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Abstract

Despite the proven multi-language competencies of Whisper, the model faces challenges when
recognizing low-resource languages (LRLs). The typical way to improve its performance on
LRLs is to fully fine-tune the model with the additional target LRLs data. Still, due to the
extensive parameter sets of the model and a limited amount of data, this approach is
resource-intensive and prone to overfit. To compensate for the tremendous computational cost
of the full fine-tuning and overfitting problem, parameter-efficient fine-tuning (PEFT) such as
Low-Rank Adaptation (LoRA), is proposed as a feasible solution. In this work, I examined the
effectiveness of LoRA on the Whisper model for low-resource language Frisian. The result
showed that with only 1.4% of model parameters and less GPU memory, LoRA achieved
comparable word error rate (WER) performance to full fine-tuning in Frisian. I also found that
low-resource languages benefited more from LoRA than high-resource languages. This study
brings valuable insights for practical ASR system development toward efficiency and inclusion,
particularly in multilingual and low-resource contexts.

Keywords: Parameter-Efficient Fine-Tuning, LoRA, Low-Resource Languages, Frisian,
Multilingual ASR
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1 Introduction

Automatic Speech Recognition (ASR) systems, pivotal in applications from virtual assistants to
captioning services, hinge on advanced large pre-trained multilingual speech models like XLS-R
(Babu et al., 2021), Whisper (Radford et al., 2022a), USM (Zhang et al., 2023) and MMS
(Pratap et al., 2023), characterized by their extensive parameter sets. Taking Whisper as an
example, the smallest Whisper model has 39 million parameters, while the largest model which
also gives the best performance, has as large as 1550 million parameters. Despite the proven
multi-language and multi-task competencies, these multilingual models face challenges in
recognizing low-resource languages (LRLs). The Whisper model can recognize𝑙𝑎𝑟𝑔𝑒
high-resource languages such as English, German, and Spanish with less than 5% word error
rate (WER), whereas it performs very poorly on many LRLs with up to 160% WER.

To improve the performance of LRLs, pre-trained multilingual ASR models can be fully
fine-tuned with speech data from the target LRLs. Thanks to the enormous amount of shared
knowledge across multiple languages in multilingual ASR models, the full fine-tuning strategy
proves to be very effective in enabling pre-trained multilingual models to outperform the
monolingual baselines for LRLs (Pratap, Sriram, et al., 2020). However, this approach poses
unique challenges in training and deploying ASR systems. Fully fine-tuning a model is very
computationally expensive because of the extensive parameterization of the model. After full
fine-tuning, storing and deploying the downstream fine-tuned model also takes a large space,
because the downstream model will have almost the same size as the large pre-trained model.
Moreover, using small size of training datasets to update all model parameters, which is often
the case for low-resource languages, is prone to be overfitting (Xu et al., 2023).

To address these huge numbers of parameters and potential overfitting challenges, the
parameter-efficient fine-tuning (PEFT) is proposed as a feasible solution to compensate for the
tremendous computational cost of full fine-tuning. This method is first introduced in the field of
computer vision (Rebuffi et al., 2017) and then is successfully applied to the field of natural
language processing (NLP) (Houlsby et al., 2019) and machine translation (Le et al., 2021).
There are a variety of PEFT methods such as LoRA (Hu et al., 2021), Residual Adaptor (Rebuffi
et al., 2017), Prefix Tuning (X. L. Li & Liang, 2021), Prompt Tuning (Lester et al., 2021) and so
on, but the main idea behind them stays the same, that is to reduce the number of trainable
parameters while maintaining the comparable performance to the full fine-tuning. During the
training process, the backbone of the pre-trained model is frozen and only a small number of
parameters are updated. The advantage of this process is twofold. First, the pre-trained model
can be adapted to downstream tasks with only a small number of parameters, which greatly
reduces training costs. Second, the representations in the large pre-trained model can be
preserved, enhancing the robustness of downstream models and avoiding the risk of
catastrophic forgetting (Xu et al., 2023).

Recently, one of the PEFT methods, Low Rank Adaptation (LoRA) has received increased
attention (Hu et al., 2021). It is first introduced in the area of NLP and it performs on par or even

https://www.zotero.org/google-docs/?spfIyc
https://www.zotero.org/google-docs/?hPg42a
https://www.zotero.org/google-docs/?cb9c7t
https://www.zotero.org/google-docs/?jqrlq0
https://www.zotero.org/google-docs/?rVoGV8
https://www.zotero.org/google-docs/?dEuKEV
https://www.zotero.org/google-docs/?gONrgY
https://www.zotero.org/google-docs/?DQHiey
https://www.zotero.org/google-docs/?3TgPx2
https://www.zotero.org/google-docs/?6JBBvE
https://www.zotero.org/google-docs/?qnh7Zp
https://www.zotero.org/google-docs/?qnh7Zp
https://www.zotero.org/google-docs/?U2PwXW
https://www.zotero.org/google-docs/?eDBWJA
https://www.zotero.org/google-docs/?BvPOwQ
https://www.zotero.org/google-docs/?zDFDvF
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better than full fine-tuning at. By freezing the pre-trained model weights and injecting trainable
rank decomposition matrices into each layer of the transformer architecture, LoRA greatly
reduces the number of trainable parameters for downstream tasks like other PEFT methods do.
In addition to the one common advantage of PEFT methods that reduces the number of
trainable parameters, the key advantage of LoRA also lies in the fact that it is highly scalable,
allowing switching among many LoRA modules for different tasks while sharing a base
pre-trained model. Another advantage is that it does not introduce inference latency.

These features of LoRA show great potential in the case of the multilingual ASR model for
low-resource language recognition. Multiple low-resource languages can be trained with
multiple LoRA modules for swiftly switching among languages, while the model still benefits
from the powerful shared knowledge of the pre-trained model. Meanwhile, the entire training
process brings much less computational burden and does not slow down the inference stage. I
am therefore motivated to investigate PEFT strategies, specifically LoRA, as a method to
circumvent limitations while adapting the multilingual ASR Whisper model to low-resource
languages.

1.1 Research Questions and Hypotheses
Despite the efficiency of PEFT in various contexts, its application to multilingual ASR models,
especially for LRLs such as Frisian, remains less explored. This gap is notable given the
increasing need for efficient, scalable ASR systems capable of supporting Frisian and a broad
spectrum of languages. I aim to fill this gap by investigating the effectiveness of LoRA on the
Whisper model for low-resource language Frisian. More specifically, I will compare the
performance between LoRA and full fine-tuning in adapting the Whisper model to perform the
Frisian ASR task. To this end, the research question is formulated as follows:

How does tuning the Whisper model with LoRA affect the WER, number of trainable
parameters, and GPU memory usage for Frisian compared to fully fine-tuning the
Whisper model?

In light of the previous discussion, I anticipate that tuning the Whisper model for Frisian with
LoRA will result in a significant reduction in WER, which will be the comparable performance to
full fine-tuning. Meanwhile, LoRA will utilize less trainable parameters and less GPU memory
than full fine-tuning.

This work contributes to the field of ASR in several ways. First, it is the very first study
examining and adapting the Whisper model for Frisian, testifying to the cross-language learning
ability of Whisper. Second, it deepens the theoretical understanding of PEFT’s applicability in
ASR models by presenting a comprehensive review of PEFT methods from the perspective of
speech related research. Last, it conducts extensive experiments to investigate the
effectiveness of one PEFT method, namely LoRA, specifically examining its impact on
parameter efficiency, WER, and GPU memory for a pre-trained Whisper model. Such evaluation
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would offer valuable insights for practical ASR system development and deployment, particularly
in multilingual and low-resource contexts.

1.2 Thesis Structure
The structure of this thesis will be as follows. I will provide the literature review regarding large
pre-trained multilingual ASR models, full fine-tuning and PEFT methods and Frisian ASR in
Chapter 2. The methodology about datasets, models, evaluation metrics, experiments set-ups
and ethical issues will be presented in Chapter 3. In Chapter 4, I will showcase the results and
discuss them in detail. Chapter 5 will conclude this study while pointing out limitations and future
directions.
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2 Literature Review
In this chapter, I will briefly introduce what are the large pre-trained Multilingual ASR models and
the typical technique of adapting them for downstream tasks, i.e. full fine-tuning method. Then I
will give an overview of PEFT methods and their usage in the speech domain. This chapter will
end by introducing the state-of-the-art Frisian ASR models.

