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Abstract

This thesis makes substantial contributions to the field of multimodal emotion recognition by devel-
oping and evaluating models that integrate audio, visual, and textual data. We utilized state-of-the-art
feature extraction techniques, including BERT for text, LibROSA for audio, and OpenFace for visual
cues, achieving a comprehensive representation of multimodal data. A novel temporal alignment
technique was introduced to synchronize features across modalities, ensuring coherent integration
and enhancing the model’s ability to capture intricate relationships between different modalities.

The proposed model architecture combines Gated Recurrent Units (GRUs) and self-attention mech-
anisms, effectively capturing both local and global dependencies, significantly improving feature
extraction and emotion recognition accuracy. A stacking fusion module was implemented to amal-
gamate information from text, audio, and visual modalities, leading to superior performance metrics
across multiple datasets, including CMU-MOSI, CMU-MOSEI, and CH-SIMS. Extensive evalua-
tion demonstrated substantial improvements over baseline models, validating the effectiveness of the
proposed methods in achieving higher accuracy and robustness in emotion recognition.

Our research has significant practical implications, setting a new benchmark for emotion recogni-
tion. The developed system enhances human-computer interactions, provides multilingual support
in virtual assistants, and assists language learners, thereby contributing to the preservation of lin-
guistic diversity and cultural heritage. Additionally, this work contributes to the development of
socially intelligent and empathetic artificial systems, paving the way for more advanced applications
in affective computing.

In conclusion, this thesis advances the field of multimodal emotion recognition through innovative
methods and comprehensive evaluation. The findings underscore the importance of integrating mul-
tiple data modalities and provide a solid foundation for future research and practical applications,
offering pathways for continued innovation in recognizing and understanding human emotions.
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1 Introduction

1.1 Background

Human emotions play a crucial role in interpersonal communication and social interaction, forming
an integral part of human expression. Effective recognition and understanding of emotions are es-
sential for facilitating meaningful communication between individuals. With the growing demand
in areas such as human-computer interaction and affective computing, the need for computers to
comprehend and respond to user emotions is becoming increasingly significant. The emergence
of deep learning and multimodal data has led to a surge of interest in multimodal speech emotion
recognition, a field that combines various modalities such as speech, images, and text to accurately
capture and understand human emotions, thereby enhancing the performance and user experience of
affective computing systems.

1.2 Importance

Multimodal speech emotion recognition holds significant practical application value and theoretical
research significance, contributing to the improvement of human-computer interaction experiences,
the advancement of affective computing, and the assistance in medical diagnosis.

• Enhancing User Experience: In applications like human-computer interaction and intelligent
customer service, recognizing user emotional states can help systems better understand user
needs and intentions, thereby providing more personalized and effective services.

• Fostering Affective Computing Development: Affective computing is a vital direction in
artificial intelligence aimed at enabling computers to understand and express emotions. Mul-
timodal speech emotion recognition provides crucial technical support for the development of
affective computing systems.

• Assisting Medical Diagnosis: Emotion recognition technology can be applied in the medical
field to assist doctors in better understanding patients’ emotional states, aiding in diagnosis
and treatment. For instance, in the realm of mental health, analyzing patients’ speech and
images can help doctors promptly detect and diagnose emotional disorders.

• Promoting Social Intelligence Development: Social intelligence refers to the ability of com-
puter systems to understand and simulate human social behavior. Multimodal speech emotion
recognition can assist computer systems in better comprehending human emotional commu-
nication, thereby enhancing their social intelligence.
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1.3 Objective and Significance

The objective of this paper is to address the current shortcomings in multimodal speech emotion
recognition research and propose strategies to overcome them. By conducting an extensive literature
review and analyzing existing research findings, this study aims to provide a theoretical and practical
foundation for advancing the field of multimodal speech emotion recognition.

The significance of this study lies in its potential to:

• Advance Research in Multimodal Speech Emotion Recognition: By identifying and ad-
dressing existing research gaps, this study aims to contribute to the development of more
robust and accurate multimodal speech emotion recognition systems.

• Inform Future Research Directions: Through a comprehensive analysis of the current state
of the art and the challenges faced by researchers, this paper aims to guide future research
efforts towards addressing key issues and improving the performance of multimodal speech
emotion recognition systems.

• Enhance Practical Applications: By improving the accuracy and reliability of multimodal
speech emotion recognition systems, this research has the potential to enhance various prac-
tical applications, including human-computer interaction, affective computing, and medical
diagnosis.

This paper endeavors to shed light on the current landscape of multimodal speech emotion recog-
nition, identify areas for improvement, and propose strategies to advance the field, ultimately con-
tributing to the development of more effective and efficient systems for recognizing and understand-
ing human emotions.

1.4 Structure of the Thesis

This thesis is structured to provide a comprehensive examination of the research question and hy-
pothesis concerning multimodal emotion recognition. The organization is designed to guide the
reader through the theoretical foundations, methodological approaches, experimental procedures,
results, and discussions, leading to insightful conclusions and recommendations for future work.

• Introduction 1 The introduction provides a comprehensive overview of the thesis, beginning
with the central inquiry into whether recognizing correlations between language content, vocal
characteristics, and facial expressions can enhance multimodal emotion recognition accuracy.
It highlights the practical applications and theoretical significance of this research, aiming
to address existing gaps, inform future directions, and improve practical applications. The
structure of the thesis, delineated in detail, guides the reader through key sections including
literature review, methodology, experimental setup, results, discussion, conclusion, and fu-
ture work, setting the stage for a systematic exploration of multimodal emotion recognition
research.
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• Literature Review 2 The literature review offers an extensive exploration of the existing body
of work in the field of multimodal emotion recognition. It covers a wide range of topics, from
feature extraction to fusion strategies. Advanced techniques such as BERT for text processing,
LibROSA for audio feature extraction, and OpenFace for facial feature analysis are discussed
in detail. The review also delves into the use of recurrent neural networks, specifically GRUs,
for modeling sequential dependencies, and the application of self-attention mechanisms and
multilayer perceptrons (MLPs) for integrating information across modalities. This section
not only frames the research question and hypothesis but also highlights the state-of-the-art
approaches and identifies gaps that the current research aims to address.

• Methodology 3 The methodology section outlines the research design, including the datasets
used, data preprocessing techniques, model architectures, training procedures, and evaluation
metrics. It describes the innovative structural elements of the approach, including a modal
alignment module to ensure synchronization of modality data, the incorporation of attention
mechanisms in GRUs, and an efficient multimodal feature fusion module that improves pre-
diction performance and reduces overfitting risks.

• Experimental Setup 4 This section describes the experimental setup developed to validate
the proposed methodologies. It includes a detailed explanation of the code structure and the
functionality of various components, such as data storage and evaluation scripts. The main
components include data preprocessing modules, model training and testing scripts, and the
fusion module for integrating outputs from different modalities. The experimental setup en-
sures that the models are trained and evaluated consistently, and the results are compared
against baseline methods to highlight the effectiveness of the proposed approach.

• Results 5 The results section presents the outcomes of the experiments conducted on the
CMU-MOSI, CMU-MOSEI, and CH-SIMS datasets. It includes a comparison of the proposed
approach against baseline methods, highlighting significant improvements in performance.
Detailed analyses are provided for each dataset, and the accuracy of recognizing each type
of emotion is evaluated. Performance metrics demonstrate the superiority of the proposed
methods in achieving higher accuracy and robustness.

• Discussion 6 This section discusses the results in depth, drawing insights from the perfor-
mance metrics and qualitative analyses. It examines the strengths and limitations of the pro-
posed approach and identifies potential areas for improvement. The use of confusion matrices
helps to analyze the results for each emotion category across the three datasets, providing a
clear understanding of where the model performs well and where it may need refinement.

• Conclusion and Future Work 7 The thesis concludes with a summary of the key findings and
contributions. It reflects on the implications of the research, emphasizing the advancements
made in multimodal emotion recognition. Recommendations for future work are provided,
suggesting avenues for further exploration to enhance the robustness and accuracy of these
systems. The conclusion aims to guide future research endeavors and inspire continued inno-
vation in the field of multimodal emotion recognition.

Through this structured approach, the thesis aims to make a significant contribution to the
development of more intelligent, empathetic, and context-aware artificial systems.
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2 Literature Review

Effective multimodal emotion recognition hinges upon robust feature extraction and sophisticated
model architectures. This review explores prominent techniques in both realms, including feature
extraction methodologies such as BERT for text, MFCC for audio, and facial landmark detection
and tracking for facial images. Additionally, it delves into model architectures, with a focus on
the utilization of GRU-based recurrent neural networks, attention mechanisms, and fusion strategies
employing MLPs with ReLU, and LeakyReLU activations. By synthesizing insights from these
diverse approaches, this review sets the stage for understanding the landscape of multimodal emotion
recognition and highlights avenues for further research and development.

