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Abstract

Text-to-speech (TTS) technology has been successfully implemented in various applications,
serving as a means to preserve endangered languages and cultures. However, TTS systems for
constructed languages have not been extensively studied. J.R.R. Tolkien created Quenya for
the elves in his novels, inspired by the phonetic patterns and structures of Finnish. While en-
thusiasts have developed courses based on Tolkien’s materials, attempts to synthesize Quenya
speech remain limited. This study uses the articulatory features as inputs for speech syn-
thesis and evaluates the outcomes of applying transfer learning from models based on more
resourced languages. Using the IMS-Toucan system from the University of Stuttgart, based on
the FastSpeech 2 architecture, this research developed a TTS system for Quenya by fine-tuning
three models with a 34-minute Quenya dataset: one pre-trained on Finnish, one pre-trained
on English, and a multilingual model. The results showed that the Finnish fine-tuned model
produced better speech than the English model, while the multilingual model produced the
most natural and accurate speech. This study provides insights for developing TTS systems
for other constructed and ancient languages requiring phonetic reconstruction.
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1 Introduction

Text-to-speech (TTS) technology has changed how we interact with digital devices and media,
enabling machines to convert written text into spoken words. In the field of language learning,
this technology provides immediate voice output, greatly enhancing interactivity and accessi-
bility for learners, especially for those with visual impairments. Additionally, TTS technology
is crucial for preserving endangered languages, offering digital support that helps safeguard
cultural heritage. Although TTS technology has achieved significant success with widely used
languages, matching human-like quality in some instances, the focus on low-resource languages
has also been increasing in recent years. However, the development in constructed languages
still shows insufficient progress.

A constructed language is deliberately crafted by an individual or group, rather than emerg-
ing from natural evolution over time (Adams, 2011; Okrent, 2009). These languages can
be categorized as planned languages (Gobbo, 2017; Janton, 1993; Tonkin, 2015), fictional
languages (Barnes & Van Heerden, 2006; Kazimierczak, 2010; Schreyer, 2021b), or artificial
languages (Schreyer, 2021a). Constructed languages like Esperanto are designed as interna-
tional auxiliary languages (auxlangs) to facilitate communication (Forster, 1982), while others
like Klingon in "Star Trek", Dothraki in "Game of Thrones" or Quenya in Tolkien’s writings
serve artistic purposes. J.R.R. Tolkien was a pioneer in popularizing language creation, devel-
oping historical language families, a technique still used by many language creators. Tolkien
focused on the art and aesthetics of his languages, deeply influenced by Finnish grammar,
which made his languages "heavily Finnicized in phonetic pattern and structure" (Carpenter
et al., 1981). Although Quenya distanced itself somewhat from Finnish over time, the influ-
ence never completely disappeared (Perälä, 2002). Tolkien reduced his borrowing of Finnish
words, but the phonetic and structural influence of Finnish on Quenya deepened (Tikka, 2007).

In building TTS systems, constructed languages and low-resource languages face similar chal-
lenges. Constructed languages are often considered endangered because they are rarely learned
as a first language at home, have few speakers, and lack official status and prestige (Schreyer,
2011). Both types of languages are usually learned voluntarily later in life (Christoph, 2012).
Various techniques have been proposed to address the low-resource TTS problem, with trans-
fer learning being one of the commonly used methods (Weiss, Khoshgoftaar, & Wang, 2016).
This method involves pre-training the acoustic model in a different language with sufficient
training data (the source language) and then fine-tuning the model with the limited data
available for the target low-resource language (Tan, Qin, Soong, & Liu, 2021). However,
cross-lingual transfer learning presents challenges, primarily due to mismatches between the

5



input embeddings of the source and target languages caused by differences in phoneme sets or
orthographic characters. To address this, Lux and Vu (2022) fixed previous shortcomings by
using a linguistically motivated representation of the inputs to such a system (articulatory and
phonological features of phonemes) that enables cross-lingual knowledge sharing and applying
the model-agnostic meta-learning framework to the field of low-resource TTS for the first time.
Do, Coler, Dijkstra, and Klabbers (2023) investigated the effectiveness of phone labels versus
articulatory features for cross-lingual transfer learning in TTS applications for low-resource
languages. Currently, there has been limited research on TTS for constructed languages, with
only a few examples available. For instance, Esperanto TTS systems include Parol1 and Es-
perantoTTS 2, and Jokisch and Eichner (2000) developed a TTS system for Klingon. However,
it seems that no TTS system has been developed for Quenya. Therefore, this study aims to
fill that gap by utilizing the ToucanTTS3 system (Lux et al., 2023), which supports the use of
phonological features extracted from the IPA transcription of audio data to enhance acoustic
feature mapping. The study will fine-tune TTS models pre-trained on English, Finnish, and
multilingual datasets using a Quenya dataset to determine which performs best.

1.1 Research Question and Hypothesis

Research Question: Will a Quenya TTS system benefit more from transfer learning using
a Finnish language model compared to an English language model in terms of performance?

Sub-Questions: Is there an advantage in using multilingual models over monolingual
models in enhancing the quality of synthetic speech for such a system?

Hypothesis: Based on the previous discussion (Christoph, 2012; Do et al., 2023; Tan et al.,
2021), this study hypothesizes that a model trained through transfer learning from Finnish
will perform better than one trained from English. Furthermore, a multilingual model is
anticipated to outperform both the Finnish and English models, achieving the best overall
performance in synthesizing Quenya speech.

1.2 Research Contributions

Studying contact and constructed languages is important for understanding the full range of
human linguistic possibilities (N. H. Lee, 2020; Schreyer, 2021b). This research aims to support
educational purposes by providing richer auditory reference materials for enthusiasts learning

1https://parol.martinrue.com/
2https://54696d21.github.io/esperantoTTS/
3https://github.com/DigitalPhonetics/IMS-Toucan
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Quenya. Currently, learners rely on limited printed materials and recordings from other en-
thusiasts, which often do not meet their needs. Furthermore, developing speech synthesis
technology for constructed languages is crucial for preserving linguistic diversity, especially for
languages with extremely limited or non-existent resources. The experience gained from devel-
oping TTS for constructed languages can also be applied to extinct and ancient languages that
require speech reconstruction (Ivnova, 2023). By using small datasets read by expert linguists,
the speech of these languages can be recreated, aiding in the preservation and understanding
of cultural heritage.

1.3 Thesis Outline

The structure of this thesis is organized as follows. Section 2 provides the necessary back-
ground, including basic knowledge of Quenya phonology and the theoretical foundations of the
non-autoregressive model, FastSpeech 2-based ToucanTTS. Section 3 reviews related studies,
covering important research on constructed languages and low-resource language TTS. Section
4 outlines the experimental methodology, describing the processes and techniques employed.
Section 5 presents the results, providing insights into the performance of the Quenya TTS
systems. Section 6 discusses these findings about the research questions and explores future
research directions. Finally, Section 7 concludes the thesis, summarizing the experiments and
their implications for TTS technologies in low-resource languages.

7



2 Background

This section provides essential background knowledge to facilitate a better understanding of
the methodologies discussed later. Section 2.1 introduces fundamental concepts in phonet-
ics, the International Phonetic Alphabet (IPA), and the phonology of Quenya. Section 2.2
details the Quenya language corpus utilized in this study. Finally, Section 2.3 explores main-
stream non-autoregressive deep learning models for speech synthesis, including FastSpeech,
FastSpeech 2, and ToucanTTS, which are employed in this research.

2.1 Phonetics and Phonology

Phonetics is the study of human sounds, covering how sounds are produced, transmitted,
and understood, including the mechanisms of speech production, pronunciation features, and
modes of expression. This research is crucial for fields such as speech synthesis and speech
recognition. As a fundamental component of language structure, alongside grammar, vocabu-
lary, and text, understanding the pronunciation methods or phonetics is essential for converting
text into speech that humans can comprehend.