2.1 Large Pre-Trained Multilingual ASR Model
A large pre-trained language model, also called a foundation model, is a machine learning
model that can perform various general-purpose natural language processing (NLP) tasks. The
model is trained with a vast amount of unlabelled data and by leveraging deep learning
techniques, particularly deep neural networks (DNN) and transformer architectures, the model
can capture complex patterns from massive training data and therefore can understand and
generate human language. Over the years, the pre-trained model size has grown larger and
larger. In 2018, the model size of the GPT (Radford et al., 2018) had only 117 million
parameters, whereas in 2020 the GPT-3 (Brown et al., 2020) had 175 billion parameters.
Scaling up the model accompanied the significant improvements in model performance for
few-shot settings, and can achieve state-of-the-art fine-tuning performance of prior models
(Brown et al., 2020).

In the speech domain, there are several large pre-trained multilingual ASR (MASR) models that
have remarkable performance in recognizing multiple languages. Such models are generally
trained with huge amounts of multilingual speech data. The most well-known MASR models are
XLS-R (Babu et al., 2021), Whisper (Radford et al., 2022b), USM (Zhang et al., 2023) and MMS
(Pratap et al., 2023). Proposed by Facebook, XLS-R, containing over 2 billion parameters, is
built on wav2vec 2.0 and is able to recognize 128 languages. Whisper, built by OpenAI, has the
capability to transcribe 99 languages with 1.55 billion parameters. Recently, the Google USM
model with 2 billion parameters was created to perform speech recognition tasks across more
than 100 languages. The MMS built by Meta AI with 1 billion parameters is able to recognize
over 1000 languages.

MASR has shown a great potential in speech recognition tasks, not only for its powerful
capability to recognize multiple languages but also for its better performance than monolingual
models baselines for many low-resource languages such as Persian, Telugu, Esperanto,
Kyrgyz, and so on (Hou et al., 2020; Pratap, Sriram, et al., 2020). It has been suggested that the
improved performance of low-resource languages in MASR comes from the data pooling and
transfer learning from similar languages, and cross-language joint optimization (B. Li et al.,
2021).

However, one huge pitfall of large pre-trained multilingual ASR models is that their performance
in low-resource languages is still poor, compared with high-resource languages. For example,
with less than 5% WER for recognizing high-resource languages such as English or Spanish,
Whisper performs poorly on LRLs such as Hindi or Icelandic and so on with a higher than 30%

https://www.zotero.org/google-docs/?yNSc0A
https://www.zotero.org/google-docs/?IVlgUj
https://www.zotero.org/google-docs/?O78qzv
https://www.zotero.org/google-docs/?fBWZFe
https://www.zotero.org/google-docs/?KFbvFN
https://www.zotero.org/google-docs/?xFPMKp
https://www.zotero.org/google-docs/?3hYTXF
https://www.zotero.org/google-docs/?VBcLkS
https://www.zotero.org/google-docs/?vtEu9z
https://www.zotero.org/google-docs/?vtEu9z
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WER. Several low languages with the worst performance have WER between 80% to 160%.
There is a clear linear relationship between the size of pre-trained language data and the WER
of that language. These LRLs, taking up an extremely small proportion of the training data of the
Whisper model, have the worst WER performance. Among 680k hours of training data,
Icelandic only has 16 hours and Hindi has 12 hours.

2.1.1 Whisper Model

Whisper is by far one of the most powerful large pre-trained multilingual ASR models. It is a
large-scale weakly supervised pre-training model trained on 680k hours of labeled speech
audio. Of these 680k hours of speech data, 117k hours are audio from 96 languages other than
English and 125k hours are X → English translation data. Such data distribution enables
multilingual and multitask training for Whisper. The transcription data Whisper used to train are
Internet text resources paired with its corresponding audio, which means the quality of
transcription is diverse. The authors do not bother to perform any gold-standard human
validation or significant text normalization. Instead, they rely on the naturalness and
expressiveness of the original transcripts. One important step they work on the transcripts is that
they remove the machine-generated transcripts, partially transcribed transcripts and wrongly
aligned transcripts.

The Whisper model has encoder-decoder transformer architecture. The architecture is shown in
Figure 1. All audios are first broken down into 30-second segments and are paired with the
transcript for within these segments. Audio segments are then resampled to 16kHz and Mel
spectrogram representation is computed. The model takes the Mel spectrogram as input and
passes the input to two 1-D convolutional layers and the GELU activation function. Then
sinusoidal position embeddings are added to the output after which the output is passed to
transformer encoder blocks. Each block is a pre-activation residual block consisting of MLP
layers and self-attention layers. A final normalization layer is applied to the encoder output
before passing the output to the decoder blocks. The decoder uses learned position
embeddings and tied input-output token representations.

Whisper shows remarkable performance in English and other languages. The best zero-shot
Whisper model has a LibriSpeech clean-test WER of 2.5%, which is a comparable result with
the best supervised LibriSpeech model. When testing on other datasets, Whisper tremendously
outperforms all benchmarks from LibriSpeech models. The tiniest zero-shot Whisper model that
only has 39 million parameters can achieve close results as supervised LibriSpeech models
when testing on other datasets. Overall, zero-shot Whisper achieves a 55.2% WER reduction
for English on other ASR datasets than the supervised model Wav2Vec 2.0. In terms of
multilingual speech recognition capabilities, results on several multilingual datasets including
Multilingual LibriSpeech (Pratap, Xu, et al., 2020), VoxPopuli (Wang et al., 2021), and Fleurs
(Conneau et al., 2022) are reported. Zero-shot Whisper outperformed XLS-R (Babu et al.,
2021), mSLAM (Bapna et al., 2022), and Maestro (Z. Chen et al., 2022) on 15 languages in
Multilingual LibriSpeech. Depending on the amount of training data for languages, Zero-shot
Whisper is able to recognize 72 languages in Fleurs with varying WER from 2.5% to 160%.

https://www.zotero.org/google-docs/?Cw5W2N
https://www.zotero.org/google-docs/?YIpNfj
https://www.zotero.org/google-docs/?4Xo2t1
https://www.zotero.org/google-docs/?Wf1Dpw
https://www.zotero.org/google-docs/?Wf1Dpw
https://www.zotero.org/google-docs/?6pZmi5
https://www.zotero.org/google-docs/?L8vVup
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Figure 1. The architecture of the Whisper model (Radford et al., 2022b).

https://www.zotero.org/google-docs/?e9KOTq
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Table 1. The summarization of current Whisper checkpoints.

Currently, Whisper has seven checkpoints available. The smallest checkpoint has 39 million
parameters, and the largest checkpoint has 1550 million parameters. The different checkpoints
have been summarized in Table 1. All of the checkpoints support multilingual speech
recognition, and only the smallest four have English monolingual checkpoints. The performance
differs based on the size of the models. The larger the model, the better the performance. As
seen in Hugging Face open ASR leaderboard1, the English monolingual Whisper medium model
(769M) outperforms the English monolingual Whisper small model (244M), with an average
WER 8.5% and WER 9.34% respectively. The largest version of Whisper has an average WER
of 7.7% across several English datasets including Common Voice 9, Librispeech, and
Voxpopuli, ranking 6th place on the Hugging Face open ASR leaderboard.

2.1.2 Full Fine-Tuning of Large-Pretrained Model

As discussed in the earlier section, large pre-trained models are trained on massive amounts of
unlabelled data that enable them to perform general-purpose tasks, but they might not be good
at downstream domain-specific tasks. To improve the performance of such downstream tasks,
the pre-trained base model needs to be continuously trained on a newer, smaller dataset from
downstream tasks. This approach is called full fine-tuning. For example, a self-supervised
pre-trained ASR model wav2vec 2.0 that is good at performing general speech recognition tasks
could be further fully fine-tuned on accented speech data for accent identification tasks and
accented speech recognition tasks (Deng et al., 2021). During full fine-tuning, the base model is
first initialized with the pre-trained model parameters, and all of the parameters are re-trained
with labeled data from downstream tasks. This way a downstream task model will not be trained
from scratch which greatly reduces training time and resources, and it leverages the profound
knowledge of a pre-trained model.

1 https://huggingface.co/spaces/hf-audio/open_asr_leaderboard

Model Size Number of
Parameters

English-only Multilingual

tiny 39 M Yes Yes

base 74 M Yes Yes

small 244 M Yes Yes

medium 769 M Yes Yes

large 1550 M No Yes

large-v2 1550 M No Yes

large-v3 1550 M No Yes
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Full fine-tuning has shown powerful adaptation ability on pre-trained monolingual ASR models
for low-resource languages. (Yi et al., 2020) fully fine-tuned the pre-trained wav2vec 2.0 model,
which is a monolingual English model, to solve low-resource language recognition tasks. In the
experiment, wav2vec2.0 was used as an encoder. Six languages including Mandarin, English,
Japanese, Arabic, German, and Spanish were selected as training languages. Though
theoretically, these languages are not low-resource languages, given the fact that these
languages (except English) are unseen languages to the wav2vec 2.0 model and only 15 hours
of training data for each language are used for training, this simulates the low-resource
scenarios. The results showed that full fine-tuning has successfully adapted the pre-trained
wav2vec2.0 model to recognize five additional languages and achieved more than 20%
improvement than non-pretrained models.

Full fine-tuning techniques have also been applied to pre-trained multilingual ASR models.
(Javed et al., 2022) built a multilingual wav2vec model using 40 Indian languages and 17000
hours of raw speech data. They then fully fine-tuned their model for 9 languages for
downstream tasks and achieved state-of-the-art results for very low-resource languages such as
Nepali and Sinhala. Similarly, (Zhao & Zhang, 2022) fully fine-tuned XLSR-53 models with 10
hours of labeled training data for 10 selected low-resource languages including Tagalog,
Swahili, Javanese, and so on. They found that simply fully fine-tuning a pre-trained multilingual
model performed better than traditional hybrid Deep Neural Network (DNN) or Hidden Markov
Model (HMM) architecture for low-resource languages.

As for the recently developed multilingual pre-trained ASR model Whisper, there is very little
research on fully fine-tuning it for low-resource languages. (Williams et al., 2023) recently
explored the applicability of fine-tuning Whisper for Maltese ASR. Different sizes of Whisper
models were fully fine-tuned with Maltese training data ranging from as little as 10 minutes to as
much as 50 hours. They evaluated fully fine-tuned model performance with testing data from
MASRI (Mena et al., 2020) and Common Voice. The results showed that the WER of Maltese on
Whisper models dropped from 100% to below 40% as the size of training data increases.
(Rouditchenko et al., 2023) expanded the Whisper’s ability to adapt to 13 unseen and 18 seen
languages by fully fine-tuning it with target languages. Unseen means that these languages are
not part of the pre-trained languages for Whisper, and among 18 seen languages some of them
are low-resource languages such as Maltese, Bengali, and so on. The authors used only 12
hours of training data from FLEURS for each language. After full fine-tuning, these low-resource
languages saw a huge WER reduction from above 100% to less than 10%. Overall, full
fine-tuning research on multilingual pre-trained ASR models often showed great benefits for
low-resource languages.

Despite the remarkable benefits full fine-tuning brings to the model, fully fine-tuning a
pre-trained model could be very costly. Since all parameters in the pre-trained model are
re-trained for the new downstream task, the training process is time-consuming and
resource-inefficient. Meanwhile, it requires large storage space (Z.-C. Chen et al., 2023) to save
the downstream model which has about the same model size as the original pre-trained large

https://www.zotero.org/google-docs/?jTdO9U
https://www.zotero.org/google-docs/?D047hR
https://www.zotero.org/google-docs/?KQzrlO
https://www.zotero.org/google-docs/?BsgUjH
https://www.zotero.org/google-docs/?mlFjc4
https://www.zotero.org/google-docs/?BltooP
https://www.zotero.org/google-docs/?jEInBd
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model. Besides, overwriting the original parameters is not an efficient way to use the shared
knowledge of pre-trained models (Z.-C. Chen et al., 2023).

2.2 Parameter-Efficient Fine-Tuning (PEFT)

In the previous chapter, I talked about the benefits as well as downsides of the full fine-tuning
method. In this chapter, I introduce the solution to mitigate the heavy computational cost of full
fine-tuning: Parameter-Efficient Fine-Tuning (PEFT), an efficient way to train the model for
downstream tasks. This approach aims to reduce the number of trainable parameters while
maintaining comparable performance to the full fine-tuning by freezing the backbone of a large
pre-trained model and only updating a small number of parameters.

Based on research by (Xu et al., 2023), as of 2023, there are more than 50 different PEFT
approaches. These approaches can be divided into five categories: additive fine-tuning,
reparameterized fine-tuning, hybrid fine-tuning, partial fine-tuning, and unified fine-tuning. Under
these categories, there are even detailed classifications such as adapter-based fine-tuning, Bias
update, Low-rank decomposition, Manual combination, and so on. In this part, I introduce one
method for each category and their usage in speech-related research.

2.2.1 Additive Fine-Tuning

Adapter-based fine-tuning is a category under additive fine-tuning. The name of this category is
self-explanatory, implying that adapter modules are additively added to the model. The idea of
an adapter is first introduced by (Rebuffi et al., 2017) in the domain of computer vision.
Specifically, they proposed a residual adapter module that contained only less than 10% of
overall parameters and was able to perform a high-degree parameter sharing among domains.
Inspired by their work, (Houlsby et al., 2019) introduced a bottleneck adapter to handle the large
parameters in the NLP domain.

As shown in Figure 2, a typical bottleneck adapter consists of a down-projection matrix , a𝑊
𝑑𝑜𝑤𝑛

nonlinearity , an up-projection matrix , and a residual connection . Each activation is𝑓 𝑊
𝑢𝑝

𝑟

projected down to a smaller dimensionality and then passes through a nonlinear function. The
result will then be projected back up to the original dimension. Last, a residual connection is
added to the result before passing the result to the next layer. The formula for this process is
shown as follows:

ℎ = 𝑊
𝑢𝑝  

· 𝑓(𝑊
𝑑𝑜𝑤𝑛  

·  ℎ) +  𝑟

This process ensures that new extra trainable parameters are introduced for a specific task and
the pretrained parameters are not modified.

https://www.zotero.org/google-docs/?6sQcAw
https://www.zotero.org/google-docs/?Ey3pW2
https://www.zotero.org/google-docs/?uNH52H
https://www.zotero.org/google-docs/?UDBVQQ
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Figure 2. The structure of adapters (Houlsby et al., 2019).

The adapter-based approaches have been quickly adopted in the ASR domain to perform
speech recognition tasks. In 2019, (Kannan et al., 2019) proposed to use bottleneck adapters
on top of the multilingual RNN-T model to further improve the performance of 9 Indian
languages. A multilingual RNN-T base model was trained on the data of all languages, in their
case, 9 Indian languages. Then all model parameters were frozen and adapter modules were
introduced after every layer of the encoder. Each language had its own adapter modules with
separate parameters. At the inference stage, only the language-specific adapter was applied.
They found that with only 2% of the original model size, the multilingual model with the adapter
was able to further improve the language performance and even outperformed the baseline
monolingual models.

Inspired by Kannan et al, later research employed adapters on a variety of models for all kinds
of downstream ASR tasks. For example, adapters have been used on RNN-T and T-T
(Transformer Transducers) models to recognize pathological speech and heavily accented
speech (Tomanek et al., 2021). Adapters were also used for language identification tasks (e.g.
Arabic dialects) on Whisper (Radhakrishnan et al., 2023) and code-switching tasks (e.g.
Mandarin-English) on pre-trained wav2vec2.0 model (C.-Y. He & Chien, 2023). All of their
results showed that by updating only a tiny fraction of the model parameters, the model
performed very well on downstream ASR tasks.

2.2.2 Reparameterized Fine-Tuning

Though the previously mentioned PEFT method (i.e. adapters) is less computationally
expensive, it has a downside by increasing the inference latency and hard to maintain
comparable performance as full fine-tuning baselines, as suggested by (Hu et al., 2021). The

https://www.zotero.org/google-docs/?3wv4lz
https://www.zotero.org/google-docs/?MTCQTc
https://www.zotero.org/google-docs/?hOKwxh
https://www.zotero.org/google-docs/?R6oJcV
https://www.zotero.org/google-docs/?JJWoAf
https://www.zotero.org/google-docs/?pTzyBj
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reason is, in the adapter approach, despite a few small adapter layers being added into the
pre-trained model, the model inputs still use all parameters during inference, which makes the
inference time the same or even slower compared to the full fine-tuning approach.