2.1 Research on Feature Extraction

In the realm of multimodal emotion recognition, effective feature extraction plays a pivotal role in
capturing the nuanced characteristics of diverse data modalities. To this end, state-of-the-art ap-
proaches often leverage advanced techniques such as BERT for text, MFCC for audio, and facial
landmark detection and tracking for facial images. BERT, a pre-trained transformer model, has
demonstrated remarkable proficiency in capturing contextual information from textual data, thereby
enabling more nuanced understanding of linguistic cues and semantics. We use LibROSA as a tool
for audio analysis, extracting insightful features from audio signals, and facilitating the representa-
tion of acoustic patterns and emotional nuances. Additionally, for robust facial landmark detection
and feature extraction capabilities, we use OpenFace, it offers a rich source of facial features essen-
tial for discerning emotional expressions from images.

2.1.1 Bert

BERT, proposed by [1], represents a new model paradigm. Its full name, Bidirectional Encoder
Representations from Transformers, indicates that it is a bidirectional encoder representation derived
from the Transformer model. Unlike previous models such as ELMo ([2]) and the Generative Pre-
trained Transformer (OpenAI GPT) ([3]), BERT introduces a novel pre-training mechanism that
allows for the simultaneous consideration of left and right textual context at all layers. This design
leads to significant performance improvements, enabling the BERT model to achieve state-of-the-
art results across various natural language processing tasks, including the GLUE benchmark, the
MultiNLI task, and the SQuAD v1.1 and SQuAD v2.0 tests.
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Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the
same architectures are used in both pre-training and fine-tuning. The same pre-trained model param-
eters are used to initialize models for different down-stream tasks. During fine-tuning, all parameters
are fine-tuned. [CLS] is a special symbol added in front of every input example, and [SEP] is a spe-
cial separator token (e.g. separating questions/answers).[1]

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings,
the segmentation embeddings and the position embeddings.[1]

BERT’s task-specific design can represent a single sentence or a pair of sentences as a contiguous
token array [1]. For a given token, its input representation is constructed by summing the correspond-
ing token, segment, and position embeddings. In classification tasks, the first word of the sequence
is marked with a unique [CLS] token, and a fully connected layer is attached to the [CLS] position
in the final encoder layer. The classification of the sentence or sentence pair is then completed via
a softmax layer [4]. BERT has two parameter-intensive configurations: BERTbase and BERTlarge.
BERTbase consists of 12 Transformer blocks, a hidden layer size of 768, 12 self-attention heads, and
a total of 110 million parameters for the pre-trained model. In contrast, BERTlarge comprises 24
Transformer blocks, a hidden layer size of 1024, 16 self-attention heads, and a total of 340 million
parameters for the pre-trained model. Due to the higher memory requirements of the BERTlarge
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model, its maximum batch size is very small on standard GPUs with 12GB of RAM, which can
affect the model’s accuracy.

By visualizing the loss landscape and optimization trajectories of fine-tuning BERT on specific
datasets, [5] revealed the effectiveness and impact of language model pre-training. The results indi-
cate that pre-training facilitates the fine-tuning process by making it easier to locate broad optima,
enhancing the model’s generalization capabilities, and demonstrating strong robustness against over-
fitting. Moreover, the lower layers of the BERT model exhibit superior transfer learning abilities.
These findings provide valuable insights for further optimizing the fine-tuning of pre-trained models,
with the potential to advance the field of natural language processing.

[3] introduced BERT Base Uncased as well, a version within the BERT (Bidirectional Encoder
Representations from Transformers) series that disregards case sensitivity. During the pre-training
process, all text is converted to lowercase to enhance the model’s generalization capabilities.

Figure 3: Bert Base uncased model architecture.[3]

2.1.2 MFCC

Mel Frequency Cepstral Coefficients (MFCC) are a crucial feature extraction technique in speech
processing, leveraging the principles of human auditory perception to provide an efficient represen-
tation of speech signals. In speech and speaker recognition systems, MFCCs are extracted from
speech signals during both training and testing phases. During training, MFCCs are used to learn
and store the characteristics of each speaker’s voice. In the testing phase, MFCCs extracted from
new speech samples are compared with the stored data using similarity measures like Euclidean
distance to identify the speaker.

Steps to Calculate MFCC:

• Pre-emphasis: A pre-emphasis filter is applied to boost the high frequencies of the signal.

• Framing: The signal is divided into small frames of 20-40 milliseconds, as the properties of
speech are quasi-stationary over short durations.

• Windowing: Each frame is windowed to minimize discontinuities at the beginning and end of
each frame.
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• Fast Fourier Transform (FFT): The FFT is applied to convert each frame from the time
domain to the frequency domain.

• Mel Filter Bank: The frequency domain signal is then passed through a series of filters that
mimic the human ear’s response, known as mel filters.

• Logarithm: The logarithm of the filter bank outputs is taken.

• Discrete Cosine Transform (DCT): The log mel spectrum is converted back to the time
domain, resulting in the MFCCs.

Figure 4: Complete pipeline for MFCC[6]

MFCCs are highly effective due to their simulation of the non-linear perception of the human ear,
providing a compact and robust representation of the speech signal’s spectral properties. This makes
them a proven and efficient tool in various speech recognition applications. [6]

Developed by Brian McFee and other contributors libROSA[7] is a Python package designed for
audio and music signal processing. The process of extracting audio features using MFCC (Mel-
Frequency Cepstral Coefficients) with libROSA includes loading the audio, preprocessing, framing,
windowing, Fourier transform, power spectrum density computation, applying a Mel filter bank,
logarithmic transformation, discrete cosine transform, and feature extraction. These steps combine
signal processing and spectral analysis techniques to convert audio into MFCC coefficients, which
are then used for tasks such as audio classification and speech recognition. Its introduction has made
audio and music signal analysis using Python more convenient and efficient. [8] Utilizing Python
along with audio processing libraries such as librosa and soundfile, and employing the scikit-learn
library for audio analysis, emotions in the RAVDESS dataset—anger, sadness, happiness, neutrality,
calmness, fear, disgust, and surprise—were recognized.
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Figure 5: Librosa-Feature-MFCC
https://librosa.org/doc/main/generated/librosa.feature.mfcc.html

2.1.3 Facial landmark detection and tracking

Facial landmark detection is crucial for capturing the rigid and non-rigid deformations of facial
components due to head movements and facial expressions, making it essential for various facial
analysis tasks. Over the years, numerous algorithms have been developed to detect these key points
automatically. This review [9] extensively reviews these algorithms, classifying them into three ma-
jor categories: holistic methods, Constrained Local Model (CLM) methods, and regression-based
methods. Holistic methods build models representing global facial appearance and shape informa-
tion, CLMs leverage global shape models while building local appearance models, and regression-
based methods implicitly capture facial shape and appearance information. The underlying theories
and differences of algorithms within each category are discussed, along with their performance on
both controlled and ”in-the-wild” benchmark datasets under varying facial expressions, head poses,
and occlusions. Additionally, this review [9] includes a section on the latest deep learning-based
algorithms, benchmark databases, and existing software, highlighting their respective strengths and
weaknesses. Future research directions are identified, including the potential of combining different
methodological categories to enhance landmark detection in diverse, real-world scenarios.

Developed by Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satyanarayanan from Carnegie
Mellon University, OpenFace [10] is the first open-source tool capable of performing facial land-
mark detection, head pose estimation, facial action unit recognition, and eye gaze estimation. At its

https://librosa.org/doc/main/generated/librosa.feature.mfcc.html
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core, it utilizes computer vision algorithms that have demonstrated state-of-the-art results in vari-
ous tasks, such as TCDCN CNN [11] and FaceTracker CLM [12]. Additionally, the tool achieves
real-time performance and can operate with standard webcams without the need for any specialized
hardware. Lastly, OpenFace allows for easy integration with other applications and devices through
a lightweight messaging system.[10]

Figure 6: OpenFace is an open source framework that implements state-of-the-art facial behavior
analysis algorithms including: facial landmark detection, head pose tracking, eye gaze and facial
Action Unit estimation.[10]
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2.2 Research on Model Architecture

In the domain of model architecture, the utilization of recurrent neural networks (RNNs) has been
instrumental in capturing sequential dependencies within multimodal data streams. Specifically, the
Gated Recurrent Unit (GRU), an extension of traditional RNNs, has gained prominence owing to
its ability to mitigate the vanishing gradient problem and capture long-range dependencies more
effectively. By dynamically updating and forgetting information over time, GRUs excel in modeling
temporal sequences across multiple modalities.

2.2.1 RNNs

Recurrent Neural Networks (RNNs) were first introduced by Paul Werbos in his 1988 doctoral thesis.
However, the practical application and development of RNNs are largely attributed to subsequent
works. In 1990, Elman proposed the Elman network [13], a form of RNN that gained widespread use
in tasks such as language modeling. Additionally, the Long Short-Term Memory network (LSTM),
proposed by Hochreiter and Schmidhuber in 1997 [14], addressed the difficulty RNNs had with
handling long-term dependencies, thus advancing the application of RNNs in sequence modeling.

Figure 7: Recurrent neural network unfold
https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

A significant development in the field was the RNN Encoder-Decoder model introduced by [15].
This model comprises two RNNs: one RNN encodes a sequence of symbols into a fixed-length vec-
tor representation, and the other RNN decodes this representation into another sequence of symbols.
The encoder and decoder are jointly trained to maximize the conditional probability of the target
sequence given the source sequence.

Furthermore, [16] introduced the multimodal Recurrent Neural Network (m-RNN) model for image
captioning. This model directly models the probability distribution of generating words, taking
into account the previous words and an image to generate the caption. The m-RNN consists of two
subnetworks: a deep recurrent neural network for sentences and a deep convolutional neural network

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
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for images. These two subnetworks interact within a multimodal layer, forming the complete m-
RNN model.

2.2.2 GRUs

Later, in [17], Cho et al. further developed this new RNN unit by introducing a model called the
Gated Recurrent Convolutional Neural Network (grConv), designed to handle variable-length se-
quences. This model combines features of both Recurrent Neural Networks and Convolutional Neu-
ral Networks, using a recursive structure to process input sequences incrementally and employing a
gating mechanism to learn the structure of source sentences. Although GRUs are not directly men-
tioned, the gating mechanisms described in the paper are similar to the reset gate and update gate
used in GRUs.

• Reset Gate The reset gate is computed based on the previous hidden state and the current
input:

rt = σ(Wr · [ht−1,xt ]+br)

• Update Gate The update gate is computed similarly but with different weights:

zt = σ(Wz · [ht−1,xt ]+bz)

• Candidate Hidden State The candidate hidden state (new memory content) is computed as
follows:

h̃t = tanh(Wh · [rt ⊙ht−1,xt ]+bh)

• Final Hidden State The final hidden state at the current time step combines the current can-
didate hidden state and the previous hidden state:

ht = (1− zt)⊙ht−1 + zt ⊙ h̃t

• Output The output is simply the hidden state:

yt = ht

[18] evaluated three variants of Gated Recurrent Units (GRUs) in Recurrent Neural Networks (RNNs),
aiming to reduce computational costs by simplifying the parameters of the update and reset gates.
These three variants are named GRU1 (each gate uses only the previous hidden state and bias for
computation), GRU2 (each gate uses only the previous hidden state for computation), and GRU3
(each gate uses only the bias for computation).
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2.3 Research on Attention Mechanisms

Moreover, attention mechanisms have emerged as a crucial component in multimodal fusion frame-
works, enabling the model to selectively attend to relevant modalities while disregarding irrelevant
information. Traditional attention mechanisms, such as additive and multiplicative attention, facil-
itate the weighting of input features based on their importance. Furthermore, self-attention mecha-
nisms, epitomized by the Transformer architecture, offer a powerful mechanism for capturing global
dependencies and modeling interdependencies across different modalities without relying on se-
quential processing.

2.3.1 Attention

In 2014, Bahdanau et al. introduced an attention mechanism designed to model the alignment be-
tween source and target languages in neural machine translation tasks [19]. This paper first intro-
duced the concept of attention mechanisms, specifically the Bahdanau attention mechanism, which
enables the neural machine translation system to dynamically focus on different parts of the source
sentence while translating each word in the target language. The model adjusts attention weights
based on the information from various positions in the source sentence. The success of this paper
has led to the widespread application of attention mechanisms in the field of natural language pro-
cessing. Beyond neural machine translation, attention mechanisms have been applied to numerous
tasks, including language modeling, text summarization, and question-answering systems, achieving
remarkable results.

The attention mechanism proposed by Bahdanau et al. [19] has become the foundation for subse-
quent research, inspiring many improvements and extensions. The attention model variants used in
various application domains have evolved rapidly. Generally, the implementation of the attention
mechanism can be divided into two steps: first, computing the attention distribution over the input
information, and second, computing the context vector according to this attention distribution. Fig-
ure 4 illustrates the unified attention model [20], which encompasses the core components shared by
most attention models discussed in the literature review.

Figure 8: The architecture of the unified attention model.[20]
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2.3.2 Self-attention

In 2017, Vaswani et al. introduced the self-attention mechanism [21] , which was used to construct
the Transformer model. This model is entirely based on self-attention mechanisms, discarding tra-
ditional recurrent neural networks (RNNs) and convolutional neural networks (CNNs). The paper
brought self-attention mechanisms into the natural language processing (NLP) field, achieving sig-
nificant success in tasks such as machine translation.

In this model, the encoder maps an input sequence of symbol representations (x1, ..., xn) to a se-
quence of continuous representations z = (z1, ..., zn). Given z, the decoder then generates an output
sequence (y1, ..., ym) of symbols one element at a time. At each step, the model is auto-regressive
[22] , consuming the previously generated symbols as additional input when generating the next.
The Transformer adheres to this overall architecture, utilizing stacked self-attention and point-wise,
fully connected layers for both the encoder and decoder, as shown in the left and right halves of
Figure 1, respectively. [21]

Figure 9: The Transformer - model architecture.[21]

Based on attention and self-attention mechanisms, numerous variants have been developed. [23] in-
troduces an alternative approach to attention mechanisms, aiming to effectively consider the relative
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positions or distances between sequence elements. Unlike the Transformer model proposed by [21],
this method does not require explicit modeling of relative or absolute position information within
the structure but instead incorporates absolute position representations in the input. The authors
demonstrated the effectiveness of this approach on the WMT 2014 English-to-German and English-
to-French translation tasks, achieving improvements of 1.3 BLEU and 0.3 BLEU respectively with
relative position representations compared to absolute position representations. They also noted that
combining relative and absolute position representations did not further enhance translation quality.
Finally, the authors described an efficient implementation method, presenting it as an instance of a
relation-aware self-attention mechanism that can be generalized to inputs with arbitrary graphical
representations.

[24] proposed a model called the Self-Attention Generative Adversarial Network (SAGAN) for im-
age generation tasks. Traditional convolutional generative adversarial networks (GANs) only con-
sider local spatial positions in low-resolution feature maps when generating high-resolution details.
In contrast, SAGAN leverages clues from all feature positions to generate detailed imagery.

[25] studied two forms of self-attention variants: pairwise self-attention, which extends standard dot-
product attention to the image domain as a set operation, and patch-based self-attention, which is
more powerful than convolution. The research found that self-attention networks can achieve better
performance compared to traditional convolutional networks, and in some cases, patch-based self-
attention models significantly outperform convolutional baselines. Additionally, experiments on the
robustness of the learned representations suggested that self-attention networks may have significant
advantages in terms of robustness and generalization performance.

[26] also showed that multi-head self-attention layers with a sufficient number of heads are at least
as expressive as any convolution layer and can completely replace convolution, achieving state-of-
the-art performance in vision tasks. While convolution operations extended to graphs can improve
performance and are widely used, applying downsampling to graphs remains challenging. [27] pro-
posed a graph pooling method based on self-attention. By using graph convolutional self-attention,
this pooling method can simultaneously consider node features and graph topology, achieving supe-
rior graph classification performance on benchmark datasets with a reasonable number of parame-
ters.

Furthermore, [28]introduced a novel attention mechanism called external attention for image tasks.
Unlike self-attention, external attention leverages two external small learnable shared memories,
implemented through two cascaded linear layers and two normalization layers. It can replace self-
attention in existing popular architectures. External attention has linear complexity and inherently
considers the correlations between all data samples, effectively addressing the quadratic complexity
of self-attention and the issue of ignoring correlations between different samples.

2.4 Research on Fusion Strategies

In the pursuit of optimal fusion of multimodal features, Multilayer Perceptrons (MLPs) serve as a
versatile tool for integrating information from disparate sources. Leveraging nonlinear activation
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functions such as Rectified Linear Units (ReLU) and Leaky Rectified Linear Units (LeakyReLU),
MLPs facilitate the nonlinear transformation of fused features, enhancing the model’s capacity to
capture complex relationships. Additionally, techniques like dropout regularization mitigate over-
fitting by randomly dropping units during training, thus promoting robustness and generalization in
the fused representation.

