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Abstract

The expansion of in-vehicle technologies has made it necessary for the development of advanced auto-
matic speech recognition (ASR) systems that are capable of operating efficiently in noisy environments.
This thesis explores the enhancement of ASR systems through fine-tuning for specific noise conditions,
particularly focusing on vehicular noise environments. The research investigates whether ASR models
fine-tuned with noise samples specific to a vehicular environment demonstrate superior performance
compared to models that are generalized for noise robustness.

Using the “wav2vec2-base-960h” model pre-trained on the LibriSpeech corpus as the baseline model,
this study conducts the fine-tuning experiments with two distinct noise datasets: Vehicular Noise
Speech and Public Other Noise Speech. The performance of these three models - the baseline model,
the model fine-tuned by vehicular noise, and the model fine-tuned by public other noise, is evaluated
across three same noise conditions to ascertain their effectiveness in real-world scenarios. The results
indicate that models fine-tuned on specific noise environments significantly outperform the general
noise-robust model in their targeted settings.

This study contributes to the field by demonstrating the potential of environment-specific fine-tuning
in enhancing ASR performance in noise-affected conditions. The findings could influence future
ASR applications in vehicular systems, ensuring more reliable speech recognition and improving user
interaction with in-vehicle electronics.

Key Words: ASR, vehicular environment, wav2vec 2.0, fine-tune, noise robustness
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Chapter 1

Introduction

Voice is the most natural and common method of information transfer among humans; when used
for human-computer interaction, voice interaction has significant advantages over manual control.
In recent years, with the rapid development and application of neural networks, particularly deep
learning, the field of speech recognition has made numerous advances, and the performance of speech
recognition models has greatly improved. It has many applications, such as in voice assistants for
computers and mobile phones, or for command control in wearable smart devices, smart homes, and
in-vehicle electronics, all of which facilitate user interaction and control of electronic devices. Users
can operate these devices simply by speaking commands. This is especially important for small devices
that are inconvenient to operate manually due to the absence of a mouse, keyboard, or touchscreen.
Additionally, for individuals with disabilities such as those who are physically unable to use their hands
or are blind, speech recognition enables them to operate electronic devices. For example, Nuance has
built the in-car voice interaction platform Dragon Drive to provide new fun for driving and meet the
needs of future car travel. The in-car voice platform Dragon Drive is shown in Figure 1.

Figure 1: Car voice platform Dragon Drive

As people’s material lives continue to improve, more individuals own cars and their expectations for
vehicles are increasing, including demands for safety and convenience. Nowadays, many cars are
equipped with in-vehicle electronics modules, including navigation systems and digital multimedia
systems, which enable “human-vehicle” interaction. Drivers can safely send and receive messages,
make phone calls, and navigate in real-time, making driving safer, more comfortable, and enjoyable.
The voice interaction system, as a foundational component of various smart units in vehicles, allows
drivers to control in-vehicle electronics more naturally and conveniently. It also reduces the distraction
drivers face from operating these devices, thereby significantly enhancing driving safety.

Although many companies, such as Google, now provide high-performance speech recognition services,
these are based on large-vocabulary continuous speech recognition technology, which involves large

6



Chapter 1 INTRODUCTION 7

models and complex computations (Lamel & Gauvain, 2022). Since speech recognition needs to run
continuously, if used offline, the model must be directly integrated into the vehicle’s electronics, which
can heavily burden these systems. Moreover, although the in-vehicle smart system can accurately
recognize and execute the driver’s commands under ideal conditions, it can be interfered with by
various types of noise in real life. For example, engine noise, conversations among passengers, and
external environmental noises. These noise signals are complex and variable, often located in the
low-frequency range and mixed with other speakers’ signals. Commands issued by the driver can
be contaminated during transmission, affecting the quality of the speech and thereby reducing the
recognition rate of the in-vehicle voice interaction system, and even rendering it unusable.

Given these challenges, there is a compelling need to research and develop noise-resistant speech
recognition models that are specifically tuned for vehicular environments. Such models must effectively
handle both steady and non-steady noise types to ensure reliable performance.

Moreover, the field of ASR has seen substantial growth and improvement over the past decades. Current
ASR systems are highly proficient under ideal conditions with well-represented languages. However,
these conditions are seldom met in real-world scenarios where factors like diverse accents, various
voice types, and background noises are prevalent. Despite this, most ASR systems are still trained
on datasets that primarily consist of clear, accent-neutral speech, which fails to replicate real-world
conditions adequately. Addressing these complex variables has become a focal point in the research
community, aiming to develop more adaptable and inclusive ASR technologies.

