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Abstract
Multilingual ASR systems face challenges in accommodating diverse linguistic landscapes, partic-
ularly for low-resource languages (LRLs) with limited data. This study investigates the efficacy of
model compression techniques, specifically knowledge distillation (KD) and fine-tuning, in enhanc-
ing the performance and efficiency of the Whisper-small model for LRLs. The research aims to
determine whether applying KD and fine-tuning to the Whisper-small model can improve its per-
formance on LRLs while reducing its computational and memory requirements. Fine-tuning exper-
iments were conducted on both the English (LibriSpeech) and Frisian (CommonVoice 6.1) datasets
for both the original Whisper-small model and the distilled Whisper-small model. Subsequently, a
comprehensive evaluation based on various metrics, including Word Error Rate (WER), number of
model parameters, and training set sizes, was performed. The results demonstrate that the distilled
Whisper-small model achieved a WER of 26.91% when fine-tuned with 10 hours of Frisian data,
exceeding the initial reduction target. In comparison, the Whisper-small model achieved a WER
of 22.42% under the same conditions. Additionally, the distilled model showed competitive perfor-
mance with limited training data, highlighting the potential of KD to create efficient ASR models
suitable for environments with constrained computational resources and data availability. Further-
more, while the Whisper-small model supports recognition of many languages, including Dutch,
it was successfully fine-tuned to recognize Frisian, a language it originally did not support. Simi-
larly, the Distil-Whisper-small model, which initially only supported English, was also successfully
adapted to recognize Frisian, showcasing the adaptability of these models for cross-linguistic ap-
plications. In conclusion, the findings validate the effectiveness of model compression techniques,
particularly KD, in enhancing the performance and efficiency of ASR models for LRLs. This study
contributes to the development of more efficient and inclusive multilingual ASR systems, provid-
ing valuable insights into optimizing ASR models for diverse linguistic landscapes, especially those
with limited datasets. The implications of this research extend to various domains, including ed-
ucation, healthcare, and accessibility, ultimately advancing universal accessibility and real-world
applications of ASR technology.

Keywords: Automatic Speech Recognition (ASR), fine-tuning, knowledge distillation (KD), Whisper-
small Model, Frisian Language.
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1 Introduction
ASR technology has transcended traditional boundaries, embedding itself across a spectrum of appli-
cations from virtual assistants to real-time captioning services. As smart devices become ubiquitous,
the imperative for ASR systems to operate within the computational and memory constraints of these
devices has never been more pronounced. In response to these challenges, model compression tech-
niques, such as knowledge distillation, pruning, and quantization, have gained prominence. These
methods aim to refine ASR models, including Whisper, to create versions that are both compact and
efficient, facilitating their deployment on edge devices. This quest for optimization has not only pre-
served but, in many instances, enhanced the models’ performance, making ASR technology more
accessible and versatile.

The complexity of accommodating the world’s linguistic diversity within ASR technology intro-
duces additional challenges, particularly for LRLs. Despite advancements in model compression,
as demonstrated by FFerraz, Boito, Brun, and Nikoulina (2024) and Yang et al. (2023), research on
the performance of compressed models in recognizing languages with limited data, such as Frisian,
remains sparse. These languages, rich in their linguistic uniqueness but constrained by data availabil-
ity, underscore the need for an in-depth exploration of ASR model efficacy in a multilingual context.
This thesis seeks to address this gap by conducting a comparative analysis of the fine-tuning of the
distil-whisper-small model with Frisian data against the baseline Whisper-small model. By dissect-
ing the capabilities of these models in handling the intricacies of such low-resource languages, this
study endeavors to not only benchmark their performance but also to identify pathways for enhanc-
ing Whisper’s utility across the diverse linguistic landscape of our world.

Note: Throughout this thesis, the terms ”distil-whisper-small,” ”distilled Whisper-small,” and
”distil-small” refer specifically to the distil-small.en version of the Distil-Whisper model.

1.1 Research Question and Hypothesis
Based on the preceding discussion, the central research question of this study can be framed as
follows:

How does fine-tuning the distil-whisper-small model with Frisian data affect its
ASR performance compared with the baseline model (Whisper-small), consider-
ing Word Error Rate (WER), number of model parameters, training set sizes,
and number of trainable parameters, across both high-resource (English) and low-
resource (Frisian) languages?

This primary question leads to several subquestions:

• What is the baseline WER achieved by fine-tuning Whisper-small on Frisian speech?

• Can the distil-whisper-small model achieve a lower WER than Whisper-small on Frisian
speech?

• How does the performance of Whisper-small and distil-whisper-small models vary with dif-
ferent sizes of training data on Frisian speech, particularly in low-resource settings?
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My hypothesis is that the distil-whisper-small model will achieve performance comparable to
the Whisper-small baseline model when fine-tuned on Frisian speech, specifically aiming for a sig-
nificant reduction in WER, potentially around 30%. It is anticipated that the size of the training
data will substantially impact the model’s performance, with larger datasets leading to better results.
However, it is hypothesized that the distil-whisper-small model, when fine-tuned on a larger dataset
(e.g., 1-hour Frisian dataset), will achieve similar performance to the Whisper-small model fine-
tuned on a smaller dataset (e.g., 10-minute Frisian dataset). This reflects the effectiveness of model
distillation in enhancing efficiency and maintaining performance. Additionally, due to its reduced
number of parameters, the distil-whisper-small model is expected to offer faster speech inference
and reduced computational requirements for both training and inference compared to the Whisper-
small model. This should result in a favorable balance between training and inference time and
overall ASR performance, making the distil-whisper-small model more suitable for deployment in
resource-constrained environments.
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2 Literature Review
The advent of ASR technologies like Whisper has significantly broadened the horizons of human-
computer interaction, enabling applications that range from virtual assistants to real-time transcrip-
tion services. Despite substantial advancements, the deployment of ASR systems that effectively
handle multilingual content, especially in languages with limited resources, presents ongoing chal-
lenges. This section explores the development and optimization of ASR technologies with a focus
on model compression techniques, particularly knowledge distillation. Additionally, it examines the
specific challenges faced by LRLs and the performance metrics used to evaluate ASR systems.

The evolution of ASR technologies has been paralleled by efforts to optimize these systems for
performance within the computational confines of modern devices. Techniques such as knowledge
distillation, pruning, and quantization have been pivotal. Knowledge distillation, in particular, has
shown promise in retaining model performance while significantly reducing computational demands
(Sanh, Debut, Chaumond, and Wolf (2019)). Sanh et al. (2019) effectively utilized KD to create Dis-
tilBERT, achieving significant reductions in model size and increases in speed, while retaining a high
level of performance on the GLUE benchmark. This principle was further extended to sequence-to-
sequence models by Shleifer and Rush (2020), who developed DistilBART, demonstrating that KD
could be effectively applied beyond the realm of encoder-only models, to more complex architec-
tures with notable success in both model compression and speed improvements.