2.4.1 MLP

In ”Perceptrons: An Introduction to Computational Geometry” [29], Minsky and Papert introduced
the Multilayer Perceptron (MLP), a neural network structure with an input layer, one or more hidden
layers, and an output layer. Each neuron in an MLP performs a weighted sum of inputs from the
previous layer and applies an activation function, allowing the network to learn complex nonlinear
relationships and decision boundaries. MLPs use nonlinear activation functions, like sigmoid or
ReLU, to handle data with high nonlinearity, such as images and text. Training via the backpropa-
gation algorithm optimizes network parameters by minimizing the loss function, thereby enhancing
predictive accuracy for classification or regression tasks.

[30] investigated the impact of various activation functions on the performance of Multilayer Per-
ceptron (MLP) neural networks. The study evaluated unipolar sigmoid, bipolar sigmoid, hyperbolic
tangent, conic section, and radial basis functions using the backpropagation algorithm. Results
showed that the type of activation function significantly influences network performance, with the
hyperbolic tangent function demonstrating superior learning and generalization capabilities. The au-
thors emphasized the importance of selecting an appropriate activation function for different problem
domains to enhance the performance of MLP networks.

• Input to Hidden Layer:
h = f (Wxhx+bh)

• Hidden Layer to Output:
y = g(Whyh+by)

• Multi-Layer Structure:

– First Hidden Layer:
h1 = f1(Wx1x+b1)

– Hidden Layers (1 < l ≤ L):

hl = fl(W(l−1)lhl−1 +bl)

– Output Layer:
y = g(WhLhL +by)
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2.4.2 Rectified Linear Unit (RELU)

This article [31] proposed an innovative approach using Rectified Linear Units (ReLU) as the clas-
sification function in deep neural networks, replacing the traditional Softmax function. The authors
conducted comparative experiments on the MNIST, Fashion-MNIST, and WDBC datasets. The
results showed that deep learning models using ReLU as the classification function (DL-ReLU) per-
formed comparably to models using the Softmax function (DL-Softmax), achieving state-of-the-art
performance. This confirmed the effectiveness of this approach. The study provides new insights
and feasibility validation for the design of deep learning models.

2.4.3 LeakyReLU

This paper [32] investigated the use of rectifier non-linear activation functions in neural network
models for large-scale speech recognition tasks. The results showed that deep neural networks using
rectifier non-linearities reduced the word error rate by 2% on the Switchboard dataset compared
to traditional sigmoid non-linear models. The study also analyzed the differences in hidden layer
representation encoding between the two activation functions, finding that rectifier non-linearities
could better learn hidden layer feature representations. Additionally, the authors evaluated variants
of the leaky rectifier non-linearity and discovered further performance improvements in deep neural
network models. Overall, the study confirmed that employing rectifier non-linearities in large-scale
speech recognition tasks can significantly enhance the performance of deep neural networks.

The LeakyReLU activation function is defined as:

f (x) =

{
x if x ≥ 0
αx if x < 0

The literature review lays the groundwork for our research in multimodal emotion recognition, fo-
cusing on feature extraction, model architecture, attention mechanisms, self-attention, and MLP.
This succinct overview provides essential insights and guidance for our research.
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3 Methodology

In this section, I will outline the methodology used to address the research question and validate the
hypothesis at a high level. First, in subsection 3.1, I will discuss the datasets utilized for training
and testing the models. Next, subsection 3.2 will focus on the various models employed in the
study. The innovations in my thesis will be mentioned here in 3.3 Following that, subsection 3.4 will
elaborate on the evaluation methods and metrics employed, specifically the word error rate. Finally,
in subsection 3.5, I will reflect on the ethical considerations inherent in this research.

3.1 Datasets

3.1.1 Dataset Introduction

• CMU-MOSI Dataset
The Multimodal Corpus of Sentiment Intensity (CMU-MOSI) dataset consists of 2,199 En-
glish opinion video clips, each annotated for sentiment on a scale from -3 to 3. This dataset
includes detailed annotations for subjectivity, sentiment intensity, visual features per frame,
and audio features per millisecond, providing comprehensive multimodal data for sentiment
analysis research.
[33]

• CMU-MOSEI Dataset
The CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) dataset is
the largest dataset for multimodal sentiment analysis and emotion recognition. It includes
over 23,500 English sentence utterance videos from more than 1,000 speakers on YouTube.
The dataset is gender-balanced and features randomly selected utterances from various topics
and monologue videos. Additionally, the videos are transcribed with proper punctuation.
[34]

• CH-SIMS Dataset
The CH-SIMS dataset is a Chinese dataset designed for single- and multimodal sentiment
analysis, featuring 2,281 refined video segments captured in natural settings. It includes both
multimodal and unimodal annotations, allowing researchers to explore modality interactions
or focus on unimodal sentiment analysis using the independent annotations provided.
[35]

3.2 Models

In my quest to develop robust models for multimodal emotion recognition, I present a comprehen-
sive suite of architectures, including GRUWithLinear, MLP, SelfAttention, and EMIFusion. These
models utilize cutting-edge methodologies to efficiently capture sequential dependencies, nonlinear
patterns, and cross-modal interactions in multimodal datasets. The proposed model integrates text,
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acoustic, and visual modalities to enhance emotion recognition accuracy. As illustrated in Figure
10, the workflow involves several key stages: input feature extraction, temporal alignment, feature
extraction using GRU and self-attention mechanisms, feature fusion, and prediction. Below is a
detailed explanation of each step and the associated components.

Figure 10: The OveraLL Model Flow Chart

3.2.1 Input Layer

• Text Modality: BERT Encoding
The textual data is encoded using a pre-trained BERT (Bidirectional Encoder Representations
from Transformers) model. The input ”[CLS] hello I’m a fine model. [SEP]” is tokenized and
passed through the BERT model to extract contextual embeddings.

• Acoustic Modality: MFCC
Acoustic features are extracted using the LibROSA library. This includes Mel-spectrogram
and Mel Frequency Cepstral Coefficients (MFCC), which provide a comprehensive represen-
tation of the audio signals.

• Visual Modality: Facial landmark detection and tracking
Visual features are extracted using the OpenFace tool, which detects and analyzes facial ex-
pressions and Action Units (AUs) to capture nuanced facial movements and emotions.

3.2.2 Feature Alignment

To ensure temporal consistency across modalities, the extracted features are aligned. This alignment
process synchronizes the text, audio, and visual features over the same time axis, facilitating coherent
multimodal fusion.
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3.2.3 GRU and Self-Attention Modules

• Initial GRU Processing: Each modality’s features are independently processed through a
GRU (Gated Recurrent Unit) network. This step captures the sequential dependencies within
each modality.

• Self-Attention Mechanism: The output from the GRU is further refined using a self-attention
mechanism. Self-attention allows the model to weigh the importance of different time steps,
capturing long-range dependencies and contextual importance.

• Second GRU Processing: The self-attention outputs are then passed through another GRU
layer for further sequential modeling, enhancing the feature representations with a more de-
tailed temporal context.

3.2.4 Fusion Module

Stacking and Fusion: The features from the text (T), acoustic (A), and visual (V) modalities are
stacked and passed into the fusion module. In this module, each modality’s refined features (ZT , ZA,
ZV ) are combined to form a comprehensive multimodal representation. This fusion leverages the
complementary information from all three modalities.

3.2.5 Prediction Layer

The fused feature vector is then fed into the final prediction layer, which outputs the recognized
emotion. This layer can be implemented using a fully connected neural network, providing the final
classification based on the aggregated multimodal features.

3.3 Innovations

• Temporal Alignment of Multimodal Features
The process ensures that features from text, audio, and visual modalities are aligned along the
same timeline, allowing the model to consider synchronous information from all modalities
and capture intricate relationships between them. This alignment enhances the model’s abil-
ity to utilize complementary and reinforcing information from different modalities, thereby
improving recognition accuracy and robustness.

• Combination of Self-Attention and GRU
The model employs a self-attention mechanism between two GRU layers, capturing long-
range dependencies within the sequential data and allowing the model to focus on crucial time
steps. This combination enhances the model’s understanding of both local and global contexts,
resulting in more accurate feature extraction and improved emotion recognition performance.
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• Stacking in the Fusion Module
In the fusion module, features from various modalities are stacked and integrated. This method
efficiently amalgamates the diverse information from text, acoustic, and visual inputs into a
unified representation. By capitalizing on the strengths of each modality, the fused represen-
tation offers a more robust and comprehensive foundation for emotion recognition, thereby
enhancing the model’s generalization ability and overall performance.

This multimodal emotion recognition model leverages advanced techniques such as temporal align-
ment, GRU networks, self-attention mechanisms, and feature fusion. These innovations collectively
enhance the model’s ability to accurately recognize emotions by integrating and synthesizing infor-
mation from multiple modalities. The methodological rigor and innovative approaches ensure that
the model is both effective and robust in practical applications, paving the way for more sophisticated
emotion recognition systems.