This thesis examines the influence of noise on the effectiveness of ASR systems and investigates
whether an ASR model fine-tuned to a specific dataset of data can achieve sufficient performance. It
specifically examines ASR systems designed for vehicular environments and assesses their performance
requirements within those contexts. Building on previous studies, such as the research by Schlotterbeck
et al. (2022) which investigated the fine-tuning of an ASR model with classroom noise, this thesis
extends that research by applying similar techniques across different noise conditions to evaluate their
effectiveness. The goal is to determine whether fine-tuning an end-to-end ASR model to include
environmental noise from a specific setting enhances its performance in that environment or if a more
generalized approach to noise robustness could prove equally effective.

Research Questions:

Building on the foundational understanding of voice interaction and the advancement of speech
recognition technologies discussed above, I now turn our attention to the specific challenges posed
by environmental noises in ASR systems. The unique conditions of different noise environments
necessitate models that can robustly interpret human speech, despite interference. Now let’s delve into
key research questions that aim to dissect the efficacy of ASR models fine-tuned for specific noise
environments as opposed to those employing a generalized noise-robust approach. These questions
are designed to rigorously test hypotheses about model performance in various noisy and noise-free
contexts, reflecting real-world applications where such technologies are critical.

Q1. How does the performance of an ASR model fine-tuned for a specific noise environment
compare to a general noise-robust ASR model when evaluated on data from the same
noise environment?

Q2. How does the performance of an ASR model fine-tuned for a specific noise environment
compare to a general noise-robust ASR model when evaluated on data from different
noise environments?
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Q3. How do two ASR models, each fine-tuned for specific but different noise environments,
compare to a general noise-robust ASR model when evaluated on data that includes both
environments?

Q4. How do two ASR models, each fine-tuned for specific noise environments, perform
compared to a general noise-robust ASR model when evaluated on a clean (no noise) test
dataset?

Hypotheses: To address these questions, the following hypotheses are proposed:

H1. The ASR model fine-tuned by a specific noise environment will perform better than the
general noise-robust (no noise-robust) ASR model when evaluated on data from that
particular noise environment.

H2. The ASR model fine-tuned by a specific noise environment will perform worse than the
general noise-robust (no noise-robust) ASR model when evaluated on data from other
noise environments.

H3. The two ASR models fine-tuned by a specific noise environment will perform better than
the general noise-robust (no noise-robust) ASR model when evaluated on data from both
environment noises.

H4. The two ASR models fine-tuned by a specific noise environment will perform worse than
the general noise-robust (no noise-robust) ASR model when evaluated on data from a
clean (no noise) test dataset.

The thesis is structured into six main chapters. The first chapter, Introduction, outlines the motivation
and significance of enhancing ASR systems within vehicular environments, setting the stage with the
objectives and scope of the study. In Chapter Two, Literature Review, reviews the background literature,
highlighting key studies related to speech recognition development and ASR technologies. The third
chapter, Methodology, details the experimental design including the datasets used—LibriSpeech,
Vehicular Noise Speech, and Public Other Noises Speech—and the fine-tuning process of the baseline
“wav2vec2-base-960h” model, along with the criteria for evaluating model performance. The Results,
presented in Chapter Four, analyze the findings from the experiments, provide statistical validations,
and discuss how these results address the initial research questions. Chapter Five, Discussion, interprets
the results, acknowledges the study’s limitations, and suggests future research directions that could
further advance ASR technology. Finally, the sixth chapter, Conclusion, summarizes the key findings
and their implications for future ASR technologies in vehicular environments, emphasizing the impact
and potential of the study in enhancing user interaction and safety within noisy vehicular settings.



Chapter 2

Background Literature

In this literature review, I aim to explore the historical and current advancements in speech recognition
technology, with a particular focus on the development and capabilities of the wav2vec 2.0 model.
My methodology involved a comprehensive search of academic databases including IEEE Xplore,
Google Scholar, and PubMed. The inclusion criteria focused on peer-reviewed articles, conference
papers, and significant industry reports published in the last two decades, while exclusion criteria
eliminated sources not directly relevant to ASR technologies or those that did not provide empirical
data. This review first introduces the history of speech recognition, then delves into the development
and advantages of various models leading up to wav2vec 2.0, and finally discusses noise robustness in
ASR and the rationale for fine-tuning models to specific noisy environments.