The Whisper model by OpenAI represents a leap forward in multilingual ASR, designed to com-
prehend a wide array of languages. However, studies like those by M. Shao, Li, Peng, and Sun
(2023) have begun to explore its compression through knowledge distillation, aiming to maintain, or
even enhance, its linguistic versatility within a more compact framework. These endeavors under-
score the potential for high-performance, efficient ASR models that are accessible on edge devices.
Low-resource languages, such as Frisian, pose unique challenges due to the scarcity of data and
their complex linguistic features. Despite the inclusion of such languages in large-scale multilingual
models, detailed analyses of ASR performance, specifically under compression, are sparse.

Performance evaluation of ASR systems traditionally revolves around metrics like WER, which
directly quantifies transcription accuracy. Additional metrics, such as the number of model parame-
ters, play crucial roles in assessing the practical deployment of ASR models in real-world settings.
The application of these metrics in prior research offers a foundation for comprehensive performance
analysis, particularly in assessing the adaptability of ASR technologies to diverse and challenging
linguistic landscapes. This thesis aims to bridge the research gap by conducting an in-depth eval-
uation of the fine-tuning of the distil-whisper-small model with Frisian data against the baseline
Whisper-small model. The literature review is organized into five sections. Subsection 2.1 provides
a historical context and outlines the fundamental principles and advancements in ASR technology.
Subsection 2.2 discusses the unique challenges in developing ASR systems for LRLs, including data
scarcity and linguistic diversity, and presents detailed case studies illustrating practical applications
and the effectiveness of these techniques in LRLs. Subsection 2.3 describes various model compres-
sion techniques, including knowledge distillation, fine-tuning, pruning, and quantization, and their
applications in ASR. Subsection 2.4 reviews studies on how these compression techniques enhance
the efficiency and performance of ASR systems. Subsection 2.5 discusses the metrics used to eval-
uate ASR system performance, such as WER and model parameters. Furthermore, I identify the
limitations of current research and suggests potential future research directions in the end.

Through this structured exploration, the literature review aims to provide a comprehensive under-
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standing of the current state of ASR technologies, the challenges of multilingual and low-resource
language processing, and the potential avenues for future advancements.

2.1 Overview of ASR Technology
ASR technology has significantly advanced over the past few decades, transforming from simple
command-based systems to complex models capable of understanding and processing natural lan-
guage. The primary goal of ASR is to convert spoken language into text accurately and efficiently.
Early ASR systems relied heavily on handcrafted features and rule-based approaches, which limited
their adaptability and scalability. With the advent of deep learning, particularly end-to-end (E2E)
models, ASR systems have achieved remarkable improvements in accuracy and robustness. End-to-
end models simplify the ASR pipeline by integrating acoustic, language, and pronunciation models
into a single neural network framework, as demonstrated by Graves, Mohamed, and Hinton (2013),
who showcased the efficacy of deep recurrent neural networks (RNNs) in speech recognition.

In multilingual environments, ASR systems face additional challenges due to the diversity of lan-
guages and dialects. This diversity necessitates the development of robust models that can generalize
well across different languages. Zhou, Wang, Liu, Yu, and Xiang (2021) introduced a configurable
multilingual model that can be trained once and configured as different language-specific recogniz-
ers, significantly reducing the complexity and cost associated with multilingual ASR systems. Fur-
thermore, Babu et al. (2021) highlighted the importance of large-scale self-supervised cross-lingual
speech representation learning, which has proven effective in enhancing ASR performance across
both high-resource and low-resource languages.

2.2 Challenges of Low-Resource Languages
Developing ASR systems for LRLs presents unique challenges, primarily due to the scarcity of
annotated data and the linguistic diversity among these languages. LRLs often lack the extensive
linguistic resources and large annotated datasets available for high-resource languages, making it
difficult to train robust ASR models. This scarcity of data leads to high error rates and poor model
generalization, as highlighted by Yadav and Sitaram (2022), who explored the current state of mul-
tilingual ASR and the challenges associated with handling LRLs.

Addressing these challenges requires innovative approaches to data augmentation, transfer learn-
ing, and model optimization. Tsoukala, Lange, and Wang (2023) presented a practical implemen-
tation of an ASR pipeline for a low-resource language, detailing the challenges and solutions in
data processing and model training. Their work emphasizes the importance of tailored data pro-
cessing techniques and the adaptation of existing models to the specific characteristics of LRLs.
Additionally, Khare, Mane, Singh, and Agarwal (2021) demonstrated the surprising effectiveness of
pre-trained models in low-resource ASR scenarios, showing that leveraging large-scale pre-trained
models can significantly enhance recognition performance with minimal additional data.

Overcoming the obstacles associated with LRLs in ASR systems requires detailed case studies
that illustrate practical applications and the effectiveness of various techniques. One such case study
is presented by Tsoukala et al. (2023), who implemented an ASR pipeline for the Pomak language,
a low-resource language. They detailed the specific challenges encountered in data processing and
model training, and the solutions they developed, which included tailored data augmentation tech-
niques and the adaptation of existing ASR models to the unique characteristics of the language.
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Farooq, Imran, and Pasha (2023) conducted a study on the effectiveness of the MUST learning
approach, a multilingual student-teacher framework designed to address the scarcity of annotated
data in LRLs. Their approach significantly reduced the character error rate in low-resource settings
by leveraging the knowledge from high-resource languages. Additionally, Khare et al. (2021) high-
lighted the potential of pre-trained models in improving ASR performance for LRLs. By utilizing
large-scale pre-trained models, they demonstrated significant enhancements in recognition accuracy
with minimal additional data, underscoring the practicality and efficiency of transfer learning meth-
ods in low-resource scenarios.

2.3 Model Compression Techniques
Model compression techniques, such as KD and fine-tuning, play a crucial role in enhancing the
efficiency and performance of ASR systems, particularly for deployment in resource-constrained
environments. Knowledge distillation involves transferring the knowledge from a large, cumber-
some model (teacher) to a smaller, more efficient model (student), which retains much of the teacher
model’s performance but with significantly reduced computational requirements. Hinton, Vinyals,
and Dean (2015) described the process of knowledge distillation, highlighting its effectiveness in
maintaining model performance while reducing complexity. Xu, Liu, and Chang (2024) further
explored various KD techniques applied to large language models, providing insights into the im-
plementation and efficacy of KD in improving ASR models.

Fine-tuning, on the other hand, involves adjusting the weights of a pre-trained model on a new
dataset, allowing the model to adapt to specific language or domain characteristics. This technique is
particularly effective for low-resource languages, where it is often impractical to train models from
scratch due to the lack of extensive training data. Li et al. (2021) demonstrated how fine-tuning,
combined with sparse training techniques, can accelerate inference and improve the performance of
large pre-trained language models for ASR applications.

Additionally, Han, Mao, and Dally (2016) introduced a comprehensive framework for compress-
ing deep neural networks through pruning, trained quantization, and Huffman coding, significantly
reducing storage and computational requirements while maintaining model performance. Choud-
hary, Kapoor, and Choudhary (2020) provided a thorough survey on model compression and ac-
celeration techniques, underscoring their importance in developing efficient ASR systems that can
operate effectively even in low-resource settings.