3.4 Evaluation - Word Error Rate

The evaluation of our multimodal emotion recognition model involves a detailed analysis using three
key scripts: Complexity.py, Performance.py, and Robustness.py.
(More details: https://github.com/JingwenShi123/Thesis)

3.4.1 Model System

• Complexity.py evaluates the model’s performance and memory usage during training and in-
ference. It calculates total parameters, training time, peak memory usage, and inference time,
helping to optimize performance and resource management.

• Performance.py assesses the model’s effectiveness through metrics such as F1 score, accuracy,
and Area Under the Precision-Recall Curve (AUPRC). It also handles data preprocessing and
organizes prediction data for a comprehensive evaluation of classification performance.

• Robustness.py measures the model’s robustness to noise using relative and effective robustness
metrics. It normalizes robustness metrics for comparison and visualizes performance trends
across different noise levels, providing insights into the model’s resilience and real-world ap-
plicability.

These scripts collectively provide a systematic framework for evaluating the model’s performance,
complexity, and robustness.

3.4.2 Output Metric

In the evaluation of our multimodal emotion recognition system, several key metrics were employed
to rigorously assess the performance across different datasets, namely MOSI, MOSEI, and SIMS.

https://github.com/JingwenShi123/Thesis
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Each dataset comprises multiple modalities (text, audio, and visual data) and emotions categorized
into seven levels. The primary evaluation metrics include average accuracy for both seven-class
and binary classifications, F1 score, Mean Squared Error (MSE), training loss, validation loss, and
confusion matrices. The detailed methodology for these metrics is outlined below:

• Seven-class Classification Accuracy: For each dataset, the system’s ability to correctly clas-
sify the emotions into seven discrete levels (ranging from -3 to 3) is calculated. The average
accuracy across these levels provides insight into the system’s granularity in emotion detec-
tion.

• Binary Classification Accuracy: Emotions are also categorized into positive and negative
sentiments for a broader evaluation. This binary classification helps in understanding the
system’s performance in a simplified yet critical aspect of emotion recognition.

• F1 Score: The F1 score, which is the harmonic mean of precision and recall, is used to
balance the trade-off between these two metrics. It is particularly useful in cases where the
dataset might be imbalanced. We calculate the F1 score for both the seven-class and binary
classifications to ensure comprehensive evaluation.

• Mean Squared Error (MSE):MSE is calculated to measure the average squared difference
between the predicted emotion levels and the actual labels. This metric provides a sense of the
prediction’s accuracy and helps in identifying how well the model can approximate the true
emotion levels.

• Training and Validation Loss: Throughout the training process, both the training loss and
validation loss are tracked to monitor the model’s learning progress and generalization capa-
bility. A consistent decrease in these losses indicates effective learning, while a divergence
between them can highlight overfitting or underfitting issues.

• Confusion Matrix: Confusion matrices are constructed for both seven-class and binary clas-
sifications. These matrices provide a detailed breakdown of the model’s performance by show-
ing the true positives, false positives, true negatives, and false negatives. This visual tool is
crucial for identifying specific misclassification patterns and areas needing improvement.

3.5 Ethical considerations

While this research aims to advance the field of multimodal emotion recognition, there is a possibility
that the technology may have unforeseen consequences. To mitigate these risks, the research team
will communicate the study’s results and implications in an accessible and transparent manner.

The data used in this research comes from three publicly available datasets: CMU-MOSI, CMU-
MOSEI, and CH-SIMS. These datasets are freely accessible through the following links:

• CMU-MOSI: http://multicomp.cs.cmu.edu/resources/cmu-mosi-dataset/

http://multicomp.cs.cmu.edu/resources/cmu-mosi-dataset/
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• CMU-MOSEI: http://multicomp.cs.cmu.edu/resources/cmu-mosei-dataset/

• CH-SIMS: https://aclanthology.org/2020.acl-main.343/

According to the information provided on these websites, the datasets comply with GDPR regula-
tions and are publicly available for academic use. The participants in these datasets have consented
to their data being collected and used for research purposes.

No new data from human participants was collected for this study, and there were no surveys or
recordings of human voices involved. Consequently, there are no ethical concerns related to human
subject research.

The models used in this research are built upon pre-existing models available on GitHub. The repos-
itory can be accessed here: https://github.com/Justin1904/Low-rank-Multimodal-Fusion.
The code is openly available and can be used to replicate the experiments.

It is important to note that the datasets may contain inherent biases due to the unknown characteris-
tics of the speakers. These biases are acknowledged and transparently disclosed. Objective metrics
were used for evaluation, which are standard in the field of emotion recognition. Subjective evalua-
tion methods involving human participants were not utilized, thereby aligning with ethical standards
and avoiding potential ethical issues.

http://multicomp.cs.cmu.edu/resources/cmu-mosei-dataset/
https://aclanthology.org/2020.acl-main.343/
https://github.com/Justin1904/Low-rank-Multimodal-Fusion
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4 Experimental Setup

In this section, we outline the detailed experimental setup used to validate the proposed method-
ologies. This includes a comprehensive description of the datasets, model architectures, training
procedures, and evaluation metrics. The experimental setup is designed to ensure consistency in
model training and evaluation, facilitating a fair comparison with baseline methods.

(For more details, visit my GitHub repository: https://github.com/JingwenShi123/Thesis)

4.1 Datasets

The datasets used in this study are essential for training and evaluating the multimodal emotion
recognition models. We employ the PKL file format for efficient data handling, which includes
video features extracted using pre-trained CNN models, audio features processed with the LibROSA
library, and text features derived from BERT embeddings. These datasets, such as CMU-MOSI,
CMU-MOSEI, and CH-SIMS, provide rich, multimodal data that are crucial for robust emotion
recognition tasks.

4.1.1 PKL File Format

PKL (Pickle) files are a Python-specific serialization format used to store objects in a binary repre-
sentation. These PKL files serve as the primary data source for training and evaluating multimodal
emotion recognition models, as they provide a structured and easily accessible representation of the
various modalities and their associated labels. For multimodal emotion recognition datasets like
CMU-MOSI, CMU-MOSEI, and CH-SIMS, the PKL files typically contain the following:

• Video Features: The video features are extracted from the video frames using pre-trained con-
volutional neural network (CNN) models, such as OpenFace. These features capture various
aspects of facial expressions, head poses, and other visual cues that are relevant for emotion
recognition.postures.

• Audio Features: The audio features are extracted using the LibROSA library, which provides
Mel-frequency cepstral coefficients (MFCCs). MFCCs encode important characteristics of the
audio signal, including pitch, energy, and frequency content, which are crucial for recognizing
emotional states from the speech modality.

• Text Features: The text features are derived from the speech transcripts using the BERT lan-
guage model, which generates contextual word embeddings. These text embeddings capture
the semantic and syntactic information present in the spoken language, which can contribute
to the recognition of emotional states.

https://github.com/JingwenShi123/Thesis
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• Labels: The datasets provide labeled data for the emotion recognition task, where the labels
reflect the intensity and type of emotions expressed in the multimodal data. For the CMU-
MOSI and CMU-MOSEI datasets, the emotion labels typically capture the polarity (positive,
negative, or neutral) and intensity of the sentiment expressed. In the case of the CH-SIMS
dataset, the emotion labels are more detailed, covering a wider range of emotion categories
and their corresponding intensities.

The use of PKL (Pickle) files for training multimodal emotion recognition models offers several
key advantages. Firstly, PKL files enable seamless integration of video, audio, and text features,
facilitating easy access and processing of the multimodal data within a unified format. The binary
format of PKL files also allows for efficient serialization and deserialization, saving storage space
and reducing data loading times, which enhances the overall data processing efficiency.

Furthermore, the rapid loading and batch processing capabilities of PKL files improve the efficiency
of model training. The binary format ensures quick data loading, significantly reducing the time
required for training the emotion recognition models. Additionally, the support for batch loading
optimizes memory usage and prevents issues related to loading large datasets at once, crucial for
training complex multimodal models.

Importantly, PKL files preserve the original state of the data, ensuring consistency and completeness
during the training process, and enhancing the reproducibility and verifiability of the experiments.
This consistency and reproducibility are crucial for scientific research and model development.

The PKL file format has been widely adopted for specific multimodal emotion recognition datasets,
such as CMU-MOSI, CMU-MOSEI, and CH-SIMS. These datasets offer various advantages, includ-
ing detailed emotion labels, large-scale diversity, and support for the Chinese language, enabling the
development of sophisticated and reliable emotion analysis systems.

By leveraging the advantages of PKL files, researchers and practitioners can efficiently integrate,
process, and train multimodal emotion recognition models, ultimately leading to advancements in
the field of emotion analysis.