2.1.1 Phonemes and Allophones

In linguistics, a phoneme is the smallest unit of sound that can distinguish meaning in lan-
guage (Bett, 2002). This means that a change in a single phoneme can alter the meaning of
a word, thereby distinguishing two different words (Barlow & Gierut, 2002). For instance,
in English, the difference in the phonemes [p] and [b] differentiates the words pat and bat .
A phoneme is not the actual sound produced but is a theoretical concept used to describe
those elements of speech that can differentiate meanings. An important aspect of phonemes is
their variant pronunciations known as allophones. Allophones are context-dependent variants
of a phoneme that, despite slight differences in pronunciation, are perceived as identical in
a specific linguistic context. For example, the phoneme [p] in English has slightly different
articulations at the beginning of the word pin and within the word spin , but these variations
do not change the meaning of the words, hence are considered allophones of the phoneme [p].

Phonemes can be categorized into two broad types: vowels and consonants. Vowels are sounds
produced with a free airflow in the oral cavity, such as [aI] in like , whereas consonants are
sounds where the airflow is obstructed or blocked at some point in the mouth, like [k] in
cat . Classification of phonemes also involves their point of articulation in the mouth; vowels
are typically categorized based on tongue position (such as high, mid, low) and lip rounding
(rounded or unrounded), while consonants are classified by place of articulation (such as labial,
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dental), manner of articulation (such as fricative, stop), and voicing (voiced or voiceless).

These classifications enable linguists to accurately describe and analyze phonetic phenom-
ena across languages. For example, the letter c represents different phonemes in English and
Spanish: in English, it might sound as [s] or [k], while in Spanish, it varies between [T] (as in
Barcelona) or [k] (as in casa). The correspondence between phonemes and the letters that
represent them has developed independently in each language. Understanding these relation-
ships helps us grasp the complexity and diversity of languages, and how subtle differences in
pronunciation can distinguish and elucidate meanings.

2.1.2 International Phonetic Alphabet (IPA)

The International Phonetic Alphabet (IPA) is a widely used symbol system designed to provide
a consistent and accurate means of transcribing the phonetic sounds of all languages globally.
Established by the International Phonetic Association in 1886, its purpose is to offer a com-
mon standard for linguists, teachers, students, and speech therapists to unambiguously record
the pronunciations of different languages. The IPA is based on the Latin alphabet, supple-
mented by some Greek letters and other special symbols to represent specific phonetic sounds
not covered by the Latin script. These symbols are designed to be as intuitive as possible,
illustrating the sound production features such as the direction of airflow, articulation sites,
and voicing. In consonants, the IPA categorizes sounds based on physiological mechanisms
of production, such as the place of articulation (labial, dental, apical, etc.) and the manner
of articulation (stop, fricative, nasal, etc.). For instance, the English [t] sound is represented
in IPA as [t], which is a voiceless apical stop. Vowel symbols are based on tongue position
(high, mid, low) and the shape of the oral cavity (front, central, back), for example, the vowel
in the English word see is noted in IPA as [i], a high front vowel. Stress and tone symbols
play a crucial role in the IPA; they not only indicate the stress position within syllables but
also significantly affect the meanings of words in some languages. For example, in English,
the word record ["rEk.O:rd] can be pronounced with the primary stress on the first syllable
when used as a noun meaning “a document or result that can be stored and accessed,” but as
record [rI"kO:rd] with the primary stress on the second syllable when used as a verb meaning
“to capture information in written or other permanent form.”

Using the IPA in speech synthesis helps accurately mimic sounds from different languages.
Speech synthesis systems use IPA transcriptions to connect phonological features like voicing,
place of articulation, and vowel position with sound features. This method does not depend
on any specific language and uses common features of how humans make sounds. For example,
features like voicing or where the sound is made in the mouth are the same in any language
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when taken from IPA. This makes it possible for systems trained with these features to work
well with new languages, even those not included in the initial training.

2.1.3 Phonology of Quenya

Tolkien described how Elves, Men, and Hobbits pronounced Elvish languages in various
sources. Quenya closely resembles a natural language (Destruel, 2016) and has evolved since
Tolkien first created it. The earliest version, known as Qenya, dates back to at least 1915 when
Tolkien wrote the Qenya Lexicon (Tolkien, 1992, p. 246–248). Initially, Tolkien represented
the sound [kw] with a single q . Therefore, despite different spellings, Qenya and Quenya are
pronounced the same ["kweñ̃a]. While writing The Lord of the Rings , Tolkien changed the
spelling from k to c and used qu instead of q . These changes were purely aesthetic and did
not alter the pronunciation. These spelling changes show that the language has been gradually
evolving. Tolkien continuously updated his ideas, but he never clearly marked a split between
Qenya and Quenya. Therefore, the differences in pronunciation and vocabulary between them
might not always be clear. Thus, this research has adopted the pronunciation guidelines from
Tamás Ferencz’s tutorial Atanquesta4, using it as the standard for developing the pronunci-
ation rules in the TTS system for Quenya. Additionally, the open-source audio files from this
tutorial are a crucial part of creating the dataset, as detailed in Section 2.2.

Vowels Quenya has five vowels, distinguished by length: the short vowels and long vowels,
as shown in the table below.

Short Vowels Long Vowels

a e i o u á é í ó ú

[a] [E] [i] [o] [u] [a:] [e:] [i:] [o:] [u:]

Table 1: Quenya Vowels: Short and Long Forms

For [a, i, u, o], short and long forms have identical vowel quality. However, [e] differs; the
short is [E], and the long is a high-mid [e:].

Diphthongs In diphthongs, the two vowels are in close contact with each other and the first
vowel (which receives more stress) effortlessly glides into the second one.
In Quenya, unlike modern English where the final e in words like home and mole is silent,
every vowel and diphthong is pronounced regardless of its position in a word. For example,
ende is pronounced [ende] rather than [end], and mule is [mule] instead of [mul].

4https://middangeard.org.uk/aglardh/atanquesta
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ai oi ui au eu iu

[ai] [oi] [ui] [au] [eu] [iu]

Table 2: Quenya Diphthongs

This also applies to vowel combinations; ea is always pronounced as [ea], not as in mean
[mi:n]. Tolkien used a dieresis (two dots) over vowels like e and o in his publications to
indicate that these vowels should be pronounced fully, as in ë and ö.

Consonants The consonants f, h, k (also represented as c), l, m, n, p, s, t, v in Quenya
are articulated similarly to their counterparts in English, with the notable exception that p,
t, and k are not aspirated. The phoneme y , outside of palatalized contexts, is pronounced as
in the English words boy and year ; for instance, in Quenya yára .

Bilabial Labiodental Dental Alveolar Palatal Velar Pharyngeal Glottal

Plosive p b t d c k g q
Nasal m n ñ
Vibrant r
Tab or Flap R
Fricative û f v T s ç x h
Approximant w j
Lateral Approximant l L

Table 3: Quenya Consonants

The consonants k and c are consistently represented by the sound [k], regardless of their
written form, and never manifest as [s] or [ts]. Similarly, the letter T (also written as th)
invariably represents the sound [T], like the English thin or thick . The letters t and v have
practically merged in pronunciation, both now typically rendered as [v], although the ortho-
graphic form preserves their etymological origins.

For the consonants hw, hr, and hl, hw [û] resembles the English wh as pronounced in
conservative Received Pronunciation or in Scottish and Irish English, exemplified in words
like where and what . The phoneme hr ["r

˚
], found in the Icelandic word hrafn , and hl [ì],

pronounced as the Welsh ll in Llandudno. However, pronouncing these voiceless consonants
can be challenging. If speakers find it difficult, they will not significantly err by pronouncing
them as their usual voiced counterparts: w , r , or l . In this project, due to current limitations
of the ToucanTTS toolkit in supporting specific articulatory features, the sounds ["r

˚
] and [ì]

are unavailable. Therefore, I have substituted these with [r] and [l] respectively. Further-
more, the consonants b, d, and g appear exclusively within consonant clusters and are never
encountered as standalone sounds in native Quenya words.
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Quenya includes several labialized and palatalized consonants with counterparts in other lan-
guages. The sound kw [kw], similar to the English quick and quantum , is typically spelled
as qu in Quenya. The consonant ny [ñ] mirrors the Dutch oranje , while ty [c] is like the
Hungarian tyúk and Romanian chin . The ly [L] sound is found in American English mil-
lion , and hy [ç] resembles what is heard in the English hue and German nicht . Double
consonants such as ll , pp, nn , ss , tt , rr , mm are frequent. The complete set of Quenya
consonants is in Table 3.

Stress Quenya’s stress rules for Atanquesta words depend on the number of syllables and
their lengths. A syllable is long if it contains a long vowel (á, é, ó, ú, í), or a diphthong
(ai, oi, ui, au, ou), and/or the vowel is followed by a double consonant/consonant clus-
ter. In this respect, Atanquesta treats the palatal and labial consonants qu, ly, ny, ty, hy
as clusters. Examples, with the long syllable in bold: malle, ampano, keante, kára, huine,
nalye.

A syllable is short if it contains a single short vowel and is followed by a single consonant, or
a vowel in hiatus. Examples: kare, tuluva, toa, keante.

If the word has one or two syllables, then the stress falls on the first syllable of the word
(shown by capitalizing the stressed syllable): MÁ; MÁra; KAre; LASse.

If the word has at least three syllables:

• if the second-from-end (penultimate) syllable is long, then that receives the stress:
kaRINwa; FeanÁro; ambalOTse; kaNASta

• if the second-from-end syllable is short, then the stress falls on the syllable before it,
i.e., the third-from-end (antepenultimate) syllable: KÁrima; NAHtana; LINdale;
MÁlime, TElume.

2.2 Existing Quenya Language Corpora

The extensive fan base for Tolkien and Quenya is supported by numerous dedicated commu-
nities. This section enumerates several key resources, including notable works and websites,
that are relevant to the study.
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The Elvish Writing Systems of J.R.R. Tolkien5 by Matt Coombes, Atanquesta6, The Elvish
Linguistic Society,7 Merin Essi ar Quenteli! 8, Ardalambion,9 Glǽmscrafu,10 Tolkien Gate-
way,11 Sindanórie,12 and Parma Tyelpelassíva13 are among the highlighted resources. For
online dictionaries, Eldamo,14 and Parf Edhellen15 provide extensive lexical databases for
Elvish languages.

However, recordings of Quenya are scarce within these communities. Only Glǽmscrafu, Atan-
questa, and Merin Essi ar Quenteli provide actual audio recordings. Gl’æmscrafu features
Quenya poetry and selected sentences from novels, recited by Bertrand Bellet and Benjamin
Babut. Atanquesta is a comprehensive Quenya language course aimed at the general public,
with lessons read by Tamas Ferencz. Merin Essi ar Quenteli was not selected for inclusion
as it only contains isolated Quenya words, lacking substantial audio content. In this study,
a dataset was created utilizing open-source recordings from Glǽmscraf and Atanquesta ,
resulting in a total duration of 28 minutes. Additionally, linguistic experts recited selected
Quenya poetry from Sindanórie and Parma Tyelpelassíva , contributing an additional 6
minutes of recordings to create a custom dataset. For more details, refer to the section 4.

2.3 Non-Autoregressive TTS Technologies

To better understand non-autoregressive TTS, this section is structured into five subsections.
Section 2.3.1 provides a concise overview of the progression from initial concatenative methods
to advanced deep learning autoregressive models. Section 2.3.2 discusses FastSpeech, and
Section 2.3.3 delves into FastSpeech 2, outlining its advancements and improvements over
the original. Section 2.3.4 focuses on the role of vocoders in synthetic speech enhancement.
Finally, Section 2.3.5 examines IMS-Toucan, a system based on FastSpeech 2.

5https://www.kickstarter.com/projects/614014046/the-elvish-writing-systems-of-jrr
-tolkien

6https://middangeard.org.uk/aglardh/atanquesta
7http://www.elvish.org/
8https://realelvish.net/
9https://folk.uib.no/hnohf/

10https://glaemscrafu.jrrvf.com/english/index.html
11https://tolkiengateway.net/wiki/Main_Page
12http://sindanoorie.net/
13http://www.science-and-fiction.org/elvish/index.html
14https://eldamo.org/index.html
15https://www.elfdict.com/
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2.3.1 Evolution from Concatenative to Autoregressive Models

In the early development of speech synthesis, concatenative synthesis was a common approach
(Taylor, 2009). This method involves stitching together pre-recorded audio clips to generate
speech. While it delivered clear audio, it was not very flexible, struggling to capture various
voice styles and emotions effectively. Technologies have evolved to incorporate Hidden Markov
Models (HMM) and Gaussian Mixture Models (GMM) (Mu, Yang, & Dong, 2021). The tradi-
tional Statistical parametric speech synthesis (SPSS) network is a complex pipeline containing
many modules (Zen, Agiomyrgiannakis, Egberts, Henderson, & Szczepaniak, 2016), composed
of the text-to-phoneme network, audio segmentation network, phoneme duration prediction
network, fundamental frequency prediction network and vocoder. Building these modules will
take a lot of time and effort, and errors in any component can complicate training. End-to-
end TTS methods transform text into speech using a unified model that makes the process
simpler (Wang et al., 2017). These models learn efficiently from large datasets, automatically
mastering the best acoustic and pronunciation features.

End-to-end TTS models can be divided into autoregressive and non-autoregressive types based
on their decoding processes during inference. Autoregressive models first convert input text
into a sequence of fixed-length speech representation vectors, then generate the acoustic fea-
tures over time, where each time step’s output depends on previous outputs and the current
speech vector (Shen et al., 2018). Autoregressive acoustic models like Tacotron16 and Tacotron
217, and Transformer-TTS18 are examples. Tacotron uses the Griffin-Lim (Griffin & Lim, 1984)
vocoder to generate speech waveforms, which results in lower audio quality. Although Tacotron
2 uses the WaveNet (Van Den Oord et al., 2016) vocoder to improve synthesis quality, both
models use an autoregressive uni-directional long short-term memory (LSTM)-based decoder
with the soft attention mechanism (Bahdanau, Cho, & Bengio, 2014), which faces challenges
with parallel computation. Compared to fully feed-forward architectures, this architecture
leads to less efficient training and inference on modern parallel hardware (Elias et al., 2021).
Autoregressive models generate sequences sequentially, which can lead to issues like repeated
or skipped words, and difficulty in finely controlling speech pace and rhythm. Unlike autore-
gressive sequence generation, nonautoregressive models generate sequence in parallel, without
explicitly depending on the previous elements, which can greatly speed up the inference process
(Ren et al., 2019).

16https://google.github.io/tacotron/
17https://github.com/NVIDIA/tacotron2?tab=readme-ov-file
18https://github.com/as-ideas/TransformerTTS
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2.3.2 Fastspeech

The architecture of FastSpeech differs from the conventional sequence-based encoder-attention-
decoder structure. It primarily consists of two main components: a Feed-forward Transformer
(FFT) and a Length Regulator (LR). The Feed-forward Transformer (FFT) replaces the con-
ventional attention mechanism, and the Length Regulator (LR), which includes a Duration
Predictor, adjusts the output sequence length to match the duration of the phonemes. The
Duration Predictor estimates the durations of the phonemes to guide the Length Regulator.
The overall model architecture of FastSpeech is shown in Figure 1.

Figure 1: The overall architecture for FastSpeech.The duration predictor (Ren et al., 2019).

Feed-forward Transformer FFT is based on the Transformer (Vaswani et al., 2017) and
one-dimensional convolutional feed-forward networks (Gehring, Auli, Grangier, Yarats, &
Dauphin, 2017; Ping et al., 2018). As shown in Figure 1(a), it stacks multiple FFT modules
to establish the mapping relationship between phoneme sequences and the Mel spectrogram.
There are N FFT modules on both the phoneme and Mel spectrogram sides, with a Length
Regulator in between to compensate for the length disparity between phonemes and the Mel
spectrogram. Each FFT module features a multi-head attention mechanism and a two-layer
one-dimensional convolutional network with ReLU activation. The positional information of
phonemes is handled using positional encoding from the Transformer model. The multi-head
attention in FFT is used to extract positional information, while the one-dimensional convo-
lutional network ensures that the connections between two adjacent hidden states are as close
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as the connections between phonemes and the Mel spectrogram.

Length Regulator The Length Regulator resolves mismatches between the phoneme se-
quence length and the Mel spectrogram sequence, and controls speech speed and certain
prosodic aspects. Typically, the phoneme sequence is shorter than the Mel spectrogram se-
quence, with each phoneme corresponding to multiple Mel spectrograms. The Length Regula-
tor expands the hidden states of the phoneme sequence to match the length of the Mel spectro-
grams. For instance, if the hidden states of the phoneme sequence are Hpho = [h1, h2, . . . , hn]

and the phoneme durations are D = [d1, d2, . . . , dn], the Length Regulator is represented by
the equation Hmel = LR(Hpho, D, α), where α is a hyperparameter that determines the length
of the expanded sequence, thereby controlling the speech speed. Adjusting α changes the
speech speed, and modifying the duration of space characters can alter some aspects of the
speech prosody.

Duration Predictor The Duration Predictor consists of a two-layer 1D convolutional net-
work with ReLU activation, followed by layer normalization and a dropout layer, and an
additional linear layer that outputs a scalar, which represents the predicted phoneme dura-
tion. This module is stacked on top of the FFT blocks on the phoneme side and is jointly
trained with the FastSpeech model to predict the length of mel-spectrograms for each phoneme
using mean square error (MSE) loss. Length prediction is performed in the logarithmic do-
main, which renders the data more Gaussian and easier to train. The Duration Predictor is
trained using true phoneme durations extracted from an autoregressive teacher TTS model,
as shown in Figure 1d. The training process involves first training an autoregressive encoder-
attention-decoder-based Transformer TTS model following reference (Li, Liu, Liu, Zhao, &
Liu, 2019). For each training sequence pair, decoder-to-encoder attention alignments are ex-
tracted from the trained teacher model. Due to the multihead self-attention (Vaswani et al.,
2017), multiple attention alignments are available, and not all attention heads demonstrate
the diagonal property where the phoneme and mel-spectrogram sequences are monotonically
aligned. A focus rate F is introduced to measure how closely an attention head approx-
imates a diagonal alignment: F = 1

S

∑S
s=1max1≤t≤T as,t, where S and T are the lengths

of the ground-truth spectrograms and phonemes, respectively, and as,t denotes the element
in the s-th row and t-th column of the attention matrix. The focus rate for each head is
calculated, and the head with the highest F is selected for the attention alignments. The
phoneme duration sequence, D = [d1, d2, ..., dn], is then extracted based on the duration ex-
tractor di =

∑S
s=1[argmaxt as,t = i] meaning the duration of a phoneme is the number of

mel-spectrograms attended to it according to the selected attention head. Adjustments to the
duration of space characters in the sentence allow for control over parts of the speech prosody.
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2.3.3 Fastspeech 2

FastSpeech 2 addresses the issues found in FastSpeech and enhances the solution to the one-to-
many mapping problem in text-to-speech synthesis. It improves the model by directly training
with ground-truth targets rather than relying on simplified outputs from a teacher model.
Additionally, it introduces more variation information in speech, such as pitch, energy, and
more accurate duration, which are used as conditional inputs to enrich the model’s performance
and output quality. This variance adaptor includes several components: a duration predictor
(also known as the length regulator from FastSpeech, which is detailed in paragraph 2.3.2.),
a pitch predictor, and an energy predictor, as illustrated in Figure 2.

Figure 2: The overall architecture for FastSpeech 2 and 2s (Ren et al., 2020).

Duration Predictor Unlike FastSpeech, which relies on a pre-trained autoregressive TTS
model for phoneme duration extraction, this method employs the Montreal Forced Alignment
(MFA) (McAuliffe, Socolof, Mihuc, Wagner, & Sonderegger, 2017) tool to enhance alignment
accuracy and minimize the information gap between model input and output.

Pitch Predictor To more accurately predict pitch contour variations, the continuous wavelet
transform (CWT) is used to break down the ongoing pitch series into a pitch spectrogram (Hi-
rose & Tao, 2015; Suni, Aalto, Raitio, Alku, & Vainio, 2013). This spectrogram is then used as
the training target for the pitch predictor, which is optimized using mean square error (MSE)
loss. During inference, the pitch predictor outputs a pitch spectrogram that is converted back
into a pitch contour with the inverse continuous wavelet transform (iCWT). For both training
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and inference, the pitch contour f0 (fundamental frequency) for each frame is quantized into
256 possible values on a logarithmic scale, transformed into a pitch embedding vector p, and
added to the expanded hidden sequence.

Energy Predictor The L2-norm of the amplitude of each short-time Fourier transform
(STFT) frame is computed as the energy. The energy of each frame is then quantized to 256
possible uniform values, encoded into an energy embedding e, and added to the expanded
hidden sequence similarly to pitch. An energy predictor is used to predict the original values
of energy rather than the quantized values, and this predictor is optimized with MSE loss.

2.3.4 Vocoder

WaveGlow (Prenger, Valle, & Catanzaro, 2019) is a flow-based vocoder that combines the
ideas from Glow, a generative flow network, and WaveNet (Van Den Oord et al., 2016), a
powerful autoregressive model. Its main advantage is its ability to generate high-quality speech
relatively quickly due to its non-autoregressive nature. Compared to traditional vocoders
that may face challenges with speed or require significant computational resources, such as
WaveNet, WaveGlow offers a more efficient alternative with minimal compromise on quality.
For FastSpeech (Ren et al., 2019), using a pre-trained WaveGlow model as a vocoder means
that the output Mel spectrograms can be processed into audio samples more quickly and
efficiently. This is beneficial as FastSpeech generates these Mel spectrograms through a non-
autoregressive process, inherently enhancing the overall speed of speech synthesis. However,
compared to newer vocoders, WaveGlow still requires considerable computational resources,
which may limit its use in resource-constrained environments. FastSpeech 2 (Ren et al., 2020)
advances these capabilities by incorporating newer neural vocoders like Parallel WaveGAN
(Yamamoto, Song, & Kim, 2020) and HiFi-GAN (Kong, Kim, & Bae, 2020), which further
improve the efficiency and quality of speech synthesis introduced by WaveGlow.

Parallel WaveGAN A non-autoregressive model that uses a generative adversarial net-
work (GAN) architecture, significantly speeding up the speech synthesis process by allowing
faster and parallel computation of audio samples from Mel spectrograms. The audio quality
produced by Parallel WaveGAN is commendable, often nearing that of autoregressive models
like WaveNet, but at a fraction of the computational cost.

HiFi-GAN Known for producing high-fidelity audio, HiFi-GAN improves upon earlier GAN-
based vocoders by optimizing the generator and discriminator architecture for better audio
quality. It is especially renowned for producing clear, crisp, and natural-sounding audio at
high speeds, making it an excellent match for FastSpeech 2. HiFi-GAN not only ensures rapid
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waveform generation but also handles various nuances in audio, making the synthesized speech
sound more natural and less processed.

2.3.5 IMS-Toucan

IMS Toucan (Lux et al., 2023)is a toolkit from the Institute for Natural Language Process-
ing at the University of Stuttgart in Germany. It’s designed to help people learn and use
the latest voice synthesis technology. Introduced during the 2021 Blizzard Challenge, this
toolkit primarily uses a modified version of FastSpeech 2 (Ren et al., 2020). In IMS Toucan,
FastSpeech 2 has two key changes. First, it averages the pitch and energy of speech sounds
(phonemes) based on their duration, a technique from FastPitch (Łańcucki, 2021) used in
ESPnet (Hayashi et al., 2020; Watanabe et al., 2018) to enhance voice control. This means
users can adjust the pitch, energy, and length of speech sounds during voice generation for
detailed customization. Second, IMS-Toucan uses the Conformer (Gulati et al., 2020), which
merges convolutional networks and transformers. Initially designed for voice recognition, the
Conformer is also highly effective in speech synthesis and is part of ESPnet (Guo et al., 2021).
During the 2023 Blizzard Challenge, the submission was improved from the previous one in
2021. These improvements are the result of two years of development on the IMS Toucan
toolkit, which now includes various designs to better manage multilingual capabilities, con-
trollability, and scenarios with limited resources. The system that integrates all these features
is named ToucanTTS. An overview of this architecture is presented in Figure 3.

Text-to-Phoneme To convert text into phonemes, an open-source phonemizer19 utilizing
espeak-ng20 as its backend is employed. The process begins with basic text cleaning, followed
by transforming the input into a sequence of phonemes using IPA notation. These phonemes
are then converted into articulatory vectors through a lookup table (Lux & Vu, 2022), which
provides more effective cross-lingual modeling than traditional phoneme labels (Do et al.,
2023). Each vector represents a one-hot encoding of the human vocal tract’s configuration
during sound production. Additionally, these vectors are enhanced with extra dimensions
to represent nonsegmental markers such as lengthening, shortening, and lexical stress (Lux,
Koch, & Vu, 2022b). The phonemizer also generates symbols that, while not forming phonemic
units on their own, modify adjacent phonemes by altering the corresponding dimensions in
the articulatory vector.

19https://github.com/bootphon/phonemizer
20https://github.com/espeak-ng/espeak-ng
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Figure 3: Overview of all the components in our system. The green arrows show the losses
applied at training time. The orange arrow only exists during inference, the gradient is not
passed through at training time (Lux et al., 2023).

Spectrogram-to-Alignment and Embedding The approach relies on precise alignments
of phonemes to spectrogram frames, influenced by the model’s learned durations and the av-
eraging of pitch and energy values over these durations. Precise alignments are achieved by
training a simple speech recognition system with a CTC objective (Graves, Fernández, Gomez,
& Schmidhuber, 2006), which models the likelihood of all phonemes over time. The result-
ing posteriogram is input into an auxiliary spectrogram reconstruction model, which aims to
reconstruct the inputs to ensure sharper phoneme boundary definitions. For extracting align-
ments from posteriograms, the axis containing phoneme likelihoods is reordered according to
the phoneme sequence in the transcription, and a monotonic alignment search (MAS) is con-
ducted.

To disentangle and capture varying acoustic conditions and speaking styles, the Global Style
Token embedding approach is employed, augmented by strategies from AdaSpeech 4 (Wu et
al., 2022). These include a style token disentanglement loss and an increase in the number of
style tokens to 2000. The embeddings are integrated after every encoder block, decoder block,
and each layer in the prosody predictors, using concatenation followed by projection.

Phoneme-to-Spectrogram The spectrogram generation network utilizes the basic struc-
ture of FastSpeech 2 (Ren et al., 2020), augmented with phoneme-wise averaging of pitch and
energy following the FastPitch (Łańcucki, 2021) methodology. This configuration provides
a high level of fine-grained control over the generated speech. For enhanced efficiency, the
Conformer architecture (Gulati et al., 2020) is used as both encoder and decoder, known for
its effectiveness across various speech tasks. Additionally, the system incorporates a PostNet
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using normalizing flows, inspired by analyses in PortaSpeech (Kim, Kim, Kong, & Yoon, 2020;
Ren, Liu, & Zhao, 2021).

Vocoder As the neural vocoder for performing spectrogram inversion, ToucanTTS utilizes a
generative adversarial network (GAN) setup that includes the BigVGAN generator (S.-g. Lee,
Ping, Ginsburg, Catanzaro, & Yoon, 2022), which offers improvements over HiFi-GAN (Kong
et al., 2020), along with discriminators from MelGAN (Kumar et al., 2019), HiFiGAN, and
Avocodo (Bak et al., 2023).
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3 Related Study

3.1 Constructed languages

A constructed language is deliberately crafted by an individual or group, rather than emerg-
ing from the natural evolution and changes of languages over time (Adams, 2011; Okrent,
2009). Within academia, individuals who develop constructed languages are variously re-
ferred to as language creators, language planners, language inventors, language engineers,
or language architects (Adams, 2011; Gobbo, 2017; Peterson, 2015; Schreyer, 2021b). These
languages themselves fall under categories such as planned languages (Gobbo, 2017; Janton,
1993; Tonkin, 2015), fictional languages (Barnes & Van Heerden, 2006; Kazimierczak, 2010;
Schreyer, 2021b), and artificial languages (Schreyer, 2021a). Schubert (2011) also refer to the
overall study of planned languages as “interlinguistics”. Constructed languages are often cat-
egorized based on their method of creation and their intended purpose. In terms of creation,
languages are described as either a priori, which means they are made from scratch without
influence from other languages, or a posteriori, indicating they are constructed with influences
from one or more existing languages (Schreyer, 2021b). Regarding purpose, constructed lan-
guages are classified as auxlangs, which are intended as international auxiliary languages to
facilitate communication (Forster, 1982), such as Esperanto. Alternatively, artlangs are used
for artistic purposes in media or literature, like Klingon in the "Star Trek" series, Dothraki in
"Game of Thrones," or Quenya and Sindarin in J.R.R. Tolkien’s Middle-earth writings.

It is widely believed that the oldest recorded constructed language is Lingua Ignota (Latin
for "unknown language"), created by the twelfth-century nun Hildegard von Bingen (Higley,
2007). L.L. Zamenhof was an important figure in the history of constructed languages. He
created Esperanto, aiming to improve global communication and understanding. Esperanto is
now one of the most successful constructed languages, with a worldwide community of speak-
ers that crosses national borders. Another constructed language with a significant community
is Klingon. Created by linguist Marc Okrand for the 1984 film Star Trek III: The Search for
Spock, Klingon now has up to 7,500 learners, about 120 fluent speakers (Windsor & Stewart,
2017). Initially, Okrand built on words from past Star Trek episodes created by actor James
Doohan (Okrand, Adams, Hendriks-Hermans, & Kroon, 2011). Since its creation, Klingon has
grown worldwide. Various linguistic studies have examined Klingon, including a typological
analysis (Sutrave, 2017) and surveys of other constructed languages like Quenya, Dothraki,
and Na’vi. These studies found that while Quenya, Dothraki, and Na’vi often follow natural
language patterns, Klingon defies many of Greenberg’s Linguistic Universals, making it unique
(Destruel, 2016). Learning Klingon is supported by resources such as a Klingon dictionary
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(Okrand, 1992) and books like The Klingon Way: A Warrior’s Guide (Okrand, 1996) and
Klingon for the Galactic Traveler (Okrand, 1997). These materials cover dialects, specialized
vocabulary, idioms, and slang, helping establish a robust speech community. The Klingon
Language Institute21, founded in 1991, further supports this virtual community.

One of the pioneers in popularizing language creation was J.R.R. Tolkien. His method in-
volved developing historical language families, a technique that many language creators still
use today. Tolkien focused deeply on the art and aesthetics of his languages, personally invest-
ing in their sounds and beauty. The discovery of Finnish grammar had a profound impact on
Tolkien. According to him, his invented languages "became heavily Finnicized in phonetic pat-
tern and structure." (Carpenter et al., 1981). This led to the creation of Qenya, the language
of the High Elves (Tikka, 2007), which was later renamed Quenya. The change was mainly
orthographic, with a slight difference in pronunciation, as discussed in detail in Section 2.1.3.
Finnish had a strong influence on the early forms of the language, especially in vocabulary,
where many words were Finnish in style. Over time, Quenya distanced itself somewhat from
Finnish, but the influence never completely disappeared (Perälä, 2002). Tolkien reduced his
borrowing of Finnish words, but the phonetic and structural influence of Finnish on Quenya
deepened (Tikka, 2007). While Finnish influence on Quenya is noticeable, Quenya remains
a unique language with parallels to many different languages. Tolkien didn’t directly borrow
from languages but used them as inspiration, creating a language with both uniqueness and
depth.

In building TTS systems, constructed languages and low-resource languages face similar chal-
lenges. Constructed languages are often considered endangered because they are rarely learned
as a first language at home, have few speakers, and lack official status and prestige (Schreyer,
2011). Both types of speech communities are similar because their members usually learn the
languages later in life and do so voluntarily (Christoph, 2012). Contact languages are tied
to community identity, and this idea can also apply to constructed languages like Esperanto,
which has been described as an Eastern European contact language (Lindstedt, 2009). Both
contact and constructed languages can encode various types of local knowledge and provide
insight into the creator’s worldview (N. H. Lee, 2020; Schreyer, 2021b). When constructed
languages like Esperanto become popular, people who share similar values may learn them to
understand this worldview better (Schreyer, 2021b). Studying contact and constructed lan-
guages is important for understanding the full range of human linguistic possibilities (N. H. Lee,
2020; Schreyer, 2021b). Language creation is always influenced by existing languages because
they are made by humans who use language(van Oostendorp, 2019). The relationship between

21https://www.kli.org/
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language planning and planned languages shows that language revival processes, such as those
for Hebrew or Cornish (Romaine, 2011; Tonkin, 2015), involve similar steps of lexical expan-
sion and standardization. Comparisons of lexical expansion projects for Te Reo Māori and
Esperanto (Krägeloh & Neha, 2014) show similar processes in both communities. Speakers of
endangered languages can learn from constructed language speakers about using media, infor-
mation technology, and other language planning methods (Schreyer, 2011). Creating a strong,
enthusiastic interest in endangered languages could inspire more people, especially community
members, to learn and use these languages (Schreyer, 2015).

3.2 Low-Resource Language TTS

As detailed in Section 2.3, the advance of deep learning (Goodfellow et al., 2014; Vaswani et
al., 2017) has led to significant improvements in the field of TTS. End-to-end models, such
as Tacotron 2 (Elias et al., 2021; Shen et al., 2018), TransformerTTS (Li et al., 2019), Fast-
Speech 2 (Ren et al., 2020), FastPitch (Łańcucki, 2021), have achieved unprecedented quality
and controllability in speech synthesis. These models typically rely on vocoders like WaveNet
(Van Den Oord et al., 2016), MelGAN (Kumar et al., 2019), Parallel WaveGAN (Yamamoto
et al., 2020), and HiFi-GAN (Kong et al., 2020) to convert parametric representations into
waveforms. Models like EATS (Donahue, Dieleman, Bińkowski, Elsen, & Simonyan, 2020) and
VITS (Kim, Kong, & Son, 2021) have been developed to generate waveforms directly from
grapheme or phoneme input sequences. While these methods perform remarkably well with
sufficient data, cross-lingual data usage remains a significant challenge in TTS. For instance,
the Tacotron model requires more than 10 hours of training data to produce high-quality
synthesized speech (Chung, Wang, Hsu, Zhang, & Skerry-Ryan, 2019). Collecting such large
amounts of speech data is expensive and time-consuming, which poses substantial challenges
for developing TTS systems for the many less widely spoken languages around the world.

Various techniques have been proposed to address the low-resource TTS problem, with trans-
fer learning being one of the commonly used methods (Weiss et al., 2016). This method
involves pre-training the acoustic model in a different language with sufficient training data
(the source language) and then fine-tuning the model with the limited data available for the
target low-resource language. This approach uses underlying similarities between languages,
such as pronunciation patterns and semantic structures, to improve the mapping between in-
put (text or phoneme sequence) and output (speech features) in the target language (Tan et
al., 2021). However, cross-lingual transfer learning presents challenges, primarily due to mis-
matches between the input embeddings of the source and target languages caused by differences
in phoneme sets or orthographic characters. To address this, researchers have proposed solu-
tions like the Phonetic Transformation Network (Tu, Chen, Yeh, & Lee, 2019), which includes
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an automatic speech recognition component to map input symbols across languages based on
their sounds. Wells and Richmond (2021) have experimented with using phonemes and phono-
logical features as inputs, utilizing linguistic expertise to enhance the mapping of embeddings
between source and target languages. Gutkin (2017) also applied phonological features to
low-resource TTS with considerable success. Lux and Vu (2022)fixed previous shortcomings
by using a linguistically motivated representation of the inputs to such a system (articula-
tory and phonological features of phonemes) that enables cross-lingual knowledge sharing and
applying the model-agnostic meta-learning (MAML) framework to the field of low-resource
TTS for the first time. Do, Coler, Dijkstra, and Klabbers (2021) confirmed the improvement
in output speech quality in multilingual models over their monolingual counterparts. Lux
et al. (2022b)demonstrated that with a simple encoder design, a mechanism to encode word
boundaries, and the language agnostic meta learning training procedure, a low-resource ca-
pable multilingual zero-shot multispeaker TTS can be achieved. Do et al. (2021) found that
language family classification, despite its widespread use, was ineffective for selecting source
languages. Instead, they proposed using Angular Similarity of Phoneme Frequencies (ASPF),
which measures the similarity between the phoneme systems of two languages (Do, Coler,
Dijkstra, & Klabbers, 2022). They also investigated the effectiveness of phone labels versus
articulatory features for cross-lingual transfer learning in TTS applications for low-resource
languages (Do et al., 2023).

There has been limited research on TTS for constructed languages, but some attempts have
been made. For example, Esperanto TTS systems include Parol22 and EsperantoTTS 23, and
Jokisch and Eichner (2000) developed a TTS system for Klingon. The experience from de-
veloping TTS for constructed languages can also be applied to extinct and ancient languages
needing speech reconstruction. Using small datasets read by expert linguists, researchers can
recreate the speech of these languages, helping to better understand and preserve cultural
heritage.

22https://parol.martinrue.com/
23https://54696d21.github.io/esperantoTTS/
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4 Methodology

This section outlines the development and evaluation processes for a Quenya TTS system.
Section 4.1 focuses on the creation of the Quenya dataset and Grapheme-to-Phoneme Con-
version (G2P). Section 4.2 describes the training of TTS models for both Finnish and English
using ToucanTTS as the source language model. Section 4.3 details the fine-tuning of these
models with a Quenya dataset to improve the quality of synthesized speech, also utilizing
the multilingual pre trained points available on ToucanTTS. Section 4.4 outlines the specific
methods for evaluating the Quenya TTS system.

4.1 Quenya Dataset and Grapheme-to-Phoneme (G2P) Script

4.1.1 Building Quenya Dataset

The dataset for the Quenya text-to-speech system comes from two sources. Firstly, as men-
tioned in Section 2.2, one source is the public recordings from Atanquesta and Glǽmscrafu .
As previously discussed in Section 2.1.3, Qenya and Quenya are considered the same language,
so both the Qenya24 and Quenya25 sections from Glǽmscrafu are included in the dataset.
The second source is a custom dataset created by a linguistic expert who recited selected
Quenya poetry from Sindanórie and Parma Tyelpelassíva . The expert is a young male,
a native Russian speaker with a minor in Finnish, familiar with the phonetics of most Indo-
European and Uralic languages.

The structure of the dataset mimics the LJSpeech26 format, respecting sentence boundaries
and segmenting audio into audio files ranging from a maximum of about 13 seconds to a min-
imum of 2 seconds, with transcription texts manually annotated. The dataset was manually
segmented in Audacity27. The recordings from Glǽmscrafu underwent noise reduction using
voicefixer28. Finally, the dataset from the public open-source recordings totals 28 minutes,
while the custom-built dataset adds an additional 6 minutes, making a combined total of 34
minutes.

4.1.2 Building Quenya G2P

As mentioned in the 2.3.5 paragraph, ToucanTTS employs an open-source Phonemizer, relying
on espeak-ng to convert text into phonemes (Lux et al., 2023). However, since espeak-ng does

24https://glaemscrafu.jrrvf.com/english/qenya.html
25https://glaemscrafu.jrrvf.com/english/quenya.html
26https://keithito.com/LJ-Speech-Dataset/
27https://www.audacityteam.org/
28https://github.com/haoheliu/voicefixer
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not support Quenya, a Quenya Grapheme-to-Phoneme (G2P) script was developed using the
knowledge of Quenya phonology discussed in Section 2.1.3 and is openly available on GitHub;
the link can be found in the appendices. This script maps words to phonemes and annotates
stress. As an artificial language, Quenya has relatively fixed rules with few exceptions, enabling
the script to correctly annotate most pronunciations. To better recognition and synthesis
of early Quenya variants, the script was also informed by the Quenya dictionary Eldamo,
including some obsolete letters such as θ and ñ.

4.2 Training the Finnish and English TTS Models

4.2.1 Finnish Dataset

The dataset used for training Finnish is derived from CSS1029, a collection of single-speaker
speech datasets for ten languages (Park & Mulc, 2019). The total duration of the Finnish
dataset is 10 hours and 32 minutes. During its use, some transcription errors were found in the
dataset, such as chapter numbers included in the transcribed texts that were not read aloud,
and some text content not matching the spoken audio. To enhance the quality of synthesized
speech and avoid potential errors, transcriptions were manually corrected. Normalized texts
were also selected and reformatted to match the LJSpeech format for processing.

4.2.2 English Dataset

The dataset used for training the English TTS is LJSpeech, which includes 13,100 short
audio clips of a single speaker reading passages from 7 non-fiction books, totaling about 24
hours. To ensure a fair comparison, this study randomly extracted 10 hours and 31 minutes
from the dataset for training, equivalent to the Finnish dataset used. No other modifications
were made to the dataset.

4.2.3 Model Training and Evaluation Results

Both Finnish and English were trained from scratch using ToucanTTS, with identical training
configurations: batch size of 12, learning rate of 1e-3 , and a total of 80,000 training steps.
Both languages used the built-in aligner from ToucanTTS, with no fine-tuning applied to
the aligner. Each model then generated 10 sentences that were not present in the training
set, and the word error rate (WER) was tested using OpenAI’s Whisper30 automatic speech
recognition, ignoring case sensitivity. The English model achieved of 3.7%, while the Finnish
model achieved of 3.4%. For comparison, human speech achieved a WER of 0.9% for English

29https://github.com/Kyubyong/css10
30https://github.com/openai/whisper
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and 1.7% for Finnish. These results indicate that both models have reached a reasonable level
of intelligibility. Audio demonstrations generated by these models can be found in the links
provided in the Appendix.

4.3 Fine-Tuning Models with Quenya Data

First, the Quenya G2P script mentioned earlier was integrated into the text front end of
ToucanTTS. Fine-tuning was then performed using an example file provided by the system,
with the training configuration including a learning rate of 1e-5, batch size of 6, and 6000
training steps. Additionally, the original aligner was also fine-tuned. After fine-tuning the
Finnish and English models, further adjustments were made using the same configuration
on a multilingual pre-trained checkpoint developed with data from 12 languages: English,
German, Spanish, Greek, Finnish, French, Russian, Hungarian, Dutch, Polish, Portuguese,
and Italian, totaling 389 hours and including all speech datasets from CSS10 and LJSpeech.
After completing the training, the final three checkpoints were averaged and consolidated into
a single optimized checkpoint, for use during inference. To evaluate the effectiveness, each
model generated 10 sentences that were not present in the training data.

4.4 Evaluation

To better assess the quality of the speech, this study used traditional Mean Opinion Score
(MOS) evaluations and detailed listening reports. Surveys were distributed to communities of
Quenya enthusiasts and linguists, and two proficient Quenya speakers were invited to identify
specific errors in sentences generated by the TTS and to provide detailed listening reports.
In the MOS evaluation, participants were provided with a total of 9 sentences, each available
in 4 different versions: real human voice recordings, sentences fine-tuned from a multilingual
model, sentences fine-tuned from Finnish, and sentences fine-tuned from English. These sen-
tences came with their transcribed and phonetic texts, but the participants were not informed
which voices were produced by humans. Participants were required to rate each voice sample
on a scale from 1 to 5, where 1 point indicates the voice is extremely unnatural and almost
unrecognizable, and 5 points signify the voice is very natural, nearly indistinguishable from
a real human voice. The survey was conducted using the Qualtrics31 web platform and dis-
tributed online. As it was disseminated among targeted groups and communities, no personal
information such as native language or gender was recorded from the participants. An example
of the survey instrument is available in the Appendix.

31https://www.qualtrics.com/

28

https://www.qualtrics.com/


5 Result

5.1 Mean Opinion Scores (MOS)

After excluding incomplete and evidently randomly filled questionnaires, such as those where
all responses were rated as 1 point, a total of 31 valid surveys were collected. The Mean Opin-
ion Scores (MOS) for different speech models in this task are presented in Figure 4 and Table
4, while the statistical significance of the results is confirmed by the Wilcoxon Signed-Rank
Test shown in Table 5.

Table 4 illustrates the average MOS for each speech model. The Real Voice model achieves
the highest score of 4.59, indicating the highest level of satisfaction among participants. Fol-
lowing closely, the Meta Model has an average score of 4.33, demonstrating a high quality
of synthetic speech, though slightly less preferred than the Real Voice. The Finnish Model,
with a MOS of 3.84, performs moderately well but still lags behind the Real Voice and Meta
Model, suggesting that there is room for improvement in its speech synthesis quality. The En-
glish Model has the lowest MOS of 2.25, reflecting the least satisfactory performance among
the evaluated models.

Model MOS

Real Voice 4.59
Meta Model 4.33
Finnish Model 3.84
English Model 2.25

Table 4: Average Mean Opinion Scores (MOS) for Different Speech Models

Comparison p-value Significance

Real Voice vs Meta Model 0.0113 Significant
Meta Model vs Finnish Model <0.001 Highly Significant
English Model vs Finnish Model <0.001 Highly Significant

Table 5: Wilcoxon Signed-Rank Test Results

Table 5 provides the p-values from the Wilcoxon Signed-Rank Test, offering insights into the
statistical significance of the differences between the models. The comparison between the
Real Voice and Meta Model yields a p-value of 0.0113, which is less than 0.05, indicating a
significant difference. This result suggests that while both models perform well, participants
significantly prefer the Real Voice over the Meta Model. The comparison between the Meta
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Model and Finnish Model results in a p-value of < 0.001, indicating a highly significant differ-
ence. This result shows that the Meta Model is significantly preferred over the Finnish Model,
reinforcing the superiority of the Meta Model’s synthetic speech quality. The comparison
between the English Model and Finnish Model yields a p-value of < 0.001, also indicat-
ing a highly significant difference. This finding underscores the substantial preference for the
Finnish Model over the English Model, despite the Finnish Model itself needing improvements.

Figure 4: Mean Opinion Scores (MOS) for Different Speech Models

5.2 Listening Reports

In manually marking incorrect or missing words in sentences, both professional speakers indi-
cated that due to the low intelligibility of the model tuned from English, there was no need
to meticulously annotate its errors. Therefore, the main marking effort was concentrated on
the models tuned from Finnish and the multilingual pre-trained point. Here, one particularly
interesting and typical examples are selected for detailed analysis.

• Ai! laurië lantar lassi súrinen, yéni únótimë ve rámar aldaron!

• "ai! l"auriE l"antar l"assi s"u:rinEn, j"e:ni u:n"o:timE vE r"a:mar "aldaron!

This line of poetry comes from the most famous Quenya poem, Namárië, known as "Farewell,"
which translates to: "Ah! like gold fall the leaves in the wind, long years numberless
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as the wings of trees!" The parts highlighted in red indicate errors made by the Finnish-
tuned model, while those highlighted in green represent errors made by the meta-tuned model.
From this example, it is clear that Finnish lacks the Quenya vowels E and consonants j, with
pronunciations in this language still sounding like the Finnish e and y. Both the Finnish-tuned
and meta-tuned models are unable to produce the trilled r, and instead produce sounds more
like to a tap R. This shows that source language models lacking target language phonetics can
significantly impact the quality of synthesized speech. Further details and implications of this
finding will be discussed in the following section 6.
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6 Discussion

According to the results presented in Section 5, the study confirmed the hypothesis proposed in
Section 1.1, demonstrating that the model transferred from Finnish indeed performed better
than the one transferred from English. And the results generated by fine-tuning from a
multilingual model exceeded those from both the Finnish and English models. Although
the hypothesis was validated, the Finnish model’s performance was not as strong, and the
best-performing multilingual model still exhibited noticeable differences from real voice and
lacked naturalness, indicating room for improvement. This section will delve into a detailed
discussion of the results, reflect on the limitations of this study, and propose directions for
future research.

6.1 Challenges with the Finnish Model

The Finnish model’s limited performance can be attributed to Finnish not being the most
suitable source language for Quenya. Although Finnish had been a major source of inspira-
tion, Tolkien was also fluent in Latin and Old English, and familiar with Greek, Welsh, and
other ancient Germanic languages during his development of Quenya. Quenya lacks the front
vowels ä , ö, and y , which are characteristic of Finnish, and it follows Latin-based stress rules
that are entirely alien to Finnish. In Finnish, the accent is always on the first syllable, and
the front vowels ä , ö, and y cannot occur in the same word with their back vowel equivalents
a , o, and u (a phenomenon known as vowel harmony). The fact that Tolkien did not incor-
porate these two noticeable aspects of Finnish phonology into Quenya indicates his method of
creating languages: he aimed for originality while ensuring his languages felt archaic and rich
by being rooted in reality.

As shown in the results, the Finnish-tuned model struggled with adopting new stress pat-
terns and lacked some Quenya-specific phonemes, particularly certain consonants and vowels
like ç, j, and E, leading to mispronunciations. In contrast, models fine-tuned from the multi-
lingual dataset successfully addressed these issues. Stress is crucial in many of the languages
included in the multilingual model, such as Spanish and Russian, allowing it to adeptly learn
and generalize various stress patterns. Additionally, this model encompasses all the IPA sym-
bols required for Quenya, for example, nicht [nIçt] in German and year [jIr] in English.
The success of the multilingual model in this study highlights the importance of a broad
linguistic foundation when developing speech synthesis systems for low-resourced languages.
By leveraging the strengths of multiple languages, the multilingual model can overcome the
limitations of single-language models and provide a more natural and accurate representation
of speech. This finding suggests that future efforts in TTS development for constructed lan-
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guages should consider the benefits of multilingual training to achieve higher quality and more
authentic-sounding results.

6.2 Limitations

6.2.1 Prosody and Pronunciation Challenges

Although the model fine-tuned from a multilingual dataset outperformed the models fine-
tuned from Finnish and English datasets in MOS scores, it still showed significant differences
compared to real voice, indicating room for improvement in its naturalness. Enhancing the
model’s prosody is particularly crucial for constructed languages like Quenya, which place a
high emphasis on aesthetic appeal. In this project, the TTS model can only produce sentences
with a standard reading tone, failing to mimic the distinctive prosodic patterns of Quenya po-
etry, thus impacting the speech’s naturalness. The short pauses between commas are too brief,
making the speech sound rushed and unnatural. Additionally, the lack of stylized pronuncia-
tions further detracts from the authenticity. Despite the speaker’s distinct and stylized trilled
r in the Quenya dataset, none of the models managed to produce a clear trilled r, sounding
more like a tap R instead. Both proficient speakers agreed that a stylized trilled r is essential in
Quenya, particularly in poetry. While it is true that in everyday spoken language, people often
simplify the trilled r to a tap R for efficiency, such a simplification in Quenya, a language not
primarily used for communication, diminishes its naturalness and aesthetic value. Tolkien’s
own Quenya recordings also feature a very prominent trilled r that is slightly longer than in
everyday speech.

6.2.2 Dataset Quality and Training Parameters

During the training of the Finnish model, although many transcription errors were manually
corrected, time constraints prevented a complete cleansing of the CSS10 Finnish dataset. The
training logs still showed some erroneous files were detected and skipped, which may have
introduced potential issues affecting the overall performance of the Finnish model. Moreover,
during the fine-tuning of the model, only the number of training steps was modified while
default parameters were used; optimizing these parameters could potentially enhance training
outcomes and achieve better performance.

6.3 Future Research

For all low-resource languages, the fundamental issue is the scarcity of data. Although im-
provements can be made by training models on limited datasets, as previously discussed,
the outcomes are often not as effective as those achieved with larger, high-quality datasets.
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Therefore, research should focus on how to collect more high-quality datasets recorded by
professional Quenya speakers and on optimizing G2P scripts to handle pronunciation excep-
tions. Additionally, ToucanTTS has already provided capabilities for cloning prosody across
speakers and research on TTS for poetry (Koch et al., 2022; Lux, Koch, & Vu, 2022a), which
can be leveraged to further enhance the naturalness of Quenya synthetic speech.

Furthermore, it may be worthwhile to enhance the articulatory features in ToucanTTS to
support phonemes currently not supported, such as ì, making Quenya pronunciation more
precise. Various methods can be explored to optimize the model’s parameters to generate bet-
ter speech. For instance, fine-tuning hyperparameters such as learning rate, batch size, and
the number of training epochs can lead to significant improvements. Implementing advanced
techniques like transfer learning with larger pre-trained models, or using data augmentation
to artificially increase the size and variability of the training dataset, can also be beneficial.

Moreover, exploring which multilingual training setups yield better synthesis results for Quenya
could be insightful. Perhaps using a multilingual model trained exclusively on Germanic and
Uralic language families might produce higher-quality Quenya speech. This is because such a
model would not need to generalize across languages that do not contribute phonetic or gram-
matical features relevant to Quenya, thus focusing more effectively on the specific characteris-
tics needed. Limiting the training languages to those more closely related or influential could
reduce the noise from irrelevant linguistic features and improve the model’s performance.
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7 Conclusion

This study successfully developed a text-to-speech (TTS) system for Quenya using the IMS-
Toucan, fine-tuning models from English, Finnish, and multilingual datasets. The results
confirm that the Finnish-tuned model performs better than the English-tuned model, while
the multilingual model outperforms both, demonstrating the advantage of diverse linguistic
features. Despite these successes, challenges remain, particularly with certain Quenya-specific
phonemes and stress patterns. Evaluation using Mean Opinion Scores (MOS) and detailed lis-
tening reports from Quenya enthusiasts and linguistic experts provided a thorough assessment,
highlighting areas for improvement. Future research should focus on higher-quality datasets,
optimizing training parameters, and refining prosody to match Quenya’s unique aesthetic.
This study not only provides a functional TTS system for Quenya but also offers valuable in-
sights for developing TTS systems for other constructed, low-resource, and even linguistically
reconstructed extinct languages, emphasizing the significance of cross-lingual transfer learning
and multilingual models.
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Appendices

Audio Demonstrations and Source Code

Pre-generated audio samples of the Quenya TTS system are available at
https://annie-zhou1997.github.io/QuenyaTTS.github.io/
This site includes all the Quenya audio files and transcribed texts used for the MOS testing.

Interactive demo on Hugging Face:
https://huggingface.co/spaces/AnnieZzz/Quenya-TTS

For source code and detailed project documentation, visit the
https://github.com/Annie-Zhou1997/Quenya-TTS

Quenya MOS Survey Sample

Below is an example of the Mean Opinion Score (MOS) survey used in this study. The survey
consists of 9 test sentences, each presented in the same format. Completing the survey typically
takes about 15 minutes.

Figure 5: Quenya MOS Survey Sample
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