Motivated by the disadvantages of existing adapter approaches, (Hu et al., 2021) proposed Low
Rank Adaptation (LoRA), aiming to boost the efficiency of adapting large language models to
downstream tasks during both training and inference. The structure of LoRA is shown in Figure
3. Two trainable low-rank decomposition matrices are inserted into the layers of a pre-trained
model. The formula is as follows:

ℎ =  𝑊
0
𝑥 +  α

𝑟 𝐵𝐴𝑥

is the pre-trained matrix. and are two decomposition matrices𝑊
0

∈  𝑅𝑑×𝑘 𝐴 ∈  𝑅𝑟×𝑘 𝐵 ∈  𝑅𝑑×𝑟

that contain trainable weights. The rank is and is a constant in . The update𝑟 ≪  𝑚𝑖𝑛(𝑑, 𝑘) α 𝑟
of the pre-trained matrix is therefore constrained by low-rank decomposition matrices and𝑊

0
𝐴

. During training, is frozen and is not updated, while and are updated accordingly. A is𝐵 𝑊
0

𝐴 𝐵

initialized as a random Gaussian and B is initialized as zero and then is scaled by . is a𝐵𝐴𝑥 α
𝑟 𝑟

pivotal hyperparameter in LoRA, because the size of determines its performance. The smaller𝑟
the is, the faster and more cost efficient the training process. Large value hinders the𝑟 𝑟
computational efficiency but allows the model to handle complex tasks. It is important to note
that the learned weights of and can be merged with the main weights , which means for𝐴 𝐵  𝑊

0

different downstream tasks can be recovered by subtracting and adding a new , 𝑊
0

𝐵𝐴 𝐵 '𝐴 '

therefore introducing no additional latency during inference.

Figure 3. The structure of LoRA (Hu et al., 2021).

In their experiments, for simplicity, they only inserted LoRA to and which is a matrix for𝑊
𝑞

𝑊
𝑣

query and value, respectively. They then evaluated the downstream task performance including

https://www.zotero.org/google-docs/?l38JJm
https://www.zotero.org/google-docs/?VR38gV
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NLU (natural language understanding) and NLG (natural language generation) of LoRA on
RoBERTa, DeBERTa, GPT-2, and GPT-3, and compared the results with full fine-tuning and
different types of adapters. They found that LoRA outperformed many baselines with
comparable or even smaller numbers of training parameters.

The LoRA approach has been widely used in the domain of speech for a variety of downstream
tasks including speech recognition and emotion recognition, thanks to the great benefits that it
reduces the number of parameters during training while not increasing the inference time. For
example, (Liu et al., 2024) applied LoRA to the Whisper model and improved the performance
of recognizing Chinese child speech. (Feng & Narayanan, 2023) inserted LoRA on Whisper
models, wav2vec 2.0 base, and WavLM base (S. Chen et al., 2022), and found out these
pre-trained models can be successfully adapted to recognizing speech emotions, and LoRA
outperformed other PEFT techniques in this task.

2.2.3 Partial Fine-Tuning

The partial fine-tuning technique reduces the number of trainable parameters by only updating
the subset of parameters that are important to downstream tasks. One of the categorizations in
partial fine-tuning is bias update which only updates the bias terms of the transformer, for
example, Bit-Fit (Zaken et al., 2021).

Bit-Fit (BIas-Term FIne-Tuning) was first proposed by (Zaken et al., 2021) to reduce the
trainable parameters of the large language model BERT. The idea behind this method is to
freeze most of the transformer-encoder parameters and only train bias term and task-specific
classification layers. In their experiment, they tuned bias terms from key, query, and value
encoders of self-attention heads in attention layers and bias terms in feed-forward and layer
normalization layers. These bias terms only make up 0.09% and 0.08% of the total number of
parameters in the BERT base and BERT large model. They also tried to only tune a subset of
bias parameters in the query and the second MLP layer. The results showed that this approach
maintained good performance on all BLUE tasks.

There is very little research investigating Bit-Fit for ASR. (Z.-C. Chen et al., 2023) investigated
the effectiveness of several PEFT methods including Bit-Fit on self-supervised speech models
such as wav2vec 2.0 for downstream tasks such as ASR and phoneme recognition (PR). In
their experiment of Bit-Fit, instead of tuning the bias term, they tuned the weights of all modules
in the model. All PEFT modules were trained using 1 hour and 10 hours of training data from
Libri-Light to simulate low-resource scenarios and tested the model on a test set of LibriSpeech.
Their results showed that Bit-Fit performed better than full fine-tuning when the training data is
scarce, but among all kinds of PEFT methods, the Bit-Fit approach had an average
performance. Bit-Fit only had the best performance for the keyword spotting task.

https://www.zotero.org/google-docs/?mIvV22
https://www.zotero.org/google-docs/?bYP29G
https://www.zotero.org/google-docs/?m99j3D
https://www.zotero.org/google-docs/?4agPMN
https://www.zotero.org/google-docs/?s1EVDr
https://www.zotero.org/google-docs/?7Rvojs
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2.2.4 Hybrid Fine-Tuning

Since the PEFT methods show great benefits in adapting large models to downstream tasks,
researchers decided to explore if the combination of different PEFT methods can be more
effective, hence hybrid. One of the hybrid fine-tuning methods is the Mix-and-Match adapter
(MAM), proposed by (J. He et al., 2021). This approach combines prefix tuning and parallel
adapters. More specifically, the authors used a small bottleneck dimension for prefix tuning at
attention sub-layers and allocated more parameter budgets to modify the representation of the
feed-forward network (FFN) using the scaled parallel adapter. The parallel adapter computes
representations in parallel to the transformer feed-forward layers or attention layers.

The only study using a MAM in the speech domain was done by (Peng et al., 2022). Three
pretrained speech models HuBERT base, WavLM base, and WavLM large were adapted using
a MAM adapter for speaker verification tasks on the VoxCeleb corpus (Nagrani et al., 2017). By
only updating less than 4% of parameters of the original model parameters, the MAM adapter
was able to achieve comparable performance to the full fine-tuning in low-resource scenarios.

2.2.5 Unified Fine-Tuning

The unified fine-tuning aims to streamline the adaptation and optimization of a model (Xu et al.,
2023). Unlike the combination of PEFT methods in hybrid fine-tuning, unified fine-tuning
typically only involves one PEFT method. One of the unified fine-tuning methods is the Sparse
Adapter, proposed by (S. He et al., 2022). They argued that the existing adapter methods have
to increase the overall model parameters to match the performance of full fine-tuning.
Therefore, they proposed to prune the adapter before using it for tuning. The method works as
follows: first a target sparsity is set and a score is assigned to all parameters . The𝑠 𝑧 𝑤
threshold , i.e. the -th percentile of is computed. The parameters whose scores are below𝑧

𝑠
𝑠 𝑧 𝑧

𝑠

are considered redundant and will be removed. This plug-in method (Xu et al., 2023) can be
applied to a variety of PEFT methods including LoRA, Adapter, MAD-X (Pfeiffer, Vulić, et al.,
2020), MAM adapter, and AdapterFusion (Pfeiffer, Kamath, et al., 2020). The results showed
that with 40% sparsity, the Sparse Adapter still outperformed its baseline models that did not
apply the Sparse Adapter. So far, Sparse Adapter has not been used in any ASR research.

2.3 PEFT for Pre-Trained Multilingual ASR Models

Combining previous discussions on pre-trained large multilingual ASR models and fine-tuning,
now it should be clear that MASR is good at recognizing multiple languages, but its performance
on downstream tasks, such as recognizing low-resource languages is still undesired. A typical
way to improve the performance of a pre-trained ASR model is through fully fine-tuning the
entire model with additional data of target language, but this approach is computationally
expensive due to the huge size of model parameters. The PEFT method is therefore developed

https://www.zotero.org/google-docs/?7aqL42
https://www.zotero.org/google-docs/?vUHHbd
https://www.zotero.org/google-docs/?5iASGj
https://www.zotero.org/google-docs/?sBkTZ6
https://www.zotero.org/google-docs/?sBkTZ6
https://www.zotero.org/google-docs/?PGlJhU
https://www.zotero.org/google-docs/?48DZjn
https://www.zotero.org/google-docs/?mOZEmc
https://www.zotero.org/google-docs/?mOZEmc
https://www.zotero.org/google-docs/?erATbN
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to mitigate this problem, aiming to reduce the number of trainable parameters while retaining the
comparable model performance as the full fine-tuning method.