4.1.2 Process setup

The provided code in getdata.py constitutes a comprehensive data processing module for multimodal
emotion recognition models, offering a systematic approach to data loading, preprocessing, and
augmentation.

• Noise Functions for Data Augmentation
This module encompasses a suite of functionalities tailored to the AFFECT dataset, a cor-
nerstone in multimodal emotion recognition tasks. Central to its design are noise functions
meticulously crafted for both text and time-series data, fostering model robustness and gener-
alization. For text data, the addtextnoise function injects various noise types, including letter
swapping and typos, while addtimeseriesnoise introduces Gaussian noise and dropout mech-
anisms to simulate real-world data variances.
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• Normalization and Preprocessing
Complementing the noise functions are normalization and preprocessing methods. normalizeText
ensures textual uniformity by standardizing case and removing extraneous characters, while
znorm standardizes data across modalities, promoting consistency in feature scaling.

• Text Processing and Embedding
Text processing capabilities are augmented through functions like getrawtext, facilitating the
extraction of raw text data, and getword2id coupled with getwordembeddings, which establish
word-to-ID mappings and retrieve corresponding GloVe embeddings.

• Affectdataset: Custom Dataset Handling
At the heart of data management lies the Affectdataset class, a specialized PyTorch Dataset
implementation. This class accommodates various dataset configurations, including modality
alignment, normalization preferences, and task types, while supporting essential preprocessing
tasks such as padding and flattening of time-series data.

• DataLoader Function: Data Preparation
Finally, the getdataloader function serves as the linchpin in data pipeline orchestration. It
orchestrates dataset loading, preprocessing, and augmentation, ensuring data readiness for
model training, validation, and testing. By seamlessly interfacing with PyTorch DataLoader,
it expedites batch processing and parallel data loading, optimizing model training efficiency.

In essence, getdata.py encapsulates a robust framework for data management in multimodal emotion
recognition, underpinned by meticulous preprocessing, noise augmentation, and streamlined dataset
handling capabilities.

4.2 Models

In my quest to develop robust models for multimodal emotion recognition, I present a comprehensive
suite of architectures tailored to address distinct facets of the input data. These models, including
the GRUWithLinear, MLP, SelfAttention, and EMIFusion, encapsulate cutting-edge methodologies
to efficiently capture sequential dependencies, nonlinear patterns, and cross-modal interactions in-
herent in multimodal datasets.

4.2.1 GRUWithLinear Model

The GRUWithLinear model architecture comprises a Gated Recurrent Unit (GRU) followed by a lin-
ear layer for post-processing. It employs the nn.GRU module to handle the recurrent layer, enabling
the model to process input sequences and capture temporal dependencies effectively. Additionally,
a nn.Linear layer is utilized for the linear transformation, facilitating the final transformation of the
GRU output to generate the model’s output. This design enables the model to conduct sequential
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data processing, allowing it to capture intricate temporal patterns inherent in the input data. Over-
all, the GRUWithLinear model serves the purpose of robustly modeling sequential data, making it
well-suited for tasks requiring the analysis of temporal dynamics and dependencies.

4.2.2 MLP (Two-layered Perceptron) Model

The MLP model, also known as a Two-layered Perceptron, consists of two fully connected layers
equipped with Rectified Linear Unit (ReLU) activation functions. It employs nn.Linear layers for
both the hidden and output layers to facilitate efficient computation. During operation, the first
linear layer processes the input features, applying the ReLU activation function to introduce non-
linearity. Subsequently, the second linear layer generates the final output of the model. The primary
objective of the MLP model is to provide a straightforward yet powerful architecture capable of
capturing intricate patterns present in the data. Through the combination of fully connected layers
and nonlinear activation functions, the model excels at learning complex relationships and patterns
within the input data, making it well-suited for various machine learning tasks.

4.2.3 SelfAttention Layer

The Self-Attention layer serves as a crucial component implementing the self-attention mechanism
to discern significant features within the input sequence. Its architecture incorporates linear transfor-
mations for computing query, key, and value vectors, subsequently employing matrix multiplication
to compute attention weights. The layer’s functionality revolves around computing attention weights
based on the similarity between query and key vectors, followed by aggregating the values weighted
by these attention scores. By doing so, the self-attention mechanism enables the model to dynam-
ically focus on pertinent segments of the input sequence, thereby enhancing its capacity to capture
long-range dependencies effectively.

4.2.4 EMIFusion Model

The EMIFusion model is a fusion architecture designed to integrate information from multiple
modalities, such as audio, video, and text, utilizing Low-Rank Tensor Fusion (LRTF). Its imple-
mentation involves employing factor matrices dedicated to each modality, alongside fusion weights
aimed at amalgamating the representations from these modalities. Functionally, the model operates
by computing modality-specific representations using the factor matrices, applying fusion weights to
amalgamate these representations, and finally generating the fused output. The primary purpose of
the EMIFusion model is to exploit the complementary nature of information across different modal-
ities, thereby enhancing the model’s performance in various emotion recognition tasks.

These models are designed to capture diverse aspects of the input data, such as sequential patterns,
nonlinear relationships, and cross-modal interactions, thereby improving the model’s ability to un-
derstand and interpret multimodal emotional cues effectively.



Section 4 EXPERIMENTAL SETUP 38

4.3 Supervised Learning

This segment focuses on implementing supervised learning training procedures designed for mul-
timodal emotion recognition. The core architecture is the Multimodal Deep Learning (MMDL)
model, which integrates data from diverse modalities such as audio, video, and text. The MMDL
model comprises specialized encoders for each modality, a fusion module that combines the encoded
representations, and a classification or prediction head to generate the final output. This approach
aims to effectively capture the complex interactions and correlations between different modalities,
thereby enhancing the overall performance of emotion recognition tasks.

4.3.1 Models Defined

MMDL (Multimodal Deep Learning) Model: This model serves as the core architecture for inte-
grating multimodal information. It consists of encoders for each modality, a fusion module, and a
classification or prediction head. The encoders process input data from each modality, the fusion
module combines the representations, and the head produces the final output.

4.3.2 Components and Functionality

• Encoders: These are individual modules responsible for processing data from each modality.
They encode the input data into meaningful representations specific to each modality.

• Fusion Module: This module combines the representations obtained from the encoders. It
integrates information from different modalities to create a unified representation that captures
the multimodal context effectively.

• Classification/Prediction Head: This component processes the fused representation to gen-
erate the final output, which could be either class labels in classification tasks or continuous
predictions in regression tasks.

• Training Function (train): The train function orchestrates the training process. It iterates
through the dataset, computes the loss using the specified objective function, and updates the
model parameters using backpropagation. Additionally, it handles optimization, early stop-
ping, and model saving based on validation performance.

• Testing Function (test): The test function evaluates the trained model on the test dataset. It
computes various evaluation metrics such as accuracy, F1 score, and AUPRC (Area Under the
Precision-Recall Curve) to assess the model’s performance.

• Utility Functions: Several utility functions are provided for tasks such as dealing with objec-
tive functions, evaluating model performance, and processing input data.
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4.3.3 Relationships and Effects

The MMDL model architecture facilitates the integration of information from multiple modalities,
such as audio, video, and text, to enhance the overall performance of emotion recognition tasks. By
utilizing encoders tailored to each modality and a fusion module to combine their representations, the
model can effectively capture complex patterns and correlations across modalities. The training and
testing procedures ensure that the model is optimized for accurate prediction and robust performance
on both training and unseen data.

Through the evaluation of metrics such as accuracy, F1 score, and AUPRC, the effectiveness of the
model in recognizing and understanding multimodal emotional cues can be assessed comprehen-
sively.

In conclusion, the supervised learning framework outlined here provides a comprehensive method
for developing and evaluating multimodal emotion recognition models. By employing modality-
specific encoders, a robust fusion module, and a meticulous training and testing process, the MMDL
model is capable of capturing nuanced emotional cues across various modalities. Evaluation metrics
such as accuracy, F1 score, and AUPRC ensure a thorough assessment of the model’s performance,
confirming its robustness and effectiveness. This framework not only optimizes the model for ac-
curate predictions but also highlights the potential of multimodal integration in advancing emotion
recognition systems.

4.4 Evaluation

The evaluation of a multi-modal emotion recognition model entails a thorough analysis of its perfor-
mance, complexity, and robustness. Within the realm of evaluation, various scripts, namely ”Com-
plexity.py,” ”Performance.py,” and ”Robustness.py,” play pivotal roles in assessing different facets
of the model’s functionality.