2.1 Historical Developments of Speech Recognition
Today, speech recognition technology has entered a mature stage of development and has found
widespread application in various fields. However, the successful rise of this technology was not
achieved overnight. It has undergone more than half a century of updates and iterations, evolving
from the early prototypes of speech recognition to a cutting-edge technology with vast development
potential and application prospects. The research on speech recognition technology can be traced back
to the 1950s. The specific development history is shown in Table 1.

Entering the 21st century, with continuous technological advancements, speech recognition technology
truly entered its golden era of development. During this period, speech recognition technology began
to serve human production and life, gradually forming a scale and entering the application market. In
2008, Google launched its first speech search software for Apple devices. The following year, Android
1.6 also included a text-to-speech function. In 2010, Apple collaborated with Nuance to develop the
Siri voice assistant. In 2014, Microsoft introduced Cortana, and Amazon launched Alexa. By 2018,
Amazon and Microsoft announced and completed the integration of their respective voice assistants,
Alexa and Cortana.

Currently, speech recognition technology is no longer limited to feasibility in the development stage but
focuses on improving recognition rates across different fields and specific environments (Irugalbandara,
Naseem, Perera, Kiruthikan, & Logeeshan, 2023). Thus, speech recognition technology has entered
a new phase of development, striving for both effectiveness and excellence. It has found extensive
applications in diverse areas such as smart homes, voice payments, and clinical medicine. Gangmei,
Singh, and Shougaijam (2021) proposed a voice interaction system for unmanned vending machines
by integrating speech recognition with intelligent vending machines. This system enables a contactless,
voice-activated shopping method, significantly reducing the risk of COVID-19 infection and transmis-
sion, thereby providing users with great convenience and safety. WANG, SHAN, and JING (2022) has
introduced a voice ticketing feature in railway ticketing clients, achieving a recognition accuracy of up
to 90%. This effectively addresses the difficulties elderly people face when purchasing tickets online.
Alowais, Alghamdi, Alsuhebany, and et al. (2023) proposed replacing the traditional manual entry

9
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Decade Individual/ Company Development

1950s Bell Labs Acoustic Spectrometer
(The Beginning of the Audry System
Speech Recognition) RCA Labs Ten Monosyllabic Word Recognizer
(Le Prell & Clavier, 2017) Fry and Denes et al. Phoneme Recognizer
1960s Martin Time Normalization Method
(Significant Developments Itakura et al. Linear Prediction Coding (LPC)
in Speech Recognition) Vintsyuk Dynamic Programming (DP) Method
(Nwe, Foo, & De Silva, 2003)
(Paulett & Langlotz, 2012)
1970s Sakoe Dynamic Time-Warping (DTW)
(Breakthroughs Through Linda et al. Vector Quantization (VQ)
Theoretical Algorithms) Philco-Ford Real-time LPC Technology
(L. Zhang, 2020)
1980s Rabiner et al. HMM Model
(Shift in Mainstream Research Hopfield Hopfield Neural Network Model
from Pattern Matching Carnegie Mellon University SPHINX Syetem
to Statistical Modeling) BBN Corporation SBYBLOS System
(Bou-Ghazale & Hansen, 1998)
1990s Microsoft Corporation Whisper and Dragon Dictate Systems
(Integration into Society IBM Corporation Via voice System
Beyond Laboratories)
(Lee, Hon, & Reddy, 1990)

Table 1: History of Speech Recognition Development

method for medical records with speech recognition. Verified to be nearly three times more efficient
than traditional methods, this approach not only substantially reduces the workload of medical per-
sonnel but also significantly enhances the operational efficiency of the entire medical system. Suresh,
Sandra, Thajudheen, Hussain, and Amitha (2023) suggested applying speech recognition technology
to assistive home systems for the visually impaired, using voice control to replace traditional input
methods such as touchscreens or keyboards. This greatly improves the living conditions of special
needs groups.

2.2 Current SOTA Techniques

As mentioned before, speech recognition technology originated in the United States at Bell Labs in the
1950s, where their research team pioneered the development of an isolated digit recognition system.
In the 1970s, Soviet scientists were the first to propose using dynamic programming to solve the
problem of unequal length in speech signals, developing the Dynamic Time Warping (DTW) algorithm
(Vintsyuk, 1968) based on this, while simultaneously, the introduction of Linear Predictive Coding
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(LPC) effectively resolved the feature extraction issues of speech signals, moving speech recognition
from theory to practice.

During the 1980s, statistical model-based methods, represented by the Hidden Markov Model (HMM)
approach (Rabiner, 1989), gradually became dominant in speech recognition research. However, as
HMM transition probabilities are only related to the previous moment, this limited the use of contextual
information and presented flaws in modeling long-term dependency in speech, leading to performance
limitations as data volumes increased.

Further advancements in speech recognition benefited from the application of Deep Neural Networks
(DNN). In 2006, G. E. Hinton, Osindero, and Teh (2006) used Restricted Boltzmann Machines (RBM)
to initialize the nodes of neural networks, giving rise to Deep Belief Networks (DBN). DBNs employ
an unsupervised greedy layer-by-layer approach (G. E. Hinton, 2002) that retains as much feature
information of the modeling subject as possible while continually fitting to obtain weights. Due to their
structure, which includes multiple layers of non-linear transformations, and because they do not require
assumptions about the distribution of speech data, Yu and Deng (2011) introduced deep learning into
acoustic modeling. They used more network layers to extract deeper features of speech and obtained
longer structural information through frame splicing, which significantly enhanced the input length
of recognizable speech, diversified the input features, and greatly improved text recognition accuracy
by using DNNs to model the relationship between acoustic feature vectors and states. Additionally,
Abdel-Hamid, Mohamed, Jiang, and Penn (2012) introduced Convolutional Neural Networks (CNNs)
into DNN-HMMs, utilizing local convolution, weight sharing, and pooling to extract more complex
and robust features from lower-level features to increase model stability.

For recognizing longer periods of speech information, Recurrent Neural Networks (RNNs) gradually
became a focus of research. This model differs from other neural networks as each layer not only
outputs to the next layer but also outputs a hidden state that participates in the next decision. However,
RNN acoustic model training often uses Stochastic Gradient Descent (SGD), which can lead to issues
like gradient vanishing (Bengio, Simard, & Frasconi, 1994), potentially causing the network to diverge
or become rigid. To address this, Erdogan, Hershey, Watanabe, and Le Roux (2015) improved RNNs
into Long Short-Term Memory networks (LSTM), utilizing input, output, and forget gates to control
the flow of information, allowing gradients to propagate stably over relatively longer durations. LSTM
networks typically consist of 3-5 LSTM layers. G. Hinton et al. (2012) introduced LSTM structural
units into the hidden layers of DNNs, gaining the ability to remember longer sequences. The LSTM-
DNN model performed excellently in noisy environments, subsequently leading to the development of
the CNN-LSTM-DNN (CLDNN) architecture (Sainath, Vinyals, Senior, & Sak, 2015).

In the field of speech recognition, the emergence of wav2vec technology marked a significant turning
point. In 2019, Facebook AI Research introduced the wav2vec model, which employs a self-supervised
learning approach to directly learn useful feature representations from raw audio, without relying on
traditional acoustic features such as Mel-frequency cepstral coefficients (MFCC). Wav2vec extracts
deep features of speech effectively by pre-training on a large amount of unlabelled audio data and using
contextual information to predict hidden units within audio segments. This method has demonstrated
significant performance improvements in speech recognition tasks, especially in processing low-
resource languages.

In 2020, Facebook AI enhanced this approach with the release of wav2vec 2.0, introduced by Baevski,
Zhou, Mohamed, and Auli (2020), represents a transformative advancement in the field of self-
supervised learning for speech recognition. Building upon the groundwork of earlier models such
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as BERT and its predecessor, wav2vec, this framework enhances speech recognition capabilities
significantly by utilizing a novel approach of learning from raw audio data before fine-tuning on
transcribed speech. The model not only simplifies the learning process but also outperforms traditional
semi-supervised methods with its efficient use of both labeled and unlabeled data.

The architecture of wav2vec 2.0 is notably robust, featuring a multi-layer convolutional neural network
that processes raw audio into latent representations. These representations are then masked and refined
by a Transformer network, which learns to identify the correct representations from a set of distractors
through a contrastive task. This mechanism is inspired by the success of masked language modeling in
NLP as seen Devlin, Chang, Lee, and Toutanova (2019).

Wav2vec 2.0 has demonstrated exemplary performance across several benchmarks. On the LibriSpeech
dataