience, improving learning, and improving the 
quality of life. However, this technology still faces many challenges (Kuligowska et al., 
2018; Hoy, 2018; Plummer & Beckman, 2016). Future research could explore how 
diverse speech effect synthesis, such as effects like emphasis and speech rate variation, 
can be used to further enhance interactivity in education, humanization in healthcare, 
and efficiency and satisfaction in customer service. 
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2.4 Research Question and Hypothesis 

In recent years, with the development of artificial intelligence and deep learning 
technology, speech synthesis technology has also made significant progress. From 
early rule-based systems to end-to-end models utilizing deep neural networks, each 
technological innovation has greatly contributed to the improvement of speech 
synthesis quality. During this technological evolution, models such as FastSpeech2 
have become a research hotspot due to their high efficiency and excellent 
performance. These models not only optimize the naturalness and fluency of 
speech but also enhance the expression of emotion and intonation. 

In addition, the control techniques for speech synthesis features have been 
evolving. By adjusting TextGrid files and related audio data, researchers have 
successfully realized precise control of speech effects, which not only enhances the 
naturalness of speech but also permits synthesized speech to better adapt to different 
application scenarios and needs. For example, in the education field, by emphasizing 
keywords or phrases, students can be helped to better understand and memorize the 
learning content; in the business field, by generating attractive voice advertisements, 
companies can effectively convey information and attract potential customers. These 
applications demonstrate the extensive social value and commercial potential of 
speech synthesis technology. 

Based on the in-depth analysis of the existing literature, I found that although the 
existing speech synthesis models have been improved in various aspects, there are 
still limitations in terms of specific speech effect control and cross-linguistic 
applications. Therefore, I propose the following two research questions and their 
corresponding hypotheses to further optimize speech synthesis techniques and 
explore their potential for application in different languages. 

 

Research Question 1: 

By modifying the TextGrid file and its corresponding audio in the training text, is it 
possible to influence the speech effects learned by the speech synthesis model in the 
training phase and generate audio files with different speech effects in the synthesis 
phase? 

Hypothesis 1: 

Accurate modification of TextGrid files and corresponding audio profiles can 
significantly influence the learning process of speech synthesis models in the training 
phase, enabling the models to accurately reproduce target speech effects in the 
synthesis phase. This hypothesis is based on the research of Steiner and Le Maguer 
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(2017), who noted that temporal annotation and text alignment information in 
TextGrid files is critical for training speech models. This approach enables the model 
to automatically adjust the intensity, loudness, and rate of speech to produce output 
with rich speech effects. 

 

Research Question 2: 

Is this method of adjusting speech synthesis characteristics by modifying TextGrid files 
and corresponding audio cross-linguistically universal and effective, and can it be 
successfully generalized to speech synthesis practices in other languages? 

Hypothesis 2: 

Based on the experimental validation of Chinese speech synthesis, this approach is 
expected to be equally applicable to other languages. The successful application of the 
FastSpeech2 model in a multilingual environment demonstrates the important role of 
tuning the training data through a high degree of control in improving the adaptability 
of synthesized speech. This generalizability and effectiveness are supported by the 
practice of FastSpeech2 modeling (Shen et al., 2018; Ren et al., 2020). 

 

Through these research questions and hypotheses, I would like to explore new 
possibilities for speech synthesis techniques, with the expectation of contributing to 
the creation of more expressive speech audio with more diverse effects. 
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3 Methodology 
 
Based on the research questions and hypotheses presented in the previous chapter 
(Section 2.4), I developed an innovative speech synthesis method specifically designed 
to generate audio with multiple effects. This method involves meticulous fine-tuning 
of the training files, including the addition of special symbols in front of the training 
text denoting specific speech effects (e.g., an asterisk (*) in front of the effect of 
repetition, and a percent sign (%) in front of the effect of slowing down the speech 
rate), and accordingly batch-tuning of the training audio to accurately control the 
different speech effects. The code involved in this paper is publicly available1. 
 
The reason I chose this method is that training files such as lab files and TextGrid files 
contain detailed parametric information about the speech such as pronunciation 
durations, timestamps of speech segments, phoneme sequences, intonation, and 
rhythm. These training files provide the feature extraction data required by the model 
during the training process of speech synthesis, and the model generates speech 
output based on these features. In contrast to the traditional method of training 
models (Section 2.2), this method changes the features learned by the model by 
modifying the training file, in effect changing the data used by the model to extract 
the features. This enables precise control over the effect of synthesizing different 
speech. In short, this method of modifying the training file to synthesize multiple 
effect audio is not only able to accurately adjust the speech parameters to achieve 
diversified speech effects, but also the method itself is simple and efficient, highly 
operable, and innovative, and can also be regarded as a kind of fine-tuning and 
optimization of the model's training parameters. 
 
The experiments were implemented in several stages. Firstly, it started with the 
selection of datasets. To ensure the replicability of the study, publicly available 
datasets in three different languages were selected: the Baker dataset in Chinese, the 
LJSpeech dataset in English, and the CSS10 dataset in Spanish. These datasets are 
widely recognized in the speech synthesis field (Section 3.1).  
 
After downloading these publicly available datasets, preliminary experiments were 
conducted to determine the appropriate number of training samples and target 
speech effects. Ultimately, 7500 audio samples from each language's dataset were 
selected for training. Corresponding lab files and TextGrid files were created for 
these audio samples, and repetition and speech slowdown were selected as the 
speech effects tested (Section 3.2).  
 
Then, the FastSpeech2 speech synthesis model was used for training. The validity of 
the hypothesis was verified by observing the log files to determine the training 

 
1 https://github.com/weiyilan9/master_thesis 
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checkpoints for early stops, and synthesizing audio samples demonstrating different 
speech characteristics (Section 3.3). 
 

3.1 Corpus 

Baker2  was chosen for the Chinese corpus, a publicly available Chinese Mandarin 
Female Corpus designed for non-commercial use. The database contains 10,000 
sentences recorded by young women in standard Mandarin. The voices are clear, 
conveying warmth and a positive sense of feeling, greatly enhancing the naturalness 
and expressiveness of the speech. These recordings were made in a professional 
environment, using high-standard recording equipment to ensure that the signal-to-
noise ratio of the recording files is no less than 35dB, with a sampling rate of 48KHz 
and 16-bit format. These technical parameters ensure the high quality and reliability 
of the recordings and provide a solid foundation for the research of speech synthesis 
technology. The corpus of the database is designed to cover a wide range of data 
types such as news, technology, entertainment, and conversations to ensure the 
diversity and usefulness of the data. The database not only contains comprehensive 
information on syllable consonants, tones, and rhymes but also provides detailed 
labeling of acoustic-rhythmic boundaries, which is crucial for accurate speech 
synthesis. 

LJSpeech3  was chosen for the English corpus. this was based on its wide range of 
applications and proven utility in the field of speech synthesis and recognition. the 
LJSpeech database was preferred due to its high quality, wide range of applications, 
and proven validity in several research papers. This database consists of public-
domain audio containing a total of 13,100 short audio clips of a female pronouncer 
reading seven public-domain non-fiction books. The audio and corresponding text 
transcriptions cover a diverse range of textual material, ensuring the richness and 
variety of the corpus. The audio files are in single-channel 16-bit PCM WAV format 
with a sampling rate of 22,050 Hz, and the technical specifications ensure audio clarity 
and the ability to adapt to multiple processing techniques. The length of each audio 
clip varies from 1 to 10 seconds and contains about 17.23 words on average, making 
it suitable for the rapid processing of short sentences and long passage speech 
synthesis studies. The audio segments are automatically segmented based on silence 
and are usually aligned to sentence or phrase boundaries, facilitating the training of 
more accurate speech recognition and synthesis models. The LJSpeech database also 
provides detailed metadata files, including the identification of each audio file, the 
original transcription, and the normalized transcription, the latter of which provides 
a full lexical unfolding of numerals, ordinal numbers, and monetary units, among 

 
2 https://www.data-baker.com/en/datasets/freeDatasets/ 
3 https://keithito.com/LJ-Speech-Dataset/ 
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others. These features make LJSpeech suitable not only for basic training in speech 
synthesis but also for facilitating complex natural language processing tasks. 

CSS104 was chosen for the Spanish corpus. The Spanish portion of the CSS10 database 
excels in automated speech synthesis applications due to its quality and consistency. 
CSS10 was developed by Kyubyong Park and Thomas Mulc to provide a single 
pronouncer speech dataset for use in speech synthesis, covering ten different 
languages, including Spanish. CSS10 Spanish dataset consists of audio clips of 
audiobooks and their aligned texts from LibriVox, which are public domain resources. 
The database is an invaluable resource for research because of the precise alignment 
of audio and text, its extensiveness, and its high quality. Recordings were done in a 
tightly controlled environment, and all recordings were sampled at 22kHz to ensure 
the clarity and usability of the audio data. CSS10 focuses on text processing and 
accurate alignment, as well as normalization of the text, such as expanding acronyms 
and transcribing numerals, which is especially critical for text-to-speech conversion. 
CSS10's processing of Spanish audio includes the use of Audacity audio editing 
software to automate the process of finding segmentation points and adjusting them 
to ensure the appropriate length of audio segments, which is important for accurate 
text-to-speech synthesis. The dataset provides high-quality speech samples and 
demonstrates its effectiveness by training and evaluating it on two well-known neural 
network text-to-speech models, Tacotron and DCTTS. Through the testing of these 
models and the Mean Opinion Score (MOS) scores, CSS10 demonstrates its excellent 
performance in natural speech synthesis, especially its high-performance scores in 
speech naturalness and pronunciation accuracy. 

Overall, the databases for all three languages have single pronouncers and high-
quality recordings with stringent requirements in processing and 
text alignment, and are of excellent quality, making them ideal for researching speech 
synthesis techniques. 
 
 
  

 
4 https://www.kaggle.com/datasets/bryanpark/spanish-single-speaker-speech-dataset 
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3.2 Data Preprocessing 

3.2.1 Test Experiments 

Before conducting formal speech synthesis experiments, I designed two test 
experiments to initially verify the hypothesis and improve the training method. The 
following is the detailed procedure of the test experiments. 

 

Experiment 1: Manual Labeling Experiment 

Firstly, a small-scale Chinese experiment was conducted. To investigate whether the 
model can learn the effect of weighting specific audio segments, I randomly selected 
100 Chinese audios from the Baker corpus as samples, and manually performed 
loudness tuning operations on random parts of each audio in Audition, specifically, 
turning up the volume of the selected audio segments by about 5 dB. When processing 
these audios, I also modified the corresponding TextGrid file and the lab file to add an 
asterisk (*) as an identifier before the segment whose volume was turned up. Then, I 
selected 1000 Chinese audio training without any modification together. A total of 
1,100 audios were used to help the model learn more diverse features. 

After about 30,000 training steps, the results showed that the waveforms of the 
synthesized audio were significantly larger in the portion of the synthesized audio 
where the asterisks were added, proving that the model can learn the effect of audio 
exacerbation. However, this manual labeling experiment has obvious shortcomings, 
such as manually labeling the data is very time-consuming and error-prone, and does 
not apply to large-scale audio processing. In addition, due to the inconsistency of the 
audio volume in the dataset, the volume in a sentence may fluctuate from high to low, 
which also affects the effect of the experiment. 

 

Experiment 2: Batch Processing Experiment 

To address the problems of insufficient amount of audio and inconsistent volume in 
the manual labeling experiment, I designed a second experiment. 

Firstly, increase the number of training audios. I used the format of one group of every 
2,500 audios to increase the number of Chinese audios to 5,000. The reason for 
choosing a group of 2,500 audio samples is to ensure that there is enough data 
diversity for each audio effect while avoiding excessive computational burden. This 
number is based on preliminary small-scale experiments and my own experience in 
training speech synthesis models, and it can balance the training time and 
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performance of the model, and achieve a better cost-benefit ratio between 
computational resources and training time. 

Second, by using Audition's batch processing function, the audio is divided into two 
parts for loudness normalization: the first 2,500 audio is uniformly adjusted to -10 dB 
to simulate the enhancement of the voice during emphasis, and the other 2,500 audio 
is uniformly adjusted to -18 dB to simulate the standard loudness in daily 
conversations, to ensure that the results of the speech synthesis are more closely 
related to the volume of the actual human language communication. The batch 
processing approach is designed to improve the efficiency and consistency of data 
processing. By setting a uniform loudness standard in Audition, the inconsistency and 
errors of manual processing can be avoided, ensuring that each sample is trained 
under the same conditions, thus improving the accuracy and replicability of model 
learning. The loudness settings are based on the ITU 1770 standard developed by the 
International Telecommunication Union (ITU) and Spotify's practical experience. The 
ITU 1770 standard is designed to address the problem of inconsistent volume in radio, 
TV programs, and other multimedia platforms, and to improve the user experience by 
achieving volume consistency across different sources of audio through loudness 
regularization techniques. This standard is widely accepted internationally and applied 
to audio production and distribution, ensuring that listeners receive a balanced and 
consistent listening experience in a variety of playback environments5. In addition, I 
also refer to the application of this standard by Spotify, which adjusts audio tracks 
through loudness regularization techniques to make the volume more consistent 
throughout the playlist, further improving the standardized expression of different 
sound effects6. 