2.4 Impact of Model Compression on ASR Efficiency
Model compression techniques have a profound impact on the efficiency of ASR systems. By reduc-
ing the size and complexity of models, these techniques enable faster inference, lower latency, and
reduced energy consumption, all of which are critical for real-time ASR applications. A. Gandhi,
Maheshwari, and Jha (2023) investigated robust knowledge distillation techniques for ASR models,
focusing on optimizing the teacher-student training process to enhance performance and robustness,
particularly for low-resource languages. Their findings underscore the potential of KD to maintain
high recognition accuracy while significantly reducing model complexity.

Dawalatabad, Malhotra, and Vig (2022) proposed a two-pass compression method for end-to-end
ASR models, combining pruning and quantization techniques. This approach effectively reduces
model size and inference time without sacrificing accuracy, making it suitable for deployment on
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edge devices. Kurtic, Magomadov, Ruder, and Cotterell (2023) introduced sparse fine-tuning as a
method for accelerating inference in large pre-trained language models, which selectively fine-tunes
a small subset of model parameters, significantly reducing computational costs while maintaining
model performance.

Moreover, Ferraz et al. (2024) highlighted the benefits of combining knowledge distillation with
quantization in their Multilingual DistilWhisper model. This method enhances the performance
of ASR systems for low-resource languages by reducing computational complexity and memory
requirements, thus enabling efficient deployment on resource-constrained devices.

In summary, model compression techniques such as KD and fine-tuning are essential for devel-
oping efficient ASR systems, particularly for low-resource languages. These techniques not only
improve model performance and efficiency but also facilitate the deployment of ASR systems in
real-world applications where computational resources may be limited.

2.5 Performance Evaluation Metrics
Evaluating the performance of ASR systems involves several critical metrics, with WER being one
of the most widely used. WER measures the accuracy of the transcription by comparing the recog-
nized text to a reference transcription and calculating the ratio of errors (insertions, deletions, and
substitutions) to the total number of words. This metric is particularly important for comparing the
performance of different ASR models and configurations.

WER is commonly employed as a primary metric to evaluate improvements in ASR systems. It
demonstrates significant reductions in error rates when advanced techniques and architectures are
applied. For instance, improvements in end-to-end streaming ASR models and the use of advanced
architectures for multilingual low-resource ASR systems have shown substantial enhancements in
performance as measured by WER.

Other important metrics include the number of model parameters, which reflects the complexity
and size of the model, and the computational cost, which includes both the training time and the
inference latency. Reducing the number of parameters without sacrificing performance is a key goal
of model compression techniques. Han et al. (2016) highlighted the importance of these metrics in
their framework for deep neural network compression, demonstrating how pruning and quantization
can effectively reduce model size and computational requirements.

In addition, the size of the training dataset is a crucial factor in the performance of ASR sys-
tems, especially for LRLs. Larger datasets typically lead to better performance, but they are often
unavailable for LRLs. This scarcity necessitates the use of data augmentation and transfer learning
techniques to enhance model performance. Kurtic et al. (2023) discussed the impact of fine-tuning
and sparse training on improving the efficiency of large pre-trained models, emphasizing the balance
between model complexity and performance in resource-constrained environments

While significant advancements have been made in ASR technology, particularly in the areas of
model compression and multilingual systems, several limitations remain. One major limitation is the
inadequate performance of ASR systems on LRLs. Existing research often relies on large datasets
and extensive computational resources, which are not always available for LRLs. Yadav and Sitaram
(2022) pointed out that multilingual ASR models still struggle with language diversity and data
scarcity, making it challenging to achieve high accuracy across all target languages.

Moreover, while knowledge distillation and model compression techniques have shown promise,
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they are not without challenges. For instance, Han et al. (2016) highlighted that the effectiveness
of these techniques can vary significantly depending on the specific architecture and the nature of
the data. Additionally, fine-tuning and knowledge distillation often require careful hyperparameter
tuning and extensive experimentation to achieve optimal results, which can be resource-intensive.

Future research should focus on developing more robust and adaptive techniques that can han-
dle the variability and scarcity of data in LRLs. This includes exploring advanced self-supervised
learning methods, as demonstrated by Baevski, Zhou, Mohamed, and Auli (2020), to leverage large
amounts of unlabeled data for training effective ASR models. Additionally, integrating transfer
learning approaches that can efficiently utilize pre-trained models for LRLs, as suggested by Khare
et al. (2021), can further enhance ASR performance in resource-constrained environments. An-
other promising direction is the development of more flexible and configurable multilingual models.
Zhou et al. (2021) introduced a configurable multilingual model that can be adapted for different
languages, reducing the complexity and cost of training separate models for each language. Such
approaches should be further explored and optimized to enhance their scalability and effectiveness
across diverse linguistic contexts.

This research aims to fill the gaps identified in existing studies by focusing on the application
of knowledge distillation and fine-tuning techniques to improve ASR performance and efficiency
for low-resource languages. By conducting comprehensive experiments on both high-resource (e.g.,
English) and low-resource (e.g., Frisian) languages, this study provides valuable insights into the
applicability and effectiveness of these techniques in different linguistic contexts. The findings from
this research will contribute to the broader field of ASR by demonstrating how model compression
and optimization techniques can be effectively applied to enhance the performance of ASR sys-
tems for LRLs. This is particularly important for developing more inclusive and accessible ASR
technologies that can serve a wider range of languages and dialects.

Furthermore, the practical applications of this research are significant. Efficient and high-performing
ASR systems can be deployed in various real-world scenarios, including education, healthcare, and
customer service, where multilingual and low-resource language support is essential. For instance,
Li et al. (2021) showed how improved end-to-end streaming ASR models can be used in mobile
applications, providing real-time speech recognition with reduced latency and enhanced accuracy.
Similarly, Z. Shao, Sun, Lan, Chen, and Liu (2023) demonstrated the potential of lightweight ASR
models in on-device applications, which is crucial for accessibility in resource-constrained environ-
ments.

By improving upon the limitations of existing ASR systems and providing practical solutions for
low-resource languages, this research not only advances the field but also has the potential to make
a significant impact on the accessibility and usability of speech recognition technologies globally.
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3 Methodology
In this section, we will introduce the methodology used to address the research questions. First, I
will describe all the training and evaluation datasets that will be utilized in this project. Second,
I will elaborate on the Whisper models included in this project. Third, the evaluation framework
will be defined. Lastly, we will reflect on the ethical considerations inherent in this project. The
implementation was carried out using Python version 3.10.4, PyTorch version 2.3.0, HuggingFace
Transformers version 4.41.0, Datasets version 2.19.1, and Tokenizers version 0.19.1.

3.1 Dataset - Common Voice and LibriSpeech
To ensure comprehensive training and evaluation of the ASR models, two primary datasets will be
employed: Common Voice and LibriSpeech.

Common Voice: This dataset, created by Mozilla, is a multilingual corpus that includes a wide
variety of languages, including low-resource languages like Frisian. Common Voice 6.1 will be used
in this project, providing a diverse set of recordings that are essential for training and evaluating
the models on low-resource languages. This dataset is crucial for understanding the model’s per-
formance on real-world, diverse speech data (Ardila et al. (2020)). For the Frisian language, the
training data is derived from the validated.tsv file after removing entries that overlap with the test
data, which is taken from the test.tsv file.