4.4.1 Complexity

Complexity.py defines functions for evaluating the performance and memory usage of a multimodal
emotion recognition model during training and inference.

getallparams(li) calculates the total number of parameters across a list of neural network modules by
iterating through each module and summing the elements in each parameter. all in one train(trainprocess,
trainmodules) measures and prints the training time, peak memory usage, and total parameters
during the training phase. It records start and end times, tracks peak memory usage using mem-
ory usage from memory profiler, and calculates total parameters using getallparams. Similarly,
all in one test(testprocess, testmodules) measures and prints inference time and total parameters
during the testing phase by executing the test process and recording elapsed time and parameter
count.
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These functions provide a comprehensive evaluation of the model. getallparams is used in both
training and testing to assess model complexity. The training function evaluates resource require-
ments and efficiency, while the testing function ensures consistency in model parameters between
phases. This aids in performance measurement, resource management, and understanding model
complexity, helping developers optimize their models for better performance and efficiency.

4.4.2 Performance

The ”Performance.py” script encompasses a suite of functions tailored for evaluating the effective-
ness of a multi-modal emotion recognition model. These functions serve a spectrum of purposes,
ranging from computing key evaluation metrics such as F1 score, accuracy, and Area Under the
Precision-Recall Curve (AUPRC) to managing data pre-processing tasks such as sorting and filter-
ing.

The ptsort Function efficiently sorts a list of tuples based on the first element of each tuple, providing
a foundational utility for organizing prediction or ground truth data. In contrast, the AUPRC Func-
tion quantifies the Area Under the Precision-Recall Curve, leveraging the sklearn.metrics.average precision score
to measure the classification performance of binary classifiers, encapsulating the interplay between
precision and recall. Meanwhile, the f1 score Function and accuracy Function offer a nuanced evalu-
ation perspective by computing F1 score and accuracy respectively, employing sklearn.metrics.f1 score
and sklearn.metrics.accuracy score. These functions, designed to seamlessly handle PyTorch ten-
sors, furnish a comprehensive understanding of the model’s classification prowess across diverse
averaging strategies. Lastly, the eval affect Function stands as the centerpiece, tailored specifically
for assessing the emotion recognition model’s performance. Beginning with data preprocessing, it
seamlessly transitions from PyTorch tensors to numpy arrays, optionally excluding instances with
zero labels. Subsequently, it computes the F1 score and accuracy for binary classification, harnessing
sklearn.metrics.f1 score and sklearn.metrics.accuracy score. The amalgamation of these function-
alities furnishes a systematic framework for evaluating the model’s efficacy in discerning emotions
accurately.

These meticulously crafted functions underpin a robust evaluation pipeline, enabling a holistic as-
sessment of the multi-modal emotion recognition model’s classification performance across varied
evaluation criteria.

4.4.3 Robustness

The ”Robustness.py” script encompasses a collection of functions dedicated to evaluating the ro-
bustness metrics of a multi-modal emotion recognition model. These functions are instrumental
in computing both relative and effective robustness metrics, which offer insights into the model’s
performance across different noise levels.

Relative Robustness Metrics computes the relative robustness metric, leveraging the relative robustness helper
function. This metric is calculated as the area under the performance curve, providing a compre-
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hensive assessment of the model’s robustness across varying noise levels. Conversely, the effec-
tive robustness function calculates the effective robustness metric using the effective robustness helper
function. This metric quantifies the performance difference compared to a baseline method (i.e.,
late fusion), offering insights into the model’s efficacy in handling noise perturbations. Both rel-
ative robustness helper and effective robustness helper serve as auxiliary functions for computing
robustness metrics, catering to specific requirements based on the chosen metric type. Additionally,
the maxmin normalize function normalizes the robustness metrics for comparison across different
methods, ensuring a fair assessment across diverse evaluation criteria. The single plot function fa-
cilitates the visualization of performance versus robustness plots for individual methods. It enables
a graphical representation of the model’s performance trends across varying noise levels, aiding in
the interpretation of robustness metrics.

Through these meticulously designed functions, the ”Robustness.py” script provides a comprehen-
sive framework for evaluating the multi-modal emotion recognition model’s robustness. By comput-
ing diverse robustness metrics and offering visualization capabilities, it enables researchers to gain
valuable insights into the model’s resilience to noise perturbations, thereby enhancing the under-
standing of its real-world applicability and performance variability.

In essence, through meticulous design and implementation, these evaluation scripts collectively of-
fer a systematic framework for comprehensively evaluating the multi-modal emotion recognition
model’s performance, complexity, and robustness.
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5 Results

This section presents the outcomes of the experiments conducted using the CMU-MOSI, CMU-
MOSEI, and CH-SIMS datasets to evaluate the performance of the proposed multimodal emotion
recognition models. Detailed performance metrics, including training and validation losses, confu-
sion matrices, and various classification accuracies, are discussed.

5.1 MOSI, MOSEI, and SIMS Datasets

• MOSI Dataset

Metric Value
MSE 0.6701
Acc7 0.4942
Corr 0.8073
MAE 0.6701

F1 0.8460, 0.8352
Acc2 0.87345, 0.8688

Inference Time 0.1685
Inference Params 1486465

Table 1: Performance Metrics of Multimodal Emotion Recognition Model on CMU-MOSI Dataset

• MOSEI Dataset

Metric Value
MSE 0.2694
Acc7 0.5654
Corr 0.9263
MAE 0.2694

F1 0.9547, 0.8526
Acc2 0.9428, 0.8374

Inference Time 1.5182
Inference Params 1486465

Table 2: Performance Metrics of Multimodal Emotion Recognition Model on CMU-MOSEI Dataset

• SIMS Dataset
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Metric Value
MSE 0.2779
Acc7 0.7090
Corr 0.8168
MAE 0.2780

F1 0.8571, 0.7668
Acc2 0.8969, 0.8406

Inference Time 1.0559
Inference Params 2336449

Table 3: Performance Metrics of Multimodal Emotion Recognition Model on CMU-MOSEI Dataset

5.2 Training and Validation Losses

The training and validation loss curves for the MOSI, MOSEI, and SIMS datasets are illustrated in
Figures 11, 12, and 13, respectively.

Figure 11: Training and validation loss for MOSI dataset
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Figure 12: Training and validation loss for MOSEI dataset

Figure 13: Training and validation loss for SIMS dataset
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5.3 Confusion Matrices

The confusion matrices for seven-class and two-class classifications provide deeper insights into the
model’s predictive accuracy.

5.3.1 Seven-Class Confusion Matrices

Figure 14: Seven-class confusion matrix for MOSI dataset



Section 5 RESULTS 47

Figure 15: Seven-class confusion matrix for MOSEI dataset
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5.3.2 Two-Class Confusion Matrices

(a) MOSI dataset (Method 1)

(b) MOSI dataset (Method 2)

Figure 16: Two-class confusion matrices for MOSI dataset. Method 1 defines negative class as [-3,0)
and non-negative class as [0,3]. Method 2 defines negative class as [-3,0) and positive class as (0,3].
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(a) MOSEI dataset (Method 1)

(b) MOSEI dataset (Method 2)

Figure 17: Two-class confusion matrices for MOSEI dataset. Method 1 defines negative class as
[-3,0) and non-negative class as [0,3]. Method 2 defines negative class as [-3,0) and positive class as
(0,3].
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(a) SIMS dataset (Method 1)

(b) SIMS dataset (Method 2)

Figure 18: Two-class confusion matrices for SIMS dataset. Method 1 defines negative class as [-3,0)
and non-negative class as [0,3]. Method 2 defines negative class as [-3,0) and positive class as (0,3].
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6 Discussion

In this section, we analyze the results obtained from our multimodal emotion recognition model
across the CMU-MOSI, CMU-MOSEI, and CH-SIMS datasets. We will discuss the accuracy, Mean
Absolute Error (MAE), F1 scores, and correlation coefficients for both seven-class and binary-class
classifications. Additionally, we will highlight how each innovation contributed to the improvements
in these metrics, thereby validating our hypotheses.

6.1 Validation of the First Hypothesis: Temporal Alignment of Multimodal
Features

Figure 19: Unaligned Data Experiments on the CMU-MOSI Dataset
[36]



Section 6 DISCUSSION 53

Figure 20: Unaligned Data Experiments on the CMU-MOSEI Dataset
[36]

Hypothesis: Temporal alignment of features from text, audio, and visual modalities enhances the
model’s ability to utilize complementary and reinforcing information, improving recognition accu-
racy and robustness.

• CMU-MOSI Dataset:

– Accuracy: Our model achieves a seven-class accuracy (Acc7
h) of 35.6% and a binary-

class accuracy (Acc2
h) of 81.6%.

– F1 Score: The F1 score (F1h) of 81.5 indicates robust performance in handling different
classes.

– MAE: The model records a Mean Absolute Error (MAE) of 0.937.

– Correlation: A correlation (Corrh) of 0.679 signifies a strong relationship between pre-
dicted and actual values.