The experiment was trained over about 150,000 steps and showed positive results. In 
the synthesized audio tested, it was possible to synthesize audio with an emphasis 
section. This proves that the batch processing method is effective and solves the time-
consuming and inaccurate problems of manual labeling. Notably, the experiment also 
illustrated that more training steps are not better. Observations can be made of the 
training log files to determine when to stop early. For example, when training to about 
90,000 steps, the model's loss value starts to float up and down and cannot be 
significantly reduced any further, which indicates that 90,000 steps of training is 
sufficient to validate hypothesis 1 for this research problem. 

 

 
5 https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1770-5-202311-I!!PDF-E.pdf 
6 https://support.spotify.com/us/artists/article/loudness-

normalization/#_gl=1*yeym0k*_gcl_au*MTk3NzIxNjM0Mi4xNzE2NDkzNjYw 
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Figure 1: Loss Comparison of Batch Processing Experiment 

Altogether, although the first test experiment proved that the method of increasing 
volume is effective, it is not suitable for large-scale application due to the complexity 
and instability of manual labeling. The second test experiment successfully verified 
that the same effect can be applied in large-scale audio processing through the batch 
processing method. This proves that the batch volume adjustment method is not 
only effective but also replicable. Through these two experiments, I have initially 
verified the feasibility of the method and laid the foundation for subsequent formal 
experiments. Next, based on the results of these two experiments, I will conduct 
further formal experiments on speech synthesis in Chinese, English, and Spanish to 
test hypothesis 2. 
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3.2.2 Formal Experiments 

In the formal experiments, the processing can be divided into several parts. 

Firstly, the pre-processing of the audio files. To verify whether this method can 
synthesize many different speech features, I chose the sounds with more distinctive 
features for the verification of the emphasis effect and the speech slowing effect. For 
each language (Chinese, English, and Spanish), 7,500 audios were selected, and every 
2,500 audios were used as a sample of one effect, which was categorized into 
emphasis, slowing down, and normal audios, and batch processed with Audition. The 
specific operation is as follows: for each language, I divided the 7,500 audio files into 
three groups of 2,500 audio each. The first group of 2,500 audio files is adjusted to a 
uniform loudness of -10dB to simulate the effect of voice overdubbing. The second 
group of 2,500 audio was adjusted to a uniform loudness of -18dB to maintain the 
volume of normal speech. The third set of 2,500 audios was processed in two steps: 
firstly, the loudness was uniformly adjusted to -10dB, and then the speech rate was 
slowed down by a factor of 1.5 to simulate the effect of slower speech. The batch 
processing ensured that each language had three audio groups 
with clearly differentiated speech effects. 

The next step is the processing of the lab files. The corpus for each language comes 
with a document that records the name of each audio file and its corresponding audio 
text. I generated the corresponding lab file for each audio by splitting this document 
and utilizing Python. This was handled as follows: for the audio portions that were 
reread, an asterisk (*) was added in front of each word in the lab file as an identifier; 
for the audio portions that were slowed down, a percentage symbol (%) was added in 
front of each word in the lab file as an identifier. The lab files for all languages were 
processed in this way to clearly distinguish between audio with different processing 
effects in subsequent experiments. 

Different strategies were used to process the TextGrid files for the three languages. 
For the Chinese Baker corpus, its pre-equipped TextGrid files were utilized. Specific 
modifications included: adding an asterisk (*) marker after the “text=” tag in the 
emphasis section; and for the slowed-down section, not only adding a percentage 
symbol (%) after “text=”, but also adjusting the “xmin” and “xmax” tags of the timeline 
to extend their duration to 1.5 times and retaining them up to three decimals, to 
match the extended speech rate after the audio processing. To ensure the accuracy of 
these modifications, an alignment test was performed via Praat software, which 
showed good alignment. For the English and Spanish corpus, due to the lack of pre-
aligned TextGrid files, the MFA (Montreal Forced Aligner) tool was used to uniformly 
generate TextGrid files. The file alignment check was performed before processing, 
and the TextGrid generation and annotation were performed after confirming that 
there were no errors. For the parts of emphasis and slowing down, the processing 
method is the same as that for Chinese. In all three languages, symbols indicating 
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pauses, such as “sp”, “spn”, “sil”, and “<eps>”, were not specially processed or 
tagged. Similarly, no special symbols were added to blank paragraphs. 

The model I chose for speech synthesis was FastSpeech2, which required more files to 
be prepared before training because FastSpeech2 was designed to be remarkably 
different from other models such as Tacotron2 and the original FastSpeech. 
FastSpeech2 introduces an advanced attentional mechanism, which allows the model 
to learn and predict key audio features, including pitch, duration, mel spectrum, and 
energy more accurately. In particular, pitch reflects the tonal variation of articulation 
and is crucial for conveying the semantics and intonation of different languages and 
dialects; duration relates to the length of articulation of a phoneme or a word, and its 
precise control is the basis for achieving smooth and natural speech; mel spectrum 
provides an effective representation of audio frequency by simulating the auditory 
perception of the human ear, which directly affects the quality and clarity of speech; 
the energy feature depicts the strength and dynamic range of the speech signal, which 
is extremely important for reproducing the speaker's emotion and emphasis. 

For this reason, I used the processing files provided by the FastSpeech2 model to 
synthesize the corresponding pitch, duration, mel spectrum, and energy files. In 
addition, to validate the model, I set 150 audio samples to constitute the validation 
set. I also added and updated symbols that appeared in the training and validation 
sets and were missing in the symbols file to ensure the completeness of the symbol 
table and the accuracy of the model training. This process was consistent across all 
three different languages. 
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3.3 Experimental Configurations 

Before starting the training, I configured a detailed set of parameters for the 
experiment, which were largely consistent with the settings in the original 
FastSpeech2 paper7. Below are the specific configuration details of the experiment. 

For the transformer configuration, the encoder was set to 4 layers with 2 heads per 
layer and a hidden layer dimension of 256; the decoder was set to 6 layers, 
also with 2 heads per layer and a hidden layer dimension of 256. The filter size of the 
convolutional layer was set to 1024 and the kernel size was set to [9, 1]. The dropout 
rate is set to 0.2 for both the encoder and decoder. In variance predictor 
configuration, the filter size is 256, the kernel size is 3, and the dropout rate is 
0.5. This helps in predicting pitch and energy variations. For variance embedding, the 
quantization of pitch and energy is set to “linear” with 256 quantization intervals, 
which is consistent with the characteristics of the data without normalization. In the 
multi-speaker configuration, the multi-speaker feature is not enabled because the 
datasets of the three languages are all single speakers to keep the model simple and 
focused. The maximum sequence length is 1000 to accommodate longer speech 
input. The vocoder uses the “Hi-Fi-GAN” model, which is one of the most widely 
recognized vocoders in the field of high-quality speech synthesis. Finally, for the 
optimizer, the batch size is set to 128, the optimizer's momentum (betas) is set to [0.9, 
0.98], the eps is 0.000000001, and no weight decay is used (weight_decay is 0.0). The 
gradient clipping threshold is 1.0 and the gradient accumulation step (grad_acc_step) 
is 1. The warm-up step (warm_up_step) is set to 4000, the decay steps (anneal_steps) 
are [300000, 400000, 500000], and the decay rate (anneal_rate) is 0.3. 

This set of experimental configurations aims to simulate and validate the effect of the 
FastSpeech2 model in different speech synthesis scenarios, and to ensure that 
the model's performance is consistent with the original paper through fine parameter 
adjustments. 

In addition to the above experimental configurations, to further monitor and manage 
the training process of the model, I also set detailed step configurations to ensure data 
visualization and continuous performance evaluation during the training process. The 
specific step configuration is as follows: 

The total step is set to 300,000. The log step is set to record a training log every 100 
steps to allow real-time monitoring of loss values and other important metrics during 
training. The synthesis step and validation step are both set to 1,000 steps, which 
means that the generation of synthetic samples and performance evaluation on the 
validation set is performed every 1,000 steps to keep up to date with 
the model's performance on unseen data. The save step is set to save the model every 

 
7 https://github.com/ming024/FastSpeech2 
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10,000 steps to ensure that there are enough checkpoints in the training process 
that can be used for subsequent recovery training or performance comparison. 

In addition, I made my own decision on when to stop training early based on the losses 
observed in the log files during training. This strategy aims to prevent over-training 
and over-fitting and ensures that the model stops training promptly after reaching the 
desired performance, thus preserving the optimal model for subsequent testing and 
deployment. This flexible training management strategy helps optimize the overall 
performance of the model while saving unnecessary computational resources. 

All training was done on Hábrók, using NVIDIA A100 GPUs for training. 
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4 Results & Discussion 
 
To evaluate the performance of the speech synthesis model more comprehensively, I 
used both numerical analysis (Section 4.1) and manual listening assessment (Section 
4.2) for a comprehensive evaluation.  
 
For numerical analysis, I used Audition to examine the duration and loudness of three 
speech effects: normal, repetition, and slowed speech. This provided objective data 
support and allowed me to accurately measure the technical metrics of the different 
speech expressions. 
 
For artificial hearing assessment, I constructed mixed speech samples containing 
features of normal speech rate, emphasis, and slowing down, and designed 
questionnaires to invite listeners to participate and test whether they could accurately 
recognize the speed change and emphasis parts of the speech samples. This approach 
not only provides subjective feedback from listeners but also reveals the effects and 
potential problems of speech synthesis in practical use. 
 
By observing the training logs, I selected the outputs of the speech synthesis models 
in Chinese, English, and Spanish at 90,000, 60,000, and 70,000 steps of training as 
evaluation checkpoints. Based on these checkpoints, I used Tatoeba 8  to 
generate 10 semantically consistent test sentences, thus maintaining the consistency 
of the test conditions. These sentences are listed below: 
 
 
  Chinese Chinese (pinyin) 

1 他看起来像个运动员，但是其实

是个作家 

ta1 kan4 qi3 lai2 xiang4 ge4 yun4 
dong4 yuan2 sp dan4 shi4 qi2 shi2 shi4 
ge5 zuo4 jia1 

2 今天下午我有两个小时的英语课

和两个小时的汉语课 

jin1 tian1 xia4 wu3 wo3 you3 liang3 
ge5 xiao3 shi2 de5 ying1 yu3 ke4 he2 
liang3 ge4 xiao3 shi2 de5 han4 yu3 
ke4  

3 如果可能的话我想去世界各地旅

行 

ru2 guo3 ke3 neng2 de5 hua4 wo3 
xiang3 qu4 shi4 jie4 ge4 di4 lv3 xing2 

 
8 https://tatoeba.org/zh-cn 



 

 23 

4 当我们决定期待从生活中得到什

么的时候，生活开始了 

dang1 wo3 men2 jue2 ding4 qi1 dai4 
cong2 sheng1 huo2 zhong1 de2 dao4 
shen2 me5 de5 shi2 hou5 sp sheng1 
huo2 kai1 shi3 le5 

5 这个童话故事很浅白，七岁的小

孩也看得懂 

zhe4 ge5 tong2 hua4 gu4 shi4 hen3 
qian3 bai2 sp qi1 sui4 de5 xiao3 hai2 
ye3 kan4 de5 dong3 

6 我宁愿呆在家里也不要在这种天

气中出门 

wo3 ning4 yuan4 dai1 zai4 jia1 li3 ye3 
bu2 yao4 zai4 zhe4 zhong3 tian1 qi4 
zhong1 chu1 men2 

7 众所周知，空气是多种气体的混

合体 

zhong4 suo3 zhou1 zhi1 sp kong1 qi4 
shi4 duo1 zhong3 qi4 ti3 de5 hun4 he2 
ti3 

8 我们有一只猫。我们都喜欢这只

猫 

wo3 men2 you3 yi4 zhi1 mao1 sp wo3 
men2 dou1 xi3 huan1 zhe4 zhi1 mao1  

9 谢谢你让我度过一个愉快的晚上 xie4 xie4 ni3 rang4 wo3 du4 guo4 yi2 
ge5 yu2 kuai4 de5 wan3 shang3 

10 寒冷干燥，灿烂的阳光，多么美丽

的冬日天气 

han2 leng3 gan1 zao4 sp can4 lan4 de5 
yang2 guang1 , duo1 me5 mei3 li4 de5 
dong1 ri4 tian1 qi4 

Table 1: Test Sentences in Chinese 
 
 
  English Spanish 

1 He looks like a sportsman, but he 
is a writer 

Parece un deportista, pero es escritor 

2 This afternoon I have English class 
for two hours and then two hours 
of Chinese 

Esta tarde tengo dos horas de clase 
de inglés y dos horas de clase de 
chino 

3 I want to go on a journey around 
the world if possible 

Quiero ir a un viaje alrededor del 
mundo, si es posible 

4 Life starts when you decide what 
you are expecting from it 

La vida empieza cuando decides lo 
que esperas de ella 

5 This fairy tale is easy enough for a 
seven year old child to read 

Este cuento de hadas es bastante 
simple, un niño de siete años puede 
leerlo 
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6 I’d rather stay home than go out in 
this weather 

Prefiero quedarme en casa que salir 
con este tiempo 

7 As everyone knows, air is a 
mixture of gases 

Como todo el mundo sabe, el aire es 
una mezcla de gases 

8 We have a cat. We are all fond of 
it 

Tenemos un gato. A todos nos gusta 
el gato 

9 Thank you for the pleasant 
evening 

Gracias por una noche agradable 

10 Cold and dry, splendid sunshine, 
what beautiful winter weather 

Frío y seco, una esplendida luz del 
sol, qué hermoso clima invernal 

Table 2: Test Sentences in English and Spanish 
 
 

4.1 Numerical Analysis 
 
Firstly, I selected the outputs of the Chinese, English, and Spanish speech synthesis 
models at 90,000, 60,000 and 70,000 steps of training as the evaluation checkpoints, 
and generated the effects of normal, emphasis and slowing down the speech rate by 
1.5 times for ten test sentences, respectively. Then, the audio was scanned for 
duration and loudness using Audition. Finally, the average of the ten test sentences 
was calculated. 
 
 

Average Duration (s) 

Feature Chinese English Spanish 

Normal 3.382 3.405 2.896 

Emphasis 3.634 3.283 2.865 

Slow 1.5x 5.457 5.272 4.562 

Table 3: Average Duration for the Test Sentences 
 
 
It is clear from Table 3 that the audio duration of slowing down the speech rate by 1.5 
times is about 1.5 times longer than the normal effect and the emphasis effect. This 
indicates that the model learned the speech features of the slowed-down speech rate 
very well. In contrast, there is no clear pattern in the change in audio duration for the 
emphasis part. 
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Average Loudness (dB) 

Feature Chinese English Spanish 

Normal -18.011 -18.741 -19.088 

Emphasis -12.773 -13.763 -13.699 

Slow 1.5x -12.597 -12.846 -12.735 

Table 4: Average Loudness for the Test Sentences 
 
 
Similarly, it is evident from Table 4 that the audio decibel values (dB) of the emphasis 
and the slowed-down 1.5 times speech speed were improved by about 6 dB compared 
to the normal speech speed. This result indicates that the model effectively modeled 
the loudness characteristics of these speech effects. However, it is important to note 
that despite the loudness improvements, they are still approximately 2 dB lower than 
the corresponding average decibel value for emphasis in the training set (-10 dB). This 
may be indicative of room for improvement of the model in terms of loudness 
amplification. 
 
To further verify the statistical significance of these results, I performed independent 
sample t-tests on the duration and loudness of different speech effects (normal, 
emphasis, slowed down by 1.5x) in various languages. This test is used to compare the 
difference between the means of two independent groups of samples to determine 
whether the observed effect is statistically significant, and the statistical significance 
of the result is usually judged by a p-value of less than 0.05 (5% level of significance). 
 
 

Statistical Comparison of Loudness 
 

Chinese English Spanish 
Normal & Emphasis <0.001 <0.001 <0.001 
Normal & Slow 1.5x <0.001 <0.001 <0.001 

Emphasis & Slow 1.5x 0.535 0.022 0.23 
Table 5: Statistical Comparison of Loudness for Different Speech Effects 

 
 
As can be seen in Table 5, for all three languages, there are significant differences 
between normal speech speed and emphasis and between normal speech speed and 
slowing down, suggesting that there is a significant distinction between the loudness 
of the models in modeling these different speech effects. The difference in loudness 
between emphasis and slowing down is not significant in Chinese and Spanish, 
suggesting that in these two languages the two speech effects behave similarly in 
terms of loudness, while in English, although statistically significant, the actual effect 
is likely to be smaller. Therefore, from the perspective of numerical analysis, despite 
the differences with the original training data, the model has learned and reproduced 



 

 26 

the loudness of different speech features quite accurately, showing its ability to 
capture subtle differences in speech features. 
 
In summary, I used numerical evaluation to evaluate the duration and loudness of 
three languages when synthesizing different speech effects. The results show that the 
model effectively learns and simulates the loudness and duration characteristics of 
different speech effects, especially when slowing down the speech rate. Using 
independent samples t-tests, I confirmed that the model’s changes in loudness 
between different speech effects were statistically significant, although the difference 
in loudness between repetition and slowing down was not significant in some 
languages. This suggests that the model has had some success in modeling specific 
speech features, but there is still room for improvement in some details. 
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4.2 Manual Listening Evaluation 
 
To evaluate the effectiveness of speech synthesis techniques more fully, I also 
conducted an artificial hearing assessment. Two main types of evaluation were used: 
an evaluation of the effects of different speech features and a Mean Opinion Score 
(MOS) test.  
 
The choice of these methods was based on the following considerations: 
 
Firstly, the evaluation of the effects of speech features focused on analyzing the 
performance of the speech synthesis model when simulating different speech 
variations (e.g., emphasis and speech rate adjustment). Through these effect-specific 
tests, the study aims to gain insight into the model’s ability to mimic real human 
speech variations and its limitations. This evaluation was carried out by setting up 
experimental and control groups and collecting participant feedback in the form of a 
questionnaire to determine whether they could accurately recognize specific effects 
in synthetic speech. 
 
Secondly, the MOS test focuses on evaluating the overall quality of the synthesized 
speech, especially its naturalness and clarity. As a widely used criterion in the field of 
speech synthesis, MOS evaluates the auditory quality of speech by inviting listeners to 
compare synthesized speech with real human voices. This evaluation method is 
effective in revealing the performance of synthesized speech in real-world application 
scenarios, especially its suitability and acceptability in multilingual environments. 
 
To collect participants’ feedback, I designed and released a questionnaire9 through 
the Qualtrics platform, which received a total of 40 valid responses. The subjects who 
participated in the experiment all had a bachelor’s degree or higher, were of Chinese 
nationality, and possessed good language skills in Chinese and English, which provided 
a solid foundation for evaluating the effects of speech. Considering the participants’ 
unfamiliarity with Spanish, the Spanish parts of the test of speech effects were 
removed and only Chinese and English were included. The experiment was designed 
to contain an experimental and a control group, with the audio samples from the 
experimental group combining the Chinese and English emphasis effects, the speech 
slowing effect, and their combinations, while the audio samples from the control 
group did not contain these specific effects. Participants were asked to identify and 
select audio clips that they thought had a specific speech effect. In addition, to assess 
the naturalness and clarity of the synthesized speech, this study also conducted a MOS 
test, which covered Chinese, English, and Spanish, more fully in which participants 
were invited to rate the naturalness and clarity of the synthesized speech in 
comparison to the real human voice. 

 
9 https://github.com/weiyilan9/master_thesis/blob/main/questionnaire_demo/Questionnaire.pdf 
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Although the questionnaires in this study did not collect personal information from 
the participants, there are still some ethical issues that need to be considered in the 
process of data collection, management, and storage. Firstly, the questionnaire did 
not capture any personally identifiable information, avoiding as much as possible the 
risk of participants' privacy being compromised. All data were collected anonymously 
and used only for this study and will not be disclosed to third parties. In addition, 
participants were given full informed consent before their participation and 
understood the purpose and content of the study. Finally, during data analysis, all 
results were presented in such a way as to ensure that they did not reflect individual-
specific information, thus avoiding any potential adverse effects on participants. 
These measures ensured the ethical compliance of the study and the protection of 
participants' rights and interests. 
 
The statistical results and analyses are presented below: 
 
 

Correct Rate  
Language Emphasis Emphasis (mix) Slow Slow (mix) 

Experimental  
Group 

Chinese 0.4 0.675 0.8 0.85 
English 0.925 0.475 0.9 0.95 

Control  
Group 

Chinese 0.475 0.325 0.075 0.175 
English 0.3 0.275 0 0.625 

Table 6: Correctness of Different Speech Effects 
 
 

Statistical Significance Comparison 
 

Emphasis Emphasis (mix) Slow Slow (mix) 
Chinese 0.499 0.002 <0.001 <0.001 
English <0.001 0.065 <0.001 <0.001 

Table 7: Comparison of Statistical Significance Between the Experimental Group and 
the Control Group on Different Speech Effects 

 
 
We can see in Table 6 a comparison of the correct rate between the experimental and 
control groups for different language and phonological effects. In the experimental 
group, for the Chinese emphasis effect, the correct rate is 40%, while for English, this 
correct rate increases significantly to 92.5%. This indicates that the English speech 
synthesis model performed more accurately in simulating the emphasis effect. For the 
mixed emphasis effect, the correct rates were 67.5% and 47.5% for Chinese and 
English, respectively, implying that Chinese is relatively more accurate in handling 
mixed speech features. For the slowing down effect, the correct rate was 80% for 
Chinese and 90% for English, showing that the speech synthesis models of both 
languages are better able to learn and simulate speech rate changes. Mixed with the 
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slowing down effect test, Chinese and English had 85% and 95% correct rates 
respectively, showing that the mixed effect was more effectively modeled in English. 
 
In statistics, p-values are used to determine the significance of results. Typically, 
results are considered statistically significant if the p-value is less than 0.05 (i.e., a 5% 
level of significance). This means that the observed effect or difference is highly 
unlikely to be caused by random factors and reflects a real, systematic effect or 
difference. To verify the significance of the experimental results, I statistically analyzed 
the results in Table 5. 
 
As can be seen from the comparison of statistical significance in Table 7, for the 
emphasis effect, English showed a very high statistical significance for the single 
emphasis effect (p < 0.001), whereas Chinese’s performance was only significant for 
the emphasis mixture effect (p = 0.002), and not significant for the single emphasis 
effect (p = 0.499). For the slowing down effect, both for the single and mixed effects, 
the p-values for both Chinese and English were less than 0.001, showing strong 
statistical significance, which suggests that the slowing down simulation was well 
learned and applied in both languages. 
 
In summary, these results reveal differences in the performance of different languages 
and speech effects in speech synthesis modeling. The speech-slowing effect is 
particularly strong in Chinese and English with remarkable success, which is a very 
promising result. The difference in the emphasis effect was not significant in Chinese 
but showed some potential in English. This difference may be related to the fact that 
the synthetic loudness variations of the reread speech mentioned in Section 4.1.1 
failed to reach the loudness frequencies of the training set audio. However, I believe 
that more discriminating results can be obtained by increasing the audio loudness 
adjustment of the training set for the emphasis effect in the future. 
 
Overall, the experimental results demonstrate that this method of synthesizing 
multiple speech features can be applied to different languages and validate 
hypotheses one and two (Section 2.4). These findings provide valuable insights for 
further optimization of speech synthesis methods. 
 
 

MOS Scores  
Language Naturalness Clarity 

Synthetic 
Speech 

Chinese 3.5 4.575 
English 3.875 4.35 
Spanish 4.125 4 

Ground  
Truth 

Chinese 4.35 4.825 
English 4.55 4.775 
Spanish 4.4 4.375 

Table 8: Comparison of MOS Scores for Naturalness and Clarity in Three Languages 
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Figure 2: Comparison of Visualized MOS Scores 

 
 
The Mean Opinion Score (MOS) is a commonly used method for evaluating speech 
quality and is particularly widely used in assessing speech communication systems and 
speech synthesis techniques. It provides listeners with a scale ranging from 1 to 5 to 
measure the quality of the speech samples heard. In the field of speech synthesis, the 
MOS score is commonly used to assess the naturalness and intelligibility of 
synthesized speech. Naturalness measures how smooth and natural the speech 
sounds, while clarity focuses on the noise impact and intelligibility of the speech. 
 
The reason for choosing naturalness and clarity as scoring criteria Is that these two 
attributes do not require the listener to have an in-depth understanding of the 
linguistic content. This is particularly applicable to assessing non-native listeners’ 
ratings of Spanish because although participants may not understand the exact 
meaning of the Spanish language, they are still able to rate the fluency of speech and 
the clarity of sound. 
 