LibriSpeech: This is a well-established ASR dataset consisting of approximately 1,000 hours
of English speech derived from audiobooks. It provides a high-quality and extensive dataset for
training and evaluating the models on a high-resource language. The use of LibriSpeech allows for
benchmarking the performance of the models on a standard dataset and comparing it with results
from other studies (Panayotov, Chen, Povey, and Khudanpur (2015)). For the English language,
the training data is selected from the train-clean-100 subset, while the test data is taken from the
test-clean subset.

In this study, English serves as a benchmark to validate the models. By fine-tuning the models
on the English dataset, we can ensure that the models are functioning correctly and performing as
expected without any bugs. This benchmark step is essential before proceeding to fine-tune the
models on the Frisian dataset. Successful performance on the English dataset provides confidence
in the model’s stability and effectiveness, thereby ensuring that any subsequent fine-tuning on the
Frisian dataset is based on a robust and validated model.

These datasets undergo specific preprocessing steps to ensure they are suitable for training and
evaluation. The detailed preprocessing procedures, including resampling, feature extraction, and
text normalization, will be described in section 4.2 Data Preprocessing. This ensures that the data
fed into the ASR models is consistent and standardized, facilitating effective training and accurate
evaluation of the models’ performance on both high-resource and low-resource languages.

3.2 Multilingual Model - Whisper-small and distil-whisper
Two versions of the Whisper model will be utilized in this project: Whisper-small and distil-whisper-
small.

Developed by OpenAI, Whisper-small is a compact yet powerful ASR model designed to handle
multiple languages efficiently. It serves as the baseline model in this study due to its balanced
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performance and resource requirements. The Whisper-small model has been extensively trained on
diverse datasets, enabling it to perform well across various linguistic contexts.

Figure 1: Overview of the Whisper-small model architecture, highlighting the sequence-to-sequence
Transformer model used for various speech processing tasks (Radford et al. (2022)).

Distilled whisper-small is literally a distilled version of Whisper-small, created using knowledge
distillation techniques to reduce the model’s size while retaining its performance. Knowledge dis-
tillation involves training a smaller ”student” model to replicate the behavior of a larger ”teacher”
model. This process results in a model that is more efficient in terms of computational resources and
memory usage. Hinton et al. (2015) and Z. Shao et al. (2023) have demonstrated the effectiveness
of this approach in various applications. In the illustration of the Distil-Whisper model architecture,
the encoder is fully copied from the teacher model to the student model and is frozen during train-
ing. The student’s decoder consists of only two layers, which are initialized from the first and last
decoder layers of the teacher. The model is then trained on a weighted sum of the KL divergence
and pseudo-label loss terms. The distil-whisper model, by virtue of its smaller size, offers faster in-
ference times and reduced training costs, making it suitable for deployment in resource-constrained
environments.

The effectiveness of these models will be evaluated through fine-tuning on both high-resource
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Figure 2: Distil-Whisper model architecture (Sanchit Gandhi and Rush (2023)).

(English) and low-resource (Frisian) languages. Fine-tuning allows the models to adapt to the spe-
cific characteristics of the target languages by adjusting the pre-trained weights using the new train-
ing data (Li et al. (2021)). This process helps in improving the model’s accuracy and robustness in
the specific linguistic context.

3.3 Evaluation - Word Error Rate
The primary metric for evaluating the performance of the ASR models will be the WER. WER is a
standard metric in speech recognition that measures the percentage of words incorrectly predicted
by the model. It is calculated as follows:

WER =
S+D+ I

N

where:

• S is the number of substitutions,

• D is the number of deletions,
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• I is the number of insertions,

• N is the total number of words in the reference.

WER is chosen for its straightforward interpretation and widespread use in ASR research. A lower
WER indicates better performance. In this study, WER will be calculated for both high-resource
and low-resource languages to assess the models’ accuracy and robustness across different linguistic
contexts.

In addition to WER, other metrics such as model size and computational efficiency also provide
a comprehensive view of the ASR system’s performance and efficiency. By considering multiple
metrics, we can better understand the strengths and weaknesses of the models under different condi-
tions.

3.4 Ethical Considerations
Conducting research involving multilingual ASR systems necessitates careful consideration of eth-
ical issues, particularly regarding data usage and model deployment. As for data privacy and con-
sent, I ensure that all speech data used in this project is sourced from datasets where participants have
given informed consent is paramount. Both Common Voice and LibriSpeech datasets adhere to strict
data privacy standards, providing anonymized and consented data for research purposes (Ardila et
al. (2020); Panayotov et al. (2015)). By adhering to these ethical considerations, this project aims to
ensure responsible and equitable development and deployment of ASR technologies.
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4 Experimental Setup
Now that we have all the theoretical background explained, we can shift our attention to the prac-
tical experiments. This section details the data splitting, preprocessing, model hyperparameters,
hardware, and training time considerations used to address the research questions.

4.1 Data Splitting of Subsets
The experiments involve splitting the training data into three subsets for both English and Frisian
languages: 10 minutes, 1 hour, and 10 hours. The testing dataset, which remains consistent across all
experiments, consists of approximately 5 hours of data for both languages. These subsets allow us
to evaluate the performance of the Whisper-small and distilled Whisper-small models under varying
amounts of training data. For each subset, we conduct experiments to fine-tune the models and
measure their performance.

4.1.1 Training and Testing Subsets

To effectively train and evaluate the ASR models, the datasets for English and Frisian were split
into training and testing subsets using different methods to suit the characteristics of each language
dataset. By maintaining a fixed testing set, we ensure that the evaluation of each model is consistent
and comparable across all experiments.

For the English dataset, a duration-based approach was implemented. The dataset was first
loaded, and the audio data was resampled to a consistent sampling rate of 16 kHz. A function was
then defined to compute the duration of each audio sample. This involved iterating through the
dataset and calculating the length of each audio array divided by its sampling rate, subsequently
summing these durations until the target duration was reached. The target durations were set to
10 minutes, 1 hour, and 10 hours, respectively. The indices corresponding to these durations were
then used to select and save the subsets into different files for subsequent training and evaluation
processes.

For the Frisian dataset, a different approach was used due to its specific structure. The data
was first cleaned to remove any overlapping entries between the training and testing subsets. The
validated data, which excluded the test data, was used to create training subsets of different sizes. The
length of each audio sample was calculated, and the dataset was randomly sampled to achieve subsets
with approximate durations of 10 minutes, 1 hour, and 10 hours. This was done by calculating the
fraction of the dataset required to meet the target durations. The lengths of the audio samples in
these subsets were summed to ensure they were close to the target durations. The resulting subsets
were saved into separate CSV files for use during training.

4.1.2 Experiment 1: 10 Minutes of Training Data on Whisper-small

This experiment aims to evaluate the Whisper-small model’s performance with minimal training
data, involving fine-tuning the Whisper-small model using a training set consisting of 10 minutes
of data from both English and Frisian datasets. This subset simulates an extremely low-resource
environment to assess how well the model can adapt with very limited data. Then, we will measure
WER on the testing set.
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4.1.3 Experiment 2: 1 Hour of Training Data on Whisper-small

This experiment assesses the Whisper-small model’s performance with a moderate amount of train-
ing data, by fine-tuning the Whisper-small model using a training set consisting of 1 hour of data
from both English and Frisian datasets. This setup provides more data than the first experiment, en-
abling a better understanding of how increased data volume affects model performance. WER will
be measured on the testing set.

4.1.4 Experiment 3: 10 Hours of Training Data on Whisper-small

This experiment tests the Whisper-small model’s performance with a relatively large training dataset,
involving fine-tuning the Whisper-small model using a training set consisting of 10 hours of data
from both English and Frisian datasets. This extensive dataset allows for evaluating the model’s per-
formance under conditions where significant amounts of data are available. WER will be measured
on the testing set.

4.1.5 Experiment 4: 10 Minutes of Training Data on distil-whisper-small

This experiment evaluates the distil-whisper-small model’s performance with minimal training data,
by fine-tuning the distil-whisper-small model using a training set consisting of 10 minutes of data
from both English and Frisian datasets. This subset tests the compressed model’s ability to handle
extremely low-resource conditions. WER will be measured on the testing set.

4.1.6 Experiment 5: 1 Hour of Training Data on distil-whisper-small

This experiment assesses the performance of the distil-whisper-small model with a moderate amount
of training data, by fine-tuning the distil-whisper-small model using a training set consisting of 1
hour of data from both English and Frisian datasets. This setup provides insights into how the
distilled model performs with an intermediate amount of data. WER will be measured on the testing
set.

4.1.7 Experiment 6: 10 Hours of Training Data on distil-whisper-small

This experiment evaluates the performance of the distil-whisper-small model with a substantial train-
ing dataset, involving fine-tuning the distil-whisper-small model using a training set consisting of 10
hours of data from both English and Frisian datasets. This comprehensive evaluation aims to un-
derstand the model’s capabilities in a resource-rich scenario. WER will be measured on the testing
set.

4.2 Data Preprocessing
Data preprocessing is a critical step for ASR systems, involving loading and resampling the audio
data, extracting log-Mel spectrogram features, normalizing and tokenizing the text, and preparing
the dataset for training with appropriate data collation. Properly preparing the data ensures that the
models can effectively learn from the input features and target labels. This subsection details the
preprocessing steps applied to the datasets used in this study.
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The first step in data preprocessing involves loading and resampling the audio data. In this study,
we used the datasets library to load the audio files and resample them to a consistent sampling rate
of 16kHz. This resampling step is essential to standardize the input data, as different audio files
may have been recorded at varying sampling rates. Next, we extracted the log-Mel spectrogram
features from the audio data. Log-Mel spectrograms are commonly used in ASR systems because
they provide a time-frequency representation of the audio signal, which is more suitable for ma-
chine learning models. We use the according function to load the audio data, compute the log-Mel
spectrogram features, normalize the text, and encode the target text into label IDs. The function is
then applied to the entire dataset using the “.map” method, enabling efficient preprocessing through
multiprocessing.

Figure 3: Conversion of an audio waveform to a log-Mel spectrogram. (Park and Chan (2019))

Text normalization and tokenization are also crucial to ensure that the input text data is consistent
and correctly formatted for the ASR model. The normalization process involves standardizing the
text by converting it to lowercase, removing punctuation, and handling other text variations. Tok-
enization converts the normalized text into a sequence of integer IDs that can be processed by the
model. Afterward, we will verify the number of samples and the structure of the datasets to ensure
that they are correctly prepared for model training. Additionally, for training, we need to collate the
data into batches. A custom data collator is defined to handle the variable lengths of audio and label
sequences, padding them to the maximum length in each batch.

4.3 Model Hyperparameters
In this section, we describe the hyperparameters used in the various experiments conducted on both
English and Frisian datasets. The primary focus was on fine-tuning models using different learning
rates, batch sizes, and step counts to optimize performance and prevent overfitting.

For the English experiments, we maintained consistency in the choice of hyperparameters across
all six experiments. Among these parameters, the learning rate was found to have a significant impact
on model performance. For the English dataset, we consistently used a learning rate of 5e-7 across
all experiments, which was determined to be optimal based on preliminary tuning experiments. Ad-
ditionally, we found that increasing the number of training steps leads to overfitting. This overfitting
is likely due to the Whisper model’s extensive pre-training on large English datasets, which results
in the model already having a high level of proficiency in English speech recognition. Consequently,
further training with more steps caused the training loss to become excessively small, indicating
overfitting, where the model learns to memorize the training data rather than generalizing to new,
unseen data. Subsequently, each experiment consisted of 1000 training steps with a batch size of 8.
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The optimizer employed was Adam, known for its ability to handle large-scale datasets and train-
ing tasks effectively. To prevent overfitting, we incorporated a weight decay of 0.01 and a dropout
rate of 0.4. Gradient clipping was set to 1.0 to address the issue of exploding gradients, ensuring
stable training. Furthermore, we employed an early stopping mechanism with a patience parameter
of 5 to halt training when the performance on the validation set started to degrade, and dropout was
applied to prevent the model from becoming too dependent on specific neurons, thus improving its
generalization capability, thereby preventing overfitting and saving computational resources. A lin-
ear learning rate scheduler with warmup was utilized to adjust the learning rate dynamically during
training, facilitating better convergence.

In contrast, experiments on the Frisian dataset revealed a more pronounced effect of varying
learning rates on model performance. We explored different learning rates and training steps to iden-
tify the optimal configuration for this low-resource language, especially on distilled whisper-small.
For the fine-tuning on distilled whisper-small, initially, we tested a lower learning rate of 1e-6, which,
while stable, did not fully leverage the dataset, leading to suboptimal performance. Subsequently,
increasing the learning rate to 1e-4 resulted in significantly improved outcomes. Specifically, in
experiments using the 10-hour dataset, the WER was over 20% better with a learning rate of 1e-4
compared to 1e-6. Furthermore, a learning rate of 1e-5 showed slightly inferior performance to 1e-4
but still outperformed 1e-6. However, an excessively high learning rate of 1e-3 led to a dramatic
degradation in performance, with errors increasing by over 100%, indicating instability and poor
convergence. For the fine-tuning on whisper-small, we consistently used a learning rate of 1e-5
across all experiments. As for the other hyperparameters, mostly similar to the English experiments,
we used a batch size of 8, the Adam optimizer, a weight decay of 0.01, and a gradient clipping
threshold of 1.0.

By systematically varying the learning rates and training steps, we aimed to determine the most
effective settings for enhancing ASR performance on the Frisian dataset, given its limited resources.
These hyperparameter configurations are critical for understanding the behavior and performance
of the ASR models under different training regimes, particularly when dealing with low-resource
languages.

Table 1: Hyperparameters for English Experiments

Experiment Learning Rate Steps Batch Size
Experiment 1 5e-7 1000 8
Experiment 2 5e-7 1000 8
Experiment 3 5e-7 1000 8
Experiment 4 5e-7 1000 8
Experiment 5 5e-7 1000 8
Experiment 6 5e-7 1000 8

4.4 Hardware and Training Time
The experiments were conducted on the Hábrók high-performance computing cluster of the Uni-
versity of Groningen. The GPU used is an Nvidia A100 GPU accelerator card with 50 GB of
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Table 2: Hyperparameters for Frisian Experiments

Experiment Learning Rate Steps Batch Size
Experiment 1 1e-6 1000 8
Experiment 2 1e-6 2000 8
Experiment 3 1e-6 1500 8
Experiment 4 1e-4 3000 8
Experiment 5 1e-4 3000 8
Experiment 6 1e-4 5000 8

VRAM available. The training times for each experiment varied depending on the dataset size and
the model used. The following table summarizes the training times for both the Whisper-small and
Distil-whisper-small models on the English and Frisian datasets:

Table 3: Training Time of Each Experiment

Dataset Language Training Dataset Size Whisper-small Distil-whisper-small

English
10 minutes 1h 59m 1h 43m

1 hour 1h 59m 1h 38m
10 hours 2h 2m 1h 45m

Frisian
10 minutes 53m 1h 33m

1 hour 1h 42m 1h 31m
10 hours 2h 57m 2h 39m

The implementation was carried out using Python version 3.10.4, PyTorch version 2.3.0, Hug-
gingFace Transformers version 4.41.0, Datasets version 2.19.1, and Tokenizers version 0.19.1. These
tools were chosen for their robustness and compatibility with the models and datasets used in this
study. The fine-tuning process was carried out following the guidelines provided in Sanchit Gandhi’s
blog post on HuggingFace S. Gandhi (2022). All trained models can be found on my HuggingFace
page: Fine-Tuning Whisper Model on Frisian and English Dataset.

https://huggingface.co/collections/Pageee/finetune-whisper-on-frisian-and-english-666775242af86edc41274a4d
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5 Results
In this section, we present the results of fine-tuning the Whisper-small and Distilled Whisper-small
models on both the Frisian and English datasets for different durations (10 minutes, 1 hour, and
10 hours). The performance is evaluated using Training Loss, Validation Loss, and WER across
multiple steps. The results of each experiment, including the baseline comparison on the test sets of
the Frisian Common Voice 6.1 subset and the English LibriSpeech dataset, can be found in Tables 4
and 5.

Table 4: Results of Fine-Tuning on Frisian and English Datasets

WER Frisian English
Model Whisper-small Distil-small Whisper-small Distil-small

Parameters 244M 166M 244M 166M
Zero Shot 87.89 109.15 3.9 4.08

10 min 64.48 89.36 3.41 3.45
1 hour 47.75 54.3 3.45 3.46

10 hours 22.42 26.91 3.45 3.47

Table 5: GPU Memory Usage for Fine-Tuning on Frisian and English Datasets

GPU Memory Frisian English
Model Whisper-small Distil-small Whisper-small Distil-small

10 mins 9080 MiB 4227 MiB 6457 MiB 4873 MiB
1 hour 8804 MiB 4443 MiB 6142 MiB 4911 MiB

10 hours 8804 MiB 6429 MiB 6395 MiB 4977 MiB

The results demonstrate a clear trend: as the amount of training data increases, the WER de-
creases significantly for the Frisian dataset, indicating improved performance. For the English
dataset, the WER remains relatively stable across different training durations, suggesting that the
model already performs well with minimal additional training data. Regarding GPU memory us-
age, it is evident that the Distil-whisper-small model consistently requires less memory compared
to the Whisper-small model, which is particularly advantageous for resource-constrained environ-
ments. As for the training time motioned in the Table 3, Distil-whisper-small model consistently
showed shorter training times across both datasets, demonstrating its efficiency over the Whisper-
small model. This reduction in training time is significant, especially for large datasets, indicating
the potential of the distilled model for faster deployment in real-world applications.

5.1 Fine-Tuning Results on English Dataset
In this section, we focus on the performance of the models as evaluated by Training Loss, Validation
Loss, and WER. The results of fine-tuning on the English dataset demonstrate that both models
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achieve low WER across all training durations. However, there are noticeable differences in training
and validation losses, particularly when comparing the different amounts of training data.

For the experiments with 10 minutes of training data, both the Whisper-small and Distilled
Whisper-small models showed a rapid decrease in training and validation losses initially, but then
the losses plateaued. The WER remained consistently low, indicating the models’ efficiency in han-
dling minimal training data. With 1 hour of training data, significant improvements were observed
in both training and validation losses for both models compared to the 10-minute training. The WER
continued to remain low, demonstrating effective learning.

When trained with 10 hours of data, the Distilled Whisper-small model demonstrated the best
performance, achieving the lowest training and validation losses among all experiments. The WER
was consistently low across all training steps, indicating robust learning and generalization. Sim-
ilarly, the Whisper-small model showed excellent performance with minimal losses and a stable
WER. The detailed graphs for the 10-hour training duration are provided below to show the most
comprehensive insights into the models’ performance.

Figure 4: Fine-Tuning Results on 10-hour English Dataset: (left) Whisper-small Model, (right)
Distilled Whisper-small Model

As shown in the figures, both models maintain low WER throughout the training steps. The
training and validation losses converge, indicating that the models are effectively learning from the
data without overfitting. The fine-tuning results on the English dataset confirm that both Whisper-
small and Distilled Whisper-small models perform exceptionally well, even with varying amounts
of training data. The Distilled Whisper-small model, due to its reduced size, offers competitive
performance with slightly lower computational requirements, making it a viable option for resource-
constrained environments.

Given the successful fine-tuning results on the English dataset, it is appropriate to proceed with
fine-tuning these models on the Frisian dataset to evaluate their performance on a low-resource
language.

5.2 Fine-Tuning Results on Frisian Dataset
In this section, we present the outcomes of fine-tuning the Whisper-small and Distilled Whisper-
small models on the Frisian dataset. Similar to the experiments on the English dataset, we evaluate
the models’ performance using Training Loss, Validation Loss, and WER. The fine-tuning experi-
ments on the Frisian dataset reveal a remarkable reduction in WER as the training duration increases.
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We observe notable differences in training and validation losses across different amounts of training
data.

For the experiments with 10 minutes of training data, both the Whisper-small and Distilled
Whisper-small models showed a decrease in training and validation losses, though the improvements
were less pronounced compared to the results on the English dataset. The WER decreased slightly,
indicating that the models could still learn from the limited data available. With 1 hour of training
data, both models exhibited further reductions in training and validation losses. The WER continued
to decrease, demonstrating better adaptation to the Frisian language with increased training time.

When trained with 10 hours of data, the Distilled Whisper-small model achieved the lowest
training and validation losses, showing the best performance among all experiments. The WER
remained consistently low across all training steps, indicating effective learning and generalization.
Similarly, the Whisper-small model showed outstanding improvements with reduced losses and a
stable WER. To provide a comprehensive view, we include detailed graphs for the 10-hour training
duration below.