In the last chapter, I gave a broad overview of a variety of PEFT methods and their usage in the
speech domain. In this chapter, I further narrow down the scope of the PEFT study to
pre-trained multilingual ASR models, focusing on how PEFT is used to adapt MASR models to
low-resource languages. I also reviewed several articles about English in this section, though
English is not a low-resource language. The reason is that English models will be used as a
baseline in my experiments, so it is important to know the LoRA performance for English from
the literature.

2.3.1 LoRA for English

In (Fathullah et al., 2023)’s study, the authors explored whether decoder-only large language
models can be enabled with speech recognition ability by conditioning on audio embeddings.
They inserted LoRA modules on key, query, value, and output layers of the smallest LLaMA-7B
model and trained LoRA with Multilingual LibriSpeech (MLS) datasets. By default, was set to 8𝑟 
and was set to 16. They found that LoRA successfully adapted decoder-only LLaMA modelsα
to perform English speech recognition tasks and the model for several languages such as
Dutch, French even outperformed its monolingual baselines.

(Southwell et al., 2024) conducted experiments on Whisper to improve ASR performance for
English child speech in classroom environments. They used LoRA to tune the Whisper large-v2
and Whisper base model. To further reduce the number of parameters, they also used int8
quantization. In addition, they fully fine-tuned the Whisper base model. They used rank ,𝑟 = 32
scaling factor , dropout = 0.05, learning rate = 1e-4, 50 warmup steps, and a linearα = 64
decay. The results showed that LoRA reduced WER for both large and base Whisper models for
English child speech, suggesting that LoRA improved the model performance.

2.3.2 LoRA for Low-Resource Languages

(Kim et al., 2023) is the first research about inserting LoRA modules into a multilingual Whisper
model to adapt Whisper to low-resource language situations. They first inserted LoRA modules
into the attention heads of decoder layers, followed by pruning 50% of the Whisper large model
parameters using the Lottery Ticket Hypothesis (LTH). They also experimented with fully
fine-tuning the model. Six language datasets from the Common Voice corpus, i.e. English,
Chinese, Korean, Malayalam, Japanese, and Swahili were used for training and testing. The
size of training and testing sets varied in size, from only 192 sentences in the Korean training
set to 29383 sentences in the Chinese training set. They found that using 1.5B parameters, fully
fine-tuning the model achieved the best WER for all six languages. Meanwhile, with merely
2.6M parameters, LoRA could achieve comparable CER and WER for all six languages to the
full fine-tuning approach. Such results indicated that LoRA was very effective in adapting the
Whisper model to low-resource languages. However, arguably, only Malayalam and Swahili

https://www.zotero.org/google-docs/?h0h5pU
https://www.zotero.org/google-docs/?iL9nCV
https://www.zotero.org/google-docs/?KLy4vQ
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could be considered as low-resource languages because each of the other languages have
already been pre-trained with more than 7000 hours of data in Whisper.

Another study by (Ferraz et al., 2024a) also applied LoRA to the Whisper model under a
low-resource language context. They proposed a new model distill-whisper, which unlike the
current Distil-Whisper models on HuggingFace2, their model maintained Whisper’s multilingual
capabilities. In other words, their distilled model can recognize languages other than English. To
evaluate the model performance, they compared their model to a fully fine-tuned Whisper small
model, a LoRA-tuned Whisper small model and a Whisper small model. In their experiment,
they inserted LoRA on top of the feed-forward layers. They trained the model with 8 languages
Catalan, Czech, Galician, Hungarian, Polish, Thai, Tamil, and Ukrainian using only 14 hours of
training data for each language from Common Voice 13 (CV-13) datasets, and tested the
performance on both CV-13 and FLEURS datasets. They found out that LoRA increased the
performance of both CV-13 and FLEURS datasets compared with the base model Whisper
small, and LoRA also achieved comparable performance to full fine-tuning.

(Do et al., 2023) applied high-rank LoRA with on the Whisper tiny model and trained𝑟 = 192 
the model with Vietnamese speech. They inserted LoRA on all linear layers within the model,
including query, key, value, output projection, MLP, and . It is worth noting that LoRA was𝐸

𝑜𝑢𝑡

implemented together with the decoupling of token embeddings, meaning the model learns
input and output token representation separately. They compared the result with full fine-tuning
and zero-shot setting of Whisper tiny and found that high-rank LoRA yielded comparable
performance improvement as to full fine-tuning. However, since the Whisper model architecture
is changed when applying LoRA, it is difficult to tell whether the improvement of WER comes
from LoRA or the new model architectures.

To sum up, the previous research shows that LoRA can be very effective in adapting Whisper to
low-resource languages. However, the low-resource languages in previous research are all
supported by Whisper, which means that Whisper has seen the languages in its pre-training
data. Some of the so-called low-resource languages in the literature, such as Vietnamese,
Korean, Ukrainian, and so on are theoretically not that low-resourced for Whisper, given that
they have at least hundreds of pre-training data in Whisper. Besides, many other low-resource
languages largely remain unexplored. Therefore, it is still unknown if a low-resource language
that has only hours or dozens of pre-training data in Whisper, or even an unseen language in
Whisper, for example, Frisian, could also benefit from LoRA.

2.4 Frisian ASR

Frisian is a West Germanic language spoken by 400,000 Frisian people and there are three
variants of Frisian: West Frisian, North Frisian, and East Frisian. West Frisian is by far the most

2 https://huggingface.co/distil-whisper

https://www.zotero.org/google-docs/?q1RAn2
https://www.zotero.org/google-docs/?6QlM2N
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spoken of the three variants and has been officially recognized as the second language of the
Netherlands in Fryslân. The Frisian has also been recognized as a minority language.

The first Frisian ASR study was conducted by (Yılmaz et al., 2016). In the study, they built a
language-dependent and language-independent bilingual deep neural network-based ASR
model to recognize code-switching speech between Frisian and Dutch. The dataset they used
was a Frisian corpus called FAME!, a Frisian Radio Broadcast Database designed for
code-switching study by (Yilmaz et al., 2016). They achieved WER 36.4% for the
language-independent model and WER 36.3% for the language-dependent model.

The state-of-the-art Frisian ASR model was built by (Bălan, 2023)3. In his work, using 41 hours
of Frisian data from the Common Voice 8.0 dataset, he fully fine-tuned the XLS-R model, a
large-scale cross-lingual pre-trained model. His approach achieved 4.11% WER and set the
new benchmark for the Frisian ASR model. Before this new benchmark was developed, (de
Vries, 2021)4 and (Crang, 2021)5 attempted to achieve Frisian WER 16.25% and WER 19.11%
on XLSR-53, respectively.

5 https://huggingface.co/crang/wav2vec2-large-xlsr-53-frisian
4 https://huggingface.co/wietsedv/wav2vec2-large-xlsr-53-frisian
3 https://campus-fryslan.studenttheses.ub.rug.nl/360/1/MA%20S3944867%20DA%20Balan.pdf

https://www.zotero.org/google-docs/?sZsPWO
https://www.zotero.org/google-docs/?gmbE8L
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3 Methodology

In this section, I will introduce the methodology for the study, by first introducing the datasets
used in the study and addressing the importance of data processing. In 3.2, I simply introduce
the model chosen for the study and in 3.3, the evaluation metrics for model performance will be
elaborated. In 3.4, detailed experimental set-ups will be explained.

3.1 Datasets

Common Voice is a publicly accessible multilingual speech corpus created by Mozilla (Ardila et
al., 2019). It aims to create a free database for speech recognition software. The first database
was released in 2017 and as of 2022, there are more than 100 languages in the database with
more than 30000 hours of recording. As common voice is a crowdsourcing project, anyone can
donate their voice to the database and validate other people’s speech clips.