I visualized the data from the MOS scores. As can be visualized from the visualization 
charts in Figure 2, the clarity ratings of the synthetic speech in all languages were close 
to the ratings of the real speech, although there were small gaps. For example, the 
clarity score of synthetic speech for Chinese is 4.575 compared to 4.825 for real 
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speech, and the clarity score of synthetic speech for Spanish is 4 compared to 4.375 
for real speech. However, the naturalness scores perform differently across languages. 
While there is a significant gap between the synthesized and real speech in Chinese 
and English, the naturalness performance in Spanish is closer, pointing out that the 
experimental speech synthesis models and methods have some room for 
improvement in the future. 
 
In summary, the results of the MOS scores are relatively encouraging. Although there 
is still room for further improvement, this speech synthesis technique has been able 
to produce results that are very close to real speech in multiple languages. Especially 
in terms of clarity, the performance of the synthesized speech is very close to that of 
real speech, showing the potential of the technology. 
 
Overall, in the research presented in this paper, I provide an in-depth performance 
evaluation of speech synthesis models in Chinese, English, and Spanish through careful 
numerical analyses (Section 4.1) and manual listening evaluations (Section 4.2). Test 
sentences generated through selected training checkpoints and subsequent 
evaluations show that these models exhibit significant differences and potential for 
simulating different speech rates and emphasis effects. Especially in the simulation of 
slowed-down speech rate and mixed effects, each language model demonstrated 
good learning ability and usefulness. 
 
In addition, the Mean Opinion Score (MOS) test results further validate the 
naturalness and clarity of the synthesized speech, especially in different languages. 
Although synthetic speech still needs to be optimized in some aspects, overall, it is 
close to the real human voice, proving the effectiveness and applicability of the 
method. 
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5 Conclusion 
 
This study explores the synthesis of a variety of speech effects (e.g., emphasis, slowing 
down, etc.) by fine-tuning the training files and corresponding audio data based on 
the FastSpeech2 model. Experiments conducted in three languages, Chinese, English, 
and Spanish, show that the methodology is feasible. Precise data annotation and 
modification can significantly improve the ability of the model to reproduce the target 
speech effects. The publicly available code also allows for good replicability of the 
research, providing rich experimental material for future researchers. 
 
The results validate hypothesis 1, which states that by accurately modifying files such 
as TextGrid and the corresponding audio data, the learning process of the speech 
synthesis model in the training phase can be significantly affected so that the model 
can accurately reproduce the target speech effect in the synthesis phase. The 
synthesized speech has clarity and naturalness close to the real speech. Numerical 
analyses and manual listening evaluation results show that the model can successfully 
simulate the effect of speech slowing down in different languages, displaying 
significant feature variations in terms of duration and loudness, which proves the 
model's sensitivity and accuracy in adjusting the speech rate. In addition, although the 
performance of the emphasis effect varies across languages, it is generally possible for 
the model to learn and reproduce the emphasis effect, especially in English. The 
relatively insignificant emphasis effect in Chinese may be related to the labeling and 
processing methods of the training data. 
 
The results also validate hypothesis 2, that is, the proposed method has cross-
language generalizability and effectiveness. Through experiments in Chinese, English, 
and Spanish, I demonstrated the applicability of the method in multilingual 
environments, which implies that this technique can be generalized for speech 
synthesis in more languages with a wide range of potential applications. 
 
Despite the encouraging results of the study, there is still room for improvement and 
potential for further research. Future research could further optimize the synthetic 
performance of the emphasis effect by varying the loudness of the training audio for 
the emphasis effect, especially in Chinese. In addition, the comparison of this method 
between different models can be explored in the future. For example, comparing 
FastSpeech2 with other state-of-the-art models to evaluate the differences in their 
performance on different speech effects. Further research can also be extended to the 
field of affective speech synthesis to explore methods of incorporating emotional 
features in synthesizing different speech effects so that the synthesized audio can not 
only have a variety of speech effects but also reach a higher level of emotional 
expression. 
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The value of the findings suggests that this method can be used to adjust speech 
effects with relative freedom, simulating natural and flexible variations in speech rate, 
intonation, and voice intensity, thus more closely resembling the natural speech 
habits of human beings, with a wide range of applications. Through these 
improvements and extensions, future research can further enhance the application 
value of multi-effect speech synthesis technology, promote the development of 
intelligent interaction technology, and benefit more application areas such as 
education, healthcare, and business. 
 
In conclusion, this study not only demonstrates the feasibility of fine-tuning training 
files for multiple effect speech synthesis but also provides valuable insights for future 
improvements and extensions. It is expected to contribute to the realization of more 
expressive speech audio synthesis with more diverse effects. 
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Questionnaire 
(The correct answer for the experimental group is marked in red) 
 
 
Hello, thank you for participating in my survey on evaluating speech synthesis features. 
The purpose of this survey is to explore the effects of synthesizing a variety of speech 
features, including emphasis and speech rate adjustment, and to evaluate their 
performance in Chinese, English, and Spanish. Please note that you do not need to be 
fluent in Spanish, just answer the questions based on your intuition. Your feedback is 
very important for me to better evaluate this speech synthesis technology. I look 
forward to hearing from you! 
您好，感谢您参与我的语音合成特征评估调查。本调查旨在探索包括强调、语速

调整等多种语音特征的合成效果，并评估它们在中文、英文和西班牙语中的表现。

请注意，您无需精通西班牙语，只需根据您的直觉回答相关问题即可。您的每一

项反馈对我来说都非常重要，有助于我更好地评估这项语音合成技术。期待您的

真实感受和宝贵意见！ 
 
 
Q1 Which part of the sentence do you think is emphasized? 
 您认为句子中的哪部分是强调的？    

〇 今天下午我有 (This afternoon I have) 

〇 两个小时的英语课 (English class for two hours) 

〇 和两个小时的汉语课 (and then two hours of Chinese) 

 
Q2 Which part of the sentence do you think is emphasized? 
 您认为句子中的哪部分是强调的？    

〇 今天下午我有 (This afternoon I have) 

〇 两个小时的英语课 (English class for two hours) 

〇 和两个小时的汉语课 (and then two hours of Chinese) 

 
Q3 Which part of the sentence do you think is spoken more slowly? 
 您认为句子中的哪部分是语速放慢的？    

〇 他看起来 (He looks like) 

〇 像个运动员 (a sportsman) 

〇 但是其实 (but) 
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〇 是个作家 (he is a writer) 

 
Q4 Which part of the sentence do you think is spoken more slowly? 
 您认为句子中的哪部分是语速放慢的？ 

〇 他看起来 (He looks like) 

〇 像个运动员 (a sportsman) 

〇 但是其实 (but) 

〇 是个作家 (he is a writer) 

 
Q5-1 Which part of the sentence do you think is emphasized? 
 您认为句子中的哪部分是强调的？ 

〇 我宁愿呆在家里 (I’d rather stay home) 

〇 也不要 (than) 

〇 在这种天气 (in this weather) 

〇 中出门 (go out) 

 
Q5-2 Which part of the sentence do you think is spoken more slowly? 
您认为句子中的哪部分是语速放慢的？ 

〇 我宁愿呆在家里 (I’d rather stay home) 

〇 也不要 (than) 

〇 在这种天气 (in this weather) 

〇 中出门 (go out) 

 
Q6-1 Which part of the sentence do you think is emphasized? 
 您认为句子中的哪部分是强调的？ 

〇 我宁愿呆在家里 (I’d rather stay home) 

〇 也不要 (than) 

〇 在这种天气 (in this weather) 
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〇 中出门 (go out) 

 
Q6-2 Which part of the sentence do you think is spoken more slowly? 
您认为句子中的哪部分是语速放慢的？ 

〇 我宁愿呆在家里 (I’d rather stay home) 

〇 也不要 (than) 

〇 在这种天气 (in this weather) 

〇 中出门 (go out) 

 
Q7-1 Do you think this speech sounds natural? 
 您认为这个语音听起来自然吗？ 

〇 5 Excellent 优秀 

〇 4 Good 良好 

〇 3 Fair 一般 

〇 2 Poor 较差 

〇 1 Bad 差 

 
Q7-2 Do you think this speech sounds clear?  
您认为这个语音听起来清晰吗？ 

〇 5 Excellent 优秀 

〇 4 Good 良好 

〇 3 Fair 一般 

〇 2 Poor 较差 

〇 1 Bad 差 

 
Q8-1 Do you think this speech sounds natural? 
 您认为这个语音听起来自然吗？ 

〇 5 Excellent 优秀 
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〇 4 Good 良好 

〇 3 Fair 一般 

〇 2 Poor 较差 

〇 1 Bad 差 

 
Q8-2 Do you think this speech sounds clear?  
您认为这个语音听起来清晰吗？ 

〇 5 Excellent 优秀 

〇 4 Good 良好 

〇 3 Fair 一般 

〇 2 Poor 较差 

〇 1 Bad 差 

 
Q9 Which part of the sentence do you think is emphasized? 
 您认为句子中的哪部分是强调的？ 

〇 This fairy tale 

〇 is easy enough for 

〇 a seven year old child 

〇 to read 

 
Q10 Which part of the sentence do you think is emphasized? 
 您认为句子中的哪部分是强调的？ 

〇 This fairy tale 

〇 is easy enough for 

〇 a seven year old child 

〇 to read 
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Q11 Which part of the sentence do you think is spoken more slowly? 
 您认为句子中的哪部分是语速放慢的？ 

〇 This fairy tale 

〇 is easy enough for 

〇 a seven year old child 

〇 to read 

 
Q12 Which part of the sentence do you think is spoken more slowly? 
 您认为句子中的哪部分是语速放慢的？ 

〇 This fairy tale 

〇 is easy enough for 

〇 a seven year old child 

〇 to read 

 
Q13-1 Which part of the sentence do you think is emphasized? 
 您认为句子中的哪部分是强调的？ 

〇 Cold and dry 

〇 splendid sunshine 

〇 what beautiful winter weather 

 
Q13-2 Which part of the sentence do you think is spoken more slowly? 
 您认为句子中的哪部分是语速放慢的？ 

〇 Cold and dry 

〇 splendid sunshine 

〇 what beautiful winter weather 

 
Q14-1 Which part of the sentence do you think is emphasized? 
 您认为句子中的哪部分是强调的？    

〇 Cold and dry 
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〇 splendid sunshine 

〇 what beautiful winter weather 

 
Q14-2 Which part of the sentence do you think is spoken more slowly? 
 您认为句子中的哪部分是语速放慢的？ 

〇 Cold and dry 

〇 splendid sunshine 

〇 what beautiful winter weather 

 
Q15-1 Do you think this speech sounds natural? 
 您认为这个语音听起来自然吗？ 

〇 5 Excellent 优秀 

〇 4 Good 良好 

〇 3 Fair 一般 

〇 2 Poor 较差 

〇 1 Bad 差 

 
Q15-2 Do you think this speech sounds clear?  
您认为这个语音听起来清晰吗？ 

〇 5 Excellent 优秀 

〇 4 Good 良好 

〇 3 Fair 一般 

〇 2 Poor 较差 

〇 1 Bad 差 

 
Q16-1 Do you think this speech sounds natural? 
 您认为这个语音听起来自然吗？ 

〇 5 Excellent 优秀 
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〇 4 Good 良好 

〇 3 Fair 一般 

〇 2 Poor 较差 

〇 1 Bad 差 

 
Q16-2 Do you think this speech sounds clear?  
您认为这个语音听起来清晰吗？ 

〇 5 Excellent 优秀 

〇 4 Good 良好 

〇 3 Fair 一般 

〇 2 Poor 较差 

〇 1 Bad 差 

 
Q17-1 Do you think this speech sounds natural? 
 您认为这个语音听起来自然吗？ 

〇 5 Excellent 优秀 

〇 4 Good 良好 

〇 3 Fair 一般 

〇 2 Poor 较差 

〇 1 Bad 差  

 
Q17-2 Do you think this speech sounds clear?  
您认为这个语音听起来清晰吗？ 

〇 5 Excellent 优秀 

〇 4 Good 良好 

〇 3 Fair 一般 

〇 2 Poor 较差 
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〇 1 Bad 差  

 
Q18-1 Do you think this speech sounds natural? 
 您认为这个语音听起来自然吗？ 

〇 5 Excellent 优秀 

〇 4 Good 良好 

〇 3 Fair 一般 

〇 2 Poor 较差 

〇 1 Bad 差 

 
Q18-2 Do you think this speech sounds clear?  
您认为这个语音听起来清晰吗？ 

〇 5 Excellent 优秀 

〇 4 Good 良好 

〇 3 Fair 一般 

〇 2 Poor 较差 

〇 1 Bad 差 

 
 