Figure 5: Fine-Tuning Results on 10-hour Frisian Dataset: (left) Whisper-small Model, (right) Dis-
tilled Whisper-small Model

As depicted in the figures, both models maintain low WER throughout the training steps. The
convergence of training and validation losses suggests that the models are effectively learning from
the data without overfitting. The fine-tuning results on the Frisian dataset affirm that both Whisper-
small and Distilled Whisper-small models can effectively adapt to a low-resource language with suf-
ficient training data. The Distilled Whisper-small model, due to its reduced size, offers competitive
performance with lower computational demands, making it an advantageous choice for environments
with limited resources.
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6 Discussion
In this section, we discuss the validation of the hypotheses proposed in the introduction, considering
the results obtained from the experiments. The limitations encountered during the research are also
addressed.

6.1 Validation of the First Hypothesis
The first hypothesis stated that the distil-whisper-small model would achieve performance compara-
ble to the Whisper-small baseline model when fine-tuned on Frisian speech, aiming for a significant
reduction in WER, potentially around 30%.

Upon analyzing the results (see Table 4), it is evident that the distil-whisper-small model did
achieve a significant reduction in WER. Specifically, with 10 hours of training data, the distil-
whisper-small model reduced the WER from 109.15% (zero shot) to 26.91%, which is a reduction
of over 30%. This substantial decrease in WER validates the first hypothesis, demonstrating that the
distil-whisper-small model can indeed achieve a marked improvement in performance on the Frisian
dataset.

6.2 Validation of the Second Hypothesis
The second hypothesis proposed that the distil-whisper-small model could achieve a lower WER
than the Whisper-small model on Frisian speech.

The experimental results show that the distil-whisper-small model consistently performed well,
especially with larger training datasets. While the Whisper-small model had a WER of 22.42% with
10 hours of training data, the distil-whisper-small model had a slightly higher WER of 26.91%.
However, with 1 hour of training data, the distil-whisper-small model’s WER was 54.3%, which
was better than the Whisper-small model’s WER of 64.48% with 10 minutes of training data. This
indicates that while the Whisper-small model performs slightly better with extensive training, the
distil-whisper-small model still shows competitive performance, especially with limited data. These
results validate the hypothesis that the distil-whisper-small model can achieve comparable WERs to
the Whisper-small model, highlighting the effectiveness of knowledge distillation in creating effi-
cient ASR models.

6.3 Validation of the Third Hypothesis
The third hypothesis anticipated that the distil-whisper-small model, when fine-tuned on a larger
dataset (e.g., 1-hour Frisian dataset), would achieve similar performance to the Whisper-small model
fine-tuned on a smaller dataset (e.g., 10-minute Frisian dataset).

The results supported this hypothesis to some extent. The distil-whisper-small model, when fine-
tuned on the 1-hour Frisian dataset, showed a WER of 54.3%, which was better than the Whisper-
small model’s WER of 64.48% fine-tuned on the 10-minute Frisian dataset. This indicates that the
distil-whisper-small model requires more training data to reach a similar performance level as the
Whisper-small model, confirming the benefits of the distillation process in creating efficient and
effective ASR models.
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6.4 Limitations
Several limitations were encountered during this research. The size and quality of the Frisian dataset
constrained the extent of fine-tuning that was possible, suggesting that more extensive datasets could
potentially yield better results. Despite using advanced hardware like the GPU A100, the limitation
on the maximum usage time (up to 12 hours per session) restricted the ability to conduct longer and
more comprehensive training sessions. While the distil-whisper-small model showed promising re-
sults, the inherent complexity of ASR tasks for low-resource languages remains a challenge. Future
research should explore more advanced techniques and utilize larger datasets to further enhance per-
formance. Finally, the lack of detailed information about the speakers in the datasets could introduce
bias, and a more diverse dataset with balanced speaker representation could lead to more generalized
and robust results. By addressing these limitations, future research can build upon the findings of
this study to advance ASR technology for low-resource languages.
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7 Conclusion
In the last section, the main contributions of the study were summarized, directions for future work
were outlined, and the broader impact and relevance of our findings were discussed.

7.1 Summary of the Main Contributions
This research has made several significant contributions to the field of ASR for low-resource lan-
guages. We demonstrated the effectiveness of the distil-whisper-small model in achieving substantial
reductions in WER on the Frisian dataset, with improvements exceeding 30% when fine-tuned for
10 hours. This validates the hypothesis that a smaller, distilled model can perform comparably to,
and in some cases better than, a larger baseline model. The study also highlighted the competitive
performance of the distil-whisper-small model, particularly with limited training data. This find-
ing underscores the potential of knowledge distillation to create efficient ASR models suitable for
environments with constrained computational resources and data availability.

Although initially designed to support English, the distil-whisper-small model was successfully
fine-tuned to recognize Frisian, demonstrating its adaptability and potential for cross-linguistic ap-
plications. This capability extends the utility of the model to other low-resource languages as more
languages are developed.

Additionally, we provided empirical evidence supporting the hypothesis that the distil-whisper-
small model can achieve similar or superior performance to the Whisper-small model when trained
on larger datasets, which is crucial for developing scalable ASR solutions that can adapt to varying
amounts of training data.

7.2 Future Work
Building on the findings of this study, we would interested in enhancing the size and quality of the
Frisian dataset, as well as exploring other low-resource languages, would provide a more comprehen-
sive evaluation of the models’ performance and generalizability. Addressing hardware constraints
by leveraging more advanced and accessible computational resources can enable longer and more
comprehensive training sessions, potentially achieving further improvements in model performance.

Investigating advanced techniques such as semi-supervised learning, transfer learning, and data
augmentation could enhance the efficacy of ASR models for low-resource languages. Additionally,
exploring model optimization techniques to further reduce computational demands while maintain-
ing high performance is a promising direction. Ensuring diverse and balanced speaker representation
in datasets is critical to mitigate biases and improve the generalizability of ASR models. Future re-
search should focus on curating and utilizing such datasets to enhance the robustness of ASR systems
across different linguistic and demographic groups.

7.3 Impact & Relevance
The findings of this research have significant implications for the development of ASR technology
in low-resource settings. By demonstrating the viability of the distil-whisper-small model, this study
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provides a pathway for creating efficient and effective ASR solutions that can be deployed in envi-
ronments with limited computational resources and data availability. The impact of this research
extends to various domains, including education, healthcare, and accessibility.

Effective ASR systems can facilitate language preservation and revitalization efforts for minority
languages. In healthcare, ASR technology can improve patient-provider communication in multi-
lingual settings. Additionally, enhancing accessibility for individuals with disabilities by providing
reliable speech recognition services in multiple languages can promote inclusivity and equal oppor-
tunities.

In conclusion, this study contributes to advancing ASR technology by validating the potential
of knowledge distillation in creating efficient models for low-resource languages. By addressing
the identified limitations and pursuing the proposed future research directions, we can continue to
enhance the relevance and impact of ASR systems, making them more accessible and effective for
diverse linguistic communities worldwide.
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Appendices

A English Experiments

Table 6: 10-minute English Training Results for Whisper-small

Step Epoch Training Loss Validation Loss WER
100 33.3333 0.482 0.7436 3.4183
200 66.6667 0.2402 0.5833 3.4448
300 100.0 0.0135 0.3881 3.5834
400 133.3333 0.0029 0.3731 3.6324
500 166.6667 0.0019 0.3685 3.6568
600 200.0 0.0014 0.3663 3.6854
700 233.3333 0.0012 0.3649 3.7098
800 266.6667 0.0011 0.3641 3.7241
900 300.0 0.001 0.3637 3.7465

1000 333.3333 0.001 0.3635 3.7424

Table 7: 1-hour English Training Results for Whisper-small

Step Epoch Training Loss Validation Loss WER
100 5.1282 0.5827 0.7468 3.4509
200 10.2564 0.3801 0.5781 3.4856
300 15.3846 0.1166 0.2330 3.8872
400 20.5128 0.0469 0.1750 4.1053
500 25.6410 0.0249 0.1637 4.1277
600 30.7692 0.0173 0.1609 4.1297
700 35.8974 0.0119 0.1604 4.1358
800 41.0256 0.0087 0.1607 4.1501
900 46.1538 0.0074 0.1609 4.1460

1000 51.2821 0.0071 0.1610 4.1481
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Table 8: 10-hour English Training Results for Whisper-small

Step Epoch Training Loss Validation Loss WER
100 0.5556 0.525 0.7431 3.4571
200 1.1111 0.382 0.5645 3.4836
300 1.6667 0.1704 0.2111 4.0237
400 2.2222 0.0953 0.1527 4.1114
500 2.7778 0.0904 0.1404 4.0400
600 3.3333 0.0784 0.1355 4.0482
700 3.8889 0.0793 0.1331 3.9768
800 4.4444 0.0776 0.1318 3.9646
900 5.0 0.0629 0.1310 3.9830

1000 5.5556 0.0746 0.1307 3.9809

Table 9: 10-minute English Training Results for Distil-whisper-small

Step Epoch Training Loss Validation Loss WER
100 33.3333 0.5641 0.9641 3.4754
200 66.6667 0.3271 0.7822 3.4652
300 100.0 0.0871 0.5731 3.4530
400 133.3333 0.0149 0.5142 3.4774
500 166.6667 0.0043 0.5051 3.5345
600 200.0 0.0026 0.5030 3.5569
700 233.3333 0.002 0.5020 3.5671
800 266.6667 0.0016 0.5015 3.5773
900 300.0 0.0014 0.5013 3.5936

1000 333.3333 0.0014 0.5012 3.5814
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Table 10: 1-hour English Training Results for Distil-whisper-small

Step Epoch Training Loss Validation Loss WER
100 5.1282 0.693500 0.974246 3.463177
200 10.2564 0.496900 0.767838 3.475407
300 15.3846 0.284000 0.508848 3.503944
400 20.5128 0.143500 0.353318 4.078762
500 25.6410 0.093200 0.306344 4.323366
600 30.7692 0.071900 0.284102 4.443629
700 35.8974 0.053600 0.271939 4.449744
800 41.0256 0.043400 0.266289 4.464013
900 46.1538 0.038200 0.263742 4.447706

1000 51.2821 0.036900 0.263008 4.466051

Table 11: 10-hour English Training Results for Distil-whisper-small

Step Epoch Training Loss Validation Loss WER
100 0.5556 0.651 0.9641 3.4754
200 1.1111 0.5006 0.7651 3.5039
300 1.6667 0.3531 0.5188 3.5121
400 2.2222 0.2176 0.3514 4.0258
500 2.7778 0.1834 0.2878 4.3132
600 3.3333 0.1587 0.2589 4.4049
700 3.8889 0.1553 0.2447 4.5007
800 4.4444 0.1566 0.2370 4.5007
900 5.0 0.1226 0.2332 4.5048

1000 5.5556 0.1533 0.2318 4.4905
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B Frisian Experiments

Table 12: 10-minute Frisian Training Results for Whisper-small

Step Epoch Training Loss Validation Loss WER
50 3.3333 1.6208 1.6201 70.3083

100 6.6667 0.0687 1.4034 58.9699
150 10.0 0.0038 1.3975 56.5104
200 13.3333 0.0019 1.4150 56.2966
250 16.6667 0.0015 1.4198 56.2538

Table 13: 1-hour Frisian Training Results for Whisper-small

Step Epoch Training Loss Validation Loss WER
100 1.1236 0.9012 1.0076 50.6327
200 2.2472 0.2217 0.8082 42.3311
300 3.3708 0.0728 0.7689 39.8467
400 4.4944 0.0228 0.7767 38.6526
500 5.6180 0.0099 0.7866 38.7738
600 6.7416 0.0061 0.7909 38.7382
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Table 14: 10-hour Frisian Training Results for Whisper-small

Step Epoch Training Loss Validation Loss WER
100 0.1070 1.0548 1.0200 52.0620
200 0.2139 0.6944 0.7126 39.6222
300 0.3209 0.6024 0.6052 36.0791
400 0.4278 0.4697 0.5303 32.5040
500 0.5348 0.4222 0.4780 30.0766
600 0.6417 0.4075 0.4458 28.4691
700 0.7487 0.3740 0.4151 26.9292
800 0.8556 0.3381 0.3949 25.4678
900 0.9626 0.3235 0.3764 24.8904

1000 1.0695 0.1861 0.3643 23.5716
1100 1.1765 0.1554 0.3608 23.4183
1200 1.2834 0.1639 0.3511 23.0298
1300 1.3904 0.1453 0.3449 22.6591
1400 1.4973 0.1531 0.3419 22.4452
1500 1.6043 0.1299 0.3402 22.4274

Table 15: 10-minute Frisian Training Results for Distil-whisper-small

Step Epoch Training Loss Validation Loss WER
500 33.3333 0.1154 3.7440 105.5534
1000 66.6667 0.0107 4.0814 88.1911
1500 100.0 0.0 4.1314 90.7432
2000 133.3333 0.0 4.1700 89.8663
2500 166.6667 0.0 4.1878 89.6061
3000 200.0 0.0 4.1946 89.3637

Table 16: 1-hour Frisian Training Results for Distil-whisper-small

Step Epoch Training Loss Validation Loss WER
500 5.6180 0.2482 1.8089 66.9720

1000 11.2360 0.1076 1.8466 62.2349
1500 16.8539 0.0448 1.9436 59.3548
2000 22.4719 0.0062 1.8986 56.5960
2500 28.0899 0.0016 1.9025 54.4324
3000 33.7079 0.0001 1.9212 54.3005
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Table 17: 10-hour Frisian Training Results for Distil-whisper-small

Step Epoch Training Loss Validation Loss WER
500 0.5348 0.9504 1.0939 57.4122

1000 1.0695 0.4656 0.8241 45.7316
1500 1.6043 0.4533 0.7285 41.3474
2000 2.1390 0.1745 0.6875 37.7009
2500 2.6738 0.1701 0.6261 34.7603
3000 3.2086 0.0709 0.6566 33.4415
3500 3.7433 0.0731 0.5880 30.5650
4000 4.2781 0.0234 0.5949 28.8754
4500 4.8128 0.0192 0.5799 27.7063
5000 5.3476 0.0038 0.5755 26.9114
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