In this study, the Frisian dataset from Common Voice Corpus 6.1, which is released in 2020, is
used. Though the dataset contains 47 hours of recordings, only 15 hours are validated. To
ensure the quality of the data, I only use the 15-hour validation split for training and testing.
Around 5 hours of data is split for testing and the rest of 10 hours of data is used for training.
Among the 10 hours of training data, 10 minutes and 1 hour of recordings are further extracted
for the experiments on the effect of training data size. The speakers in these datasets vary
across different age groups and gender groups. All audios are in mp3 format and the sampling
rate is at 32kHz, which will be later converted to 16kHz during the data preprocessing phase.
Although the most recent Frisian datasets in Common Voice Corpus 16.1, which has around 69
hours of validated data, I decided to use an earlier version of Common Voice dataset with less
validated data. The reason is that data scarcity is a common problem for many low-resource
languages, and 15 hours of data is closer to a real-life low-resource situation.

Another popular Frisian dataset is FAME!, which stands for Frisian Audio Mining Enterprise. It
contains 18.5 hours of annotated radio broadcasts in the Frisian language. Despite its high
quality, it is a bilingual database, aiming for code-switching research between Frisian and Dutch,
which means this dataset includes lots of Dutch words and sentences. The bilingual feature
makes this corpus less favorable for my study. Additionally, this corpus is not easily accessible
because it requires the legal authorisation of two parties before permitting to download. Taking
all these into consideration, I decided to use the Common Voice Corpus dataset for the current
study.

English is also evaluated in the study mainly as a baseline. As for English, LibriSpeech ASR
corpus (Panayotov et al., 2015) is used in experiments. LibriSpeech is an open-source corpus
containing 1000 hours of read English speech sampled at 16 kHz and the speech data is all
derived from audiobooks from the LibriVox project. The speech data in LibriSpeech are all
aligned and segmented with a high quality. In the study, 10 hours of speech data extracted from

https://www.zotero.org/google-docs/?EFkXXm
https://www.zotero.org/google-docs/?EFkXXm
https://www.zotero.org/google-docs/?uW1Odg
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train-clean-100 split are used for training, and 5 hours of speech data extracted from the
test-clean split are used for testing. In addition, 10 minutes and 1 hour of speech data are also
extracted from the train-clean-100 split for the experiments on the effect of training data size.
The reason for using the Librispeech dataset is that it is so commonly used in ASR research
that I can get enough benchmark results for comparison. Another advantage of using the
Librispeech dataset is that the dataset has very high quality compared with crowdsourcing
collected Common Voice corpus. The dataset information is summarized in Table 2.

Table 2. The summarization of training and testing datasets in the study. Common Voice 6.1
validation split is used for Frisian. LibriSpeech train-clean-100 split and test-clean split are used
for English. The training datasets vary in size, ranging from 10 minutes, 1 hour to 10 hours. The
testing dataset has around 5 hours of speech data.

In this section, I also emphasize the importance of data normalization for achieving accurate
WER results for both Frisian and English. In LibriSpeech corpus, all transcriptions are in capital
letters, for example, “ AND JUNE EIGHTEEN FORTY EIGHT KNEW A GREAT DEAL MORE
ABOUT IT THAN JUNE EIGHTEEN THIRTY TWO SO THE BARRICADE OF THE”. This
reference sentence will be recognized by Whisper as “June 1848 knew a great deal more about
it than June 1832. So the barricade of the”. The WER calculated by jiwer package of this
sentence is 1, meaning the entire sentence is wrongly transcribed, which is not the case. It is
clear that the WER calculator is very sensitive to cases and does not understand “EIGHTEEN
FORTY EIGHT” and 1848 refer to the same year. Two possible solutions to address the problem
are, first, converting sentences to lowercase and second, normalizing sentences.

I tested two solutions using the above-mentioned sentence with the Whisper small model. By
only converting the reference sentence to lowercase, the WER is 45.45%. By converting both
the reference sentence and Whisper's predicted sentence, the WER of 31.82%. Both results far
lag behind the reported Whisper performance on LibriSpeech English (Radford et al., 2022c). I
then tested the normalization solution, which is to remove all punctuations and symbols, restore
letters to numbers (e.g. “EIGHTEEN THIRTY TWO” to “1832”), and convert all letters to
lowercase. This can be done by using the English text normalizer from the Whisper normalizer
package. By normalizing the reference sentence, the WER is 27.78%, whereas by normalizing
both reference and prediction, the WER is 5.56%, which is more reasonable for the
performance of Whisper for English. Therefore, for all experiments, both reference sentences
and predicted sentences will be normalized before calculating WER.

Datasets Frisian English

Common Voice 6.1 LibriSpeech

Training (~10 mins/ ~1 hour/
~10 hours)

Validation train-clean-100

Testing (~5 hours) Validation test-clean

https://www.zotero.org/google-docs/?HiNYgx
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For the same reason that is to avoid miscalculation of WER in Frisian, all Frisian reference
sentences and predicted sentences will be normalized by a basic text normalizer from the
Whisper normalizer package before calculating WER.

3.2 Models

In this study, I particularly explore the 244M Whisper-small model. This decision is made
considering the trade-off between model size and model performance. The checkpoint should
be small enough to run on a single A100 GPU with relatively good performance.

3.3 Evaluation Metrics

To evaluate the performance of LoRA and full fine-tuning, several evaluation metrics are
introduced to the study. The first one is the most frequently used metric in ASR systems,
namely, word error rate (WER). It measures the accuracy of transcribed text compared to a
ground truth text. The lower the WER, the more accurate the transcription, hence better model
performance. The WER is calculated by taking into account the number of substitutions,
insertions, and deletions. Substitutions are incorrect words. Insertions are words that are not in
the ground truth text. Deletions are words that are missing. The following formula shows how
WER is calculated:

 𝑊𝑜𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠 + 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑠 + 𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝑜𝑟𝑑𝑠 𝑆𝑝𝑜𝑘𝑒𝑛

The second metric is the number of trainable parameters. When tuning a pre-trained model to
downstream tasks, parameters in the model need to be retrained. The more parameters that are
involved in this retraining process, the more computationally expensive this process is. To
achieve efficiency, only a small number of parameters should be retrained.

The third metric is GPU memory usage during the training. This information is retrieved by
running “nvidia-smi” on the GPU node while each experiment is running. In this way, the amount
of GPU memory used for the current training can be acquired.

3.4 Experiments

All experiments are conducted on Habrok, a computer cluster provided by the University of
Groningen. I requested an Nvidia A100 GPU with 40GB of VRAM. The training details of all
experiments are summarized in Table 3.
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3.4.1 Zero-Shot Evaluation

It has been suggested that Whisper has the reliable ability to generalize well across languages
without being fine-tuned by language-specific data (Radford et al., 2022b). In this experiment, I
tested the generalization capability of Whisper for Frisian and English, and the results served as
baselines for other experiments. The procedure of the zero-shot experiments is as follows:
using the Whisper pipeline on HuggingFace, 5 hours of Frisian testing dataset and 5 hours of
English testing dataset are transcribed, and WER is calculated for each testing dataset. The
batch size during evaluation is 16 and the audio is chunked into 30 seconds.

3.4.2 LoRA Experiments

Six LoRA experiments were conducted in the study. The hugging Face PEFT library was used
for a faster and easier implementation of LoRA. Following the methods of (Hu et al., 2021),
LoRA were inserted into value and query projection matrices in the self-attention module,
because the authors suggested that adapting both value and query projection matrices yielded
the best performance. was set to 32, because after trying different settings ranging from 2 to𝑟
64, it seems 32 gave the best trade-off between a number of trainable parameters and model
performance. was set to 64 and lora dropout was 0.05. Bisas is none.α

All Frisian models were trained using learning rate 1e-3 with training batch size 8, evaluation
batch size 8, 50 steps warm-up, 1 gradient accumulation step, Adam optimizer with 1e-08
epsilon, seed 42, and epoch as evaluation strategy. The 10mins Frisian model was trained for
10 epochs and another two models were trained for 15 epochs. Since Frisian is not a supported
language in Whisper, the language in the whisper tokenizer and whisper processor were all set
to Dutch, a closely related language to Frisian.

As for English models, the 10-mins model was trained for 40 epochs with a learning rate of
1e-3. The 1-hour model was trained for 30 epochs with a learning rate of 1e-4, and the 10-hour
model was trained for 10 epochs with a learning rate of 1e-5. They were all trained with batch
size 8, evaluation batch size 8, 50 steps warm-up, 1 gradient accumulation step, Adam
optimizer with 1e-08 epsilon, seed 42, and epoch as evaluation strategy.

https://www.zotero.org/google-docs/?1jYaAF
https://www.zotero.org/google-docs/?PTDGo7


25

(a) The training hyperparameters for Frisian

(b) The training hyperparameters for English

Models

Training Time

Frisian English

10mins 1 hour 10 hours 10mins 1 hour 10 hours

LoRA 43mins 1h37mins 4h12mins 2h29mins 1h56mins 1h22mins

Full Fine
Tuning 53mins 1h42mins 2h57mins 1h59mins 1h59mins 2h2mins

(c) The training time for each experiment

Table 3. LoRA and full fine-tuning details for Frisian and English.

Models

Frisian

LoRA Full Fine-Tuning

10mins 1 hour 10 hours 10mins 1 hour 10 hours

Learning Rate 1e-3 1e-3 1e-3 1e-5 1e-5 1e-5

Training Batch
Size 8 8 8 8 8 8

Evaluation
Batch Size 8 8 8 8 8 8

Epoch 10 15 15 16.6 11.2 1.6

Steps 150 1335 14025 250 1000 1500

Models

English

LoRA Full Fine-Tuning

10mins 1 hour 10 hours 10mins 1 hour 10 hours

Learning Rate 1e-3 1e-4 1e-5 5e-7 5e-7 5e-7

Training
Batch Size 8 8 8 8 8 8

Evaluation
Batch Size 8 8 8 8 8 8

Epoch 40 30 10 333.3 51.2 5.6

Steps 240 1170 3600 1000 1000 1000
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3.4.3 Full Fine-Tuning Experiments

Similarly, six full fine-tuning experiments were conducted for the study. All Frisian models were
trained using learning rate 1e-5, training batch size 8, evaluation batch size 8, 50 steps
warm-up, 1 gradient accumulation steps, Adam optimizer with 1e-08 epsilon, seed 42, and
steps as evaluation strategy. The 10-minute model was trained for 250 steps, the 1-hour model
for 1000 steps, and the 10-hour model for 1500 steps. Same as LoRA Frisian experiments, the
language in the whisper tokenizer and whisper processor were also all set to Dutch.

All English models were trained using learning rate 5e-7, training batch size 8, evaluation batch
size 8, 300 steps warm-up, 2 gradient accumulation steps, Adam optimizer with 1e-08 epsilon,
seed 42, and steps as evaluation strategy. In addition, dropout 0.4 and early stopping patience 5
were applied to the model.

3.5 Ethical Consideration

When it comes to the ethical concerns in ASR research, data privacy and replicability are
addressed in this study. The human voice is considered as important biometric data that can be
used to identify individuals, therefore the voice data should be carefully treated and should not
be traced back to any individuals. The Common Voice Corpus and LibriSpeech datasets used in
the current study are all publicly available. The recordings from the former corpus are collected
in a crowdsourced way and only demographic metadata such as gender, age, and accents for
each sentence is reported, so no individual can be identified. The latter corpus is freely available
under the CC BY 4.0 license6. The study also does not require any subjective evaluations from
participants, so consents are not necessary.

The other ethical considerations regarding replicability will be resolved by sharing codes and
models to the public. The code will be available at the GitHub repository7, and the model
checkpoints will be shared in HuggingFace8. The experiments can be reproduced with the
shared code, but the results might differ slightly due to some randomness in the model.

8 https://huggingface.co/collections/xuliu15/vt-thesis-models-666845144eb7ca960ebc88a4
7 https://github.com/xuliu15/VT_Thesis
6 https://creativecommons.org/
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4 Results and Discussion

In this chapter, I will display and analyze the results of the experiments based on my hypothesis
regarding the WER, number of trainable parameters, and GPU memory usage. I will also
discuss and compare my findings with previous literature.

4.1 Word Error Rate

The results regarding WER for zero-shot, LoRA, and full fine-tuning experiments can be found
in Table 4 and Figure 6. From Table 4 it can be seen that without any training, the WER of
Frisian on Zero-shot Whisper-small was 87.89%, in other words, only less than 13% of Frisian
sentences could be correctly recognized. Figure 5 shows part of the transcriptions. As seen in
this figure, the predicted transcriptions were very poor, in which some of the predicted
sentences were in completely different languages, not even close to Dutch. The undesired
performance indicates the need for improving Whisper to better recognize the Frisian language.
Zero-shot English performed very well on Whisper small with 3.9% WER. This result is even
better than the officially reported 6.7% WER for Whisper small on LibriSpeech test-clean.

Table 4. The WER for Frisian and English in all experiments.

Figure 5. The zero shot evaluation results for Frisian on Whisper-small.

WER Frisian English

Model Full Fine Tuning LoRA Full Fine Tuning LoRA

Zero-Shot 87.89 3.9

10mins 56.25 59.55 3.41 5.33

1h 37.58 39.6 3.45 4.96

10h 22.43 23.5 3.45 4.11
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(a) LoRA and full fine-tuning of 10 mins Frisian training data

(b) LoRA and full fine-tuning of 1-hour Frisian training data

(c) LoRA and full fine-tuning of 10 hours Frisian training data
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(d) LoRA and full fine-tuning of 10 mins English training data

(e) LoRA and full fine-tuning of 1 hour English training data

(f) LoRA and full fine-tuning of 10 hours English training data

Figure 6. The training loss, validation loss, and WER of LoRA and full fine-tuning for 10 mins, 1-
hour, and 10 hours of Frisian training data.
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In terms of LoRA and full fine-tuning experiments for Frisian, it can be seen that with only 10
mins of training data, LoRA greatly reduced the WER from 87.89% to 59.55%, and full
fine-tuning was about 3% lower than LoRA. 1 hour of training data further reduced the WER of
LoRA by 20% to 39.6%, and the WER of full fine-tuning also decreased to 37.58%. Trained with
10 hours of speech data, LoRA achieved 23.5% WER while full fine-tuning had slightly better
WER at 22.43%. Overall, as the size of training data increased, the WER reduced for both
LoRA and fine-tuning. LoRA was able to achieve comparable WER as full fine-tuning at all data
sizes, despite slightly worse results. However, this performance gap gradually decreased as
more training data were involved. It might be possible that with even more training data of 20
hours or so, LoRA could outperform full fine-tuning.

As for English, it can be observed that compared with the zero-shot model, fully fine-tuning with
10 minutes, 1 hour, and 10 hours of training data all improved the model performance by around
0.5% WER. However, the WER of full fine-tuning models did not decrease as the size of training
data increased. Instead, they stayed more or less the same around 3.4%. All LoRA models, on
the other hand, underperformed the zero-shot model and full fine-tuning models. With 10 mins
of training data, LoRA achieved 5.33% WER and it reduced to 4.96% with 1 hour of training
data. WER further reduced to 4.11% with 10 hours of training data. All in all, full fine-tuning
models outperforms LoRA at all data sizes with slightly better performance for English.

From Figure 6, it can be seen that all models have reached convergence. For full fine-tuning,
the gap between validation loss and training loss was narrowing down as the size of training
data grew. Compared with LoRA at different data sizes, full fine-tuning always had a wider gap
than LoRA, except for 10 hours Frisian. This suggests that fine-tuning might be prone to overfit
when data size was small.

4.2 Number of Trainable Parameters

In the experiments, LoRA were inserted into value and query projection matrices in the
self-attention modules. By setting , , dropout = 0.05 and bias = none, the size of𝑟 = 32 α = 64
LoRA was 3,538,944. As seen in Table 6, although the insertion of LoRA increased the total
parameters of the model, the parameters that needed to be trained only took 1.4% of all
parameters. On the contrary, 99.5% of all parameters needed to be trained for full fine-tuning.

Methods All parameters Trainable Parameters Percent

Full Fine-Tuning 241,734,912 240,582,912 99.5%

LoRA 245,273,856 3,538,944 1.4 %

Table 6. The number of parameters for two methods.
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4.3 GPU Memory Usage

For Frisian, using full fine-tuning methods required a larger amount of GPU memory than LoRA.
As seen from Table 7, LoRA consumed between 6400MiB to 6800MiB whereas full fine-tuning
needed more than 8800 MiB in the training process. For English, full fine-tuning used less GPU
memory than LoRA. This is because dropout 0.4 was applied in English full fine-tuning training
configuration, but not in LoRA configuration. I tested on disabling dropout in full fine-tuning and
the GPU memory went up to over 10000MiB.

Table 7. The GPU memory usage during the training of LoRA and fine-tuning.

4.4 Discussion

It is evident that LoRA is very effective in tuning the pre-trained multilingual ASR Whisper model
to recognize the low-resource language Frisian. My hypothesis that LoRA is able to achieve
significant WER reduction for Frisian which will be the comparable performance to full
fine-tuning is validated. The other hypothesis regarding less trainable parameters and less GPU
memory usage in LoRA than in full fine-tuning has also been supported.

First, with only 10 mins of Frisian training data, LoRA is capable of reducing the zero-shot WER
by 28%. Increasing the size of training data to 1 hour and 10 hours further improved the LoRA
performance by 20% and 16% respectively. Despite the LoRA achieving slightly worse WER
than fully fine-tuning, the difference is really small between 1% to 3%. Further increasing the
training data size has the potential to reduce the performance gap between LoRA and full
fine-tuning. The reasonable performance of LoRA for Frisian is in line with previous studies of
LoRA on low-resource languages such as Malayalam and Galician where they showed LoRA
reduced the WER compared with zero-shot and achieved similar results as in full fine-tuning
(Ferraz et al., 2024b; Kim et al., 2023).

Second, the current Frisian WER results of LoRA are achieved with only 1.4% of all parameters
of the Whisper small model, and with only ⅔ to ¾ of GPU memory that is needed for
fine-tuning. It shows that LoRA does not require too many computational resources as full

GPU Memory Frisian English

LoRA Full Fine-Tuning LoRA Full Fine-Tuning

10mins 6406MiB 9080 MiB 7504MiB 6457MiB

1h 6404 MiB 8804 MiB 7780MiB 6142MiB

10h 6748 MiB 8804MiB 7784MiB 6395MiB

https://www.zotero.org/google-docs/?2Lyhw6
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fine-tuning does and is therefore very cost-efficient. The finding about parameters is similar to
other LoRA studies where they also reported that LoRA successfully tuned the model for
low-resource languages with a small fraction of parameters (Ferraz et al., 2024b; Kim et al.,
2023).

It is, however, interesting to see the performance of LoRA and full fine-tuning for English is a bit
unexpected. All three LoRA models underperformed zero-shot and its corresponding full
fine-tuning model. The WER of full fine-tuning models also did not decrease with larger training
data size. The degraded performance of LoRA in English is aligned with the finding from (Z.-C.
Chen et al., 2023). In their study, they trained self-supervised speech models with 1 hour and 10
hours of Libri-Light dataset and tested the LoRA performance on the testing dataset of
LibriSpeech. They found that LoRA failed to achieve a comparable performance for English
low-resource scenarios because LoRA performed poorly with higher WER than baseline models
and full fine-tuning models. Until the size of training data reached 100 hours, it can finally be
seen that LoRA achieved close WER as full fine-tuning, baseline, and other PEFT methods.

Because of the poor performance of LoRA in English, (Z.-C. Chen et al., 2023) claimed that
LoRA in general cannot perform well in speech tasks, which I disagree with. The current study
strongly shows that LoRA has great power when it comes to adapting models to low-resource
languages. It just could be the case that low-resource languages that are unseen or that take
only a tiny proportion in the pre-trained model can benefit more from LoRA than those
high-resource languages. For high-resource languages such as English, it takes a larger size of
training data to reveal LoRA’s full potential. This can be seen from (Z.-C. Chen et al., 2023)’s
study, as the size of training data increased to 100 hours, LoRA started to reach comparable
results as in full fine-tuning. Another reason for the unexpected performance of LoRA and full
fine-tuning for English could be that the zero-shot Whisper small is already good enough for the
LibriSpeech dataset, so there is no room for further improvement (Do et al., 2023).

https://www.zotero.org/google-docs/?0tS2Gp
https://www.zotero.org/google-docs/?0tS2Gp
https://www.zotero.org/google-docs/?E5kYgU
https://www.zotero.org/google-docs/?E5kYgU
https://www.zotero.org/google-docs/?UweMZR
https://www.zotero.org/google-docs/?CuAn2t
https://www.zotero.org/google-docs/?cYBDxc
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5 Conclusion

This study aims to investigate the effectiveness of one PEFT method, namely LoRA, in adapting
the large pre-trained multilingual ASR model to recognize low-resource language Frisian. The
efficiency is evaluated via several metrics including the WER, number of trainable parameters,
and GPU memory usage. The Whisper small model is either fully fine-tuned or tuned with LoRA
using various sizes of Frisian and English training data, ranging from 10 minutes, 1 hour, to 10
hours. The results are compared between the full fine-tuning method and the LoRA method.

Results showed that using only 1.4% of all model parameters and less GPU memory, LoRA is
able to greatly reduce Frisian WER. Compared with zero-shot evaluation, Frisian WER has
been reduced by 28%, 48%, and 64% with 10 minutes, 1 hour, and 10 hours of training data,
respectively. The Frisian WER achieved by LoRA is very comparable to fully fine-tuning, with
only a 1% to 3% gap. The results also showed that low-resource languages such as Frisian
benefit more from LoRA than high-resource languages such as English.

In conclusion, this study timely addresses a practical challenge in speech technology by
assessing the applicability of PEFT, particularly LoRA, on multilingual ASR models in
low-resource contexts. It deepens the theoretical understanding of state-of-the-art model tuning
techniques and brings valuable insights for practical ASR system development toward efficiency
and inclusion.

5.1 Limitations

Speaking of limitations of the current research, it can be concluded that the scope of the study is
rather narrowed because the study only investigated the Whisper small model and the small
size of the training datasets from two languages. Therefore, it might not be suitable to
generalize the results to a broader scope, for example, to all low-resource languages or all ASR
models. In the future, the study could be expanded to a larger model such as the Whisper-large
model and a larger training dataset for example 50 hours or 100 hours of training data if
available for low-resource languages. In the case of Frisian, one can take advantage of the
newest Common Voice Corpus 16.1 which contains 69 hours of validated speech. In this way
the efficiency of LoRA can be even further investigated, especially exploring if the LoRA would
outperform full fine-tuning when more training data are used. One can also explore if with LoRA
and a large size of training data, the Whisper model is able to achieve state-of-the-art WER.

Another limitation of the current study is that it only focuses on the insertion of LoRA modules
into value and query projection matrices in the self-attention module. As said, LoRA could be
applied on different attention weights matrices such as query, key, value, and output matrices, or
different layers such as MLP layers, LayerNorm layers, and biases (Hu et al., 2021). In (Z.-C.
Chen et al., 2023)’s study, compared with other adapters that were added behind the second

https://www.zotero.org/google-docs/?1AikFV
https://www.zotero.org/google-docs/?M3EQQZ
https://www.zotero.org/google-docs/?M3EQQZ
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feed-forward layer, LoRA that was added in the self-attention modules performed the worst in
the SUPERB benchmark. The authors suggested that the position the adapter added resulted in
such performance discrepancy. Therefore, it might be worth exploring in the future how different
positions affect the performance of LoRA for low-resource languages.

5.2 Future Research

In the future, it might be interesting to work on different PEFT methods to find more flexible and
efficient ways for training and deploying models for low-resource languages. One way is to
combine two different techniques to further reduce computational demand and improve
performance. For example, in (Kim et al., 2023)’ study, the authors combined the pruning
strategy Lottery Ticket Hypothesis with LoRA on the Whisper model for low-resource languages,
and the model achieved better performance than the LoRA-only approach. The other
possibilities could be the combination between quantization and LoRA, or the insertion of LoRA
on distilled pre-trained models. The second way is to compare the efficiency of several PEFT
methods under low-resource language scenarios and explore the most efficient configuration of
that PEFT method.

In addition, it would be valuable to discover how to preserve the multilingual capability of
Whisper while adapting to LoRA modules. In (Ferraz et al., 2024b)’s study, they proposed a
DistilWhisper model that retained the multilingual and multitasking performance of the original
Whisper model. They preserve the multilingual capability by training conditional
language-specific routing (CLSR) modules with gated mechanisms in parallel and loading the
relevant modules at the inference. Inspired by this approach, it might also be possible to couple
and train several language-specific LoRA modules and load individual ones when necessary.

https://www.zotero.org/google-docs/?IfBZq4
https://www.zotero.org/google-docs/?Wv10Kt
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