• CMU-MOSEI Dataset:

– Accuracy: The model achieves Acc7
h of 48.7% and Acc2

h of 81.3%.

– F1 Score: An F1h score of 81.5 shows consistent performance.

– MAE: The MAE of 0.634 is among the lowest, indicating high prediction precision.
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– Correlation: A Corrh of 0.675 further confirms the model’s effectiveness.

• CH-SIMS Dataset:

– Accuracy: In binary-class classification, the model achieves an accuracy of 83.2%.

– F1 Score: The F1h score is 83.1, demonstrating strong performance in distinguishing
between positive and negative emotions.

– MAE: The MAE is 0.412, the lowest among the datasets, indicating very precise predic-
tions.

– Correlation: A correlation (Corrh) of 0.703 indicates the highest level of prediction
accuracy among the datasets.

Conclusion: The temporal alignment innovation is validated by the consistent performance im-
provements across all datasets. By ensuring that the features from different modalities are synchro-
nized, the model effectively captures intricate relationships, leading to better recognition accuracy
and reduced error rates.

6.2 Validation of the Second Hypothesis: Combination of Self-Attention and
GRU

Hypothesis: The combination of a self-attention mechanism with GRU layers captures long-range
dependencies and enhances the model’s understanding of both local and global contexts, resulting
in improved feature extraction and emotion recognition performance.

• Accuracy and F1 Scores: The model achieves high accuracy (35.6%-48.7%) and F1 scores
(81.5%-83.1%) across the datasets. This demonstrates that the self-attention mechanism ef-
fectively focuses on crucial time steps, enhancing feature extraction from sequential data.

• MAE Values: The MAE values (0.412-0.937) across datasets indicate that the predictions are
close to the actual values, confirming the effectiveness of the GRU and self-attention combi-
nation in minimizing prediction errors.

• Correlation Coefficients: The correlation coefficients (0.675-0.703) suggest that the model
captures the relationship between predicted and actual emotion values effectively.

Conclusion: The integration of self-attention and GRU layers significantly improves the model’s
performance by capturing both local and global dependencies in the data. This combination results
in more accurate and robust feature extraction, leading to enhanced emotion recognition capabilities.
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6.3 Validation of the Third Hypothesis: Stacking in the Fusion Module

Hypothesis: Stacking and integrating features from various modalities in the fusion module offers a
robust and comprehensive foundation for emotion recognition, enhancing the model’s generalization
ability and overall performance.

• Accuracy and F1 Scores: The stacking fusion method helps achieve high accuracy and F1
scores, indicating that the integration of multimodal features enhances the model’s ability to
generalize across different datasets.

• MAE Values: Lower MAE values suggest that the stacked features contribute to precise pre-
dictions, reducing the overall error rate.

• Correlation Coefficients: High correlation coefficients indicate the effective integration of
multimodal features.

Confusion Matrices Analysis:

• Seven-Class Confusion Matrix: The model’s performance in the seven-class classification
task shows high accuracy in distinguishing between different emotion levels. This indicates
that the fusion of stacked features captures the nuanced differences in emotional expressions
effectively.

• Binary-Class Confusion Matrix: The binary classification results also demonstrate high ac-
curacy, confirming that the model can accurately distinguish between positive and negative
emotions.

Conclusion: The stacking in the fusion module effectively amalgamates information from text,
audio, and visual modalities, leading to improved performance metrics. This innovation ensures that
the model captures comprehensive representations of emotions, thereby enhancing generalization
and reducing overfitting.

6.4 Summary and Implications

The innovations introduced in our multimodal emotion recognition model collectively contribute to
its superior performance. The temporal alignment of features ensures synchronization across modal-
ities, the combination of self-attention and GRU layers captures important dependencies in the data,
and the stacking fusion module integrates diverse information effectively. These innovations result
in high accuracy, low MAE, and robust emotion recognition capabilities across multiple datasets.

Our results validate the hypotheses that these methodological advancements improve the model’s
performance, making it a reliable tool for emotion recognition in practical applications. Future
work could explore further refinements in these areas to push the boundaries of multimodal emotion
recognition even further.
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7 Conclusion

The thesis above presents significant advancements in the field of multimodal emotion recognition
through the development and evaluation of innovative models that integrate audio, visual, and textual
data. This section provides a detailed summary of the main contributions, outlines future work
directions, and discusses the impact and relevance of the research.

7.1 Summary of the Main Contributions

This research addresses the challenges associated with multimodal emotion recognition by develop-
ing a robust model that leverages advanced techniques for feature extraction, alignment, and fusion.
The key contributions of this work are as follows:

Firstly, the implementation of state-of-the-art feature extraction techniques to capture nuanced emo-
tional cues from text, audio, and visual data significantly enhances the model’s capability. Specifi-
cally, BERT was employed for textual feature extraction, LibROSA for audio features, and OpenFace
for visual features, ensuring a rich and comprehensive representation of the multimodal data.

Secondly, a novel temporal alignment method was introduced to synchronize features across dif-
ferent modalities. This alignment process ensures that the information from text, audio, and visual
sources is coherently integrated, facilitating effective multimodal fusion and enhancing the model’s
ability to capture intricate relationships between different modalities.

Thirdly, an advanced model architecture combining Gated Recurrent Units (GRUs) and self-attention
mechanisms was developed. This architecture captures both local and global dependencies within
the data, significantly improving feature extraction and emotion recognition accuracy. The integra-
tion of these techniques allows the model to focus on important time steps and contextual informa-
tion, resulting in superior performance.

Furthermore, an effective fusion strategy using a stacking fusion module was implemented, amal-
gamating information from text, audio, and visual modalities. This fusion approach leverages the
complementary strengths of each modality, leading to improved performance metrics such as accu-
racy, F1 score, and Mean Absolute Error (MAE) across multiple datasets, including CMU-MOSI,
CMU-MOSEI, and CH-SIMS.

Our extensive evaluation and analysis demonstrated significant improvements over baseline models,
validating the effectiveness of the proposed methods. The results showed enhanced accuracy and
robustness in emotion recognition, providing valuable insights into the strengths and limitations of
the approach.

7.2 Future Work

Building on the successes of this research, several avenues for future work are proposed as follows.
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One promising direction is the exploration of larger and more diverse datasets, such as the latest
iterations of Common Voice, to further enhance model robustness and generalization. Incorporating
additional languages and varied data sources could lead to significant improvements in performance.

Moreover, incorporating alternative evaluation metrics like Character Error Rate (CER) and Phoneme
Error Rate (PER) could provide a more granular understanding of model performance. These met-
rics can help identify specific areas for improvement, particularly in the finer details of emotion
recognition.

Another potential enhancement involves integrating advanced language models for post-processing.
Rescoring models using these language models could improve transcription accuracy, particularly
for handling complex sentences involving names, punctuation, and capitalization.

Additionally, more detailed benchmarking of different model configurations in terms of resource
requirements and performance is necessary. Evaluating metrics such as average time per utterance
and optimizing the number of parameters based on available training data will help develop more
efficient models.

Investigating the potential of emerging large-scale cross-lingual models like Google USM and mSLAM,
once they become available, could offer new insights and further advancements in low-resource
emotion recognition tasks. A detailed comparison between these models and OpenAI’s Whisper,
focusing on recognition accuracy, computational efficiency, and adaptability, could provide valuable
information for selecting optimal models for specific applications.

7.3 Impact & Relevance

This research has significant implications for the field of emotion recognition and offers practical
applications that extend beyond academic interest. The advancements made in multimodal emotion
recognition have the potential to improve human-computer interactions, affective computing, and
applications in healthcare and education.

The developed system sets a new benchmark for emotion recognition by effectively integrating and
synchronizing multimodal data, leading to higher accuracy and robustness. This research validates
the efficacy of large-scale cross-lingual models in low-resource scenarios, highlighting their potential
to improve emotion recognition in diverse linguistic contexts.

The practical applications of this research are diverse and far-reaching. For instance, the developed
model can be integrated into virtual assistants to provide multilingual support and enhance user
interactions in various settings, such as museums and care homes. Additionally, the model can
assist language learners by providing accurate transcriptions and facilitating language acquisition,
contributing to the preservation of linguistic diversity and cultural heritage.

Furthermore, this research contributes to the development of more socially intelligent and empathetic
artificial systems. By improving the ability of computer systems to understand and simulate human
emotions, this work paves the way for more advanced and context-aware applications in affective
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computing and beyond.

In conclusion, this thesis advances the field of multimodal emotion recognition through innova-
tive methods and comprehensive evaluation, providing a solid foundation for future research and
practical applications. The findings underscore the importance of multimodal integration and of-
fer pathways for continued innovation and improvement in recognizing and understanding human
emotions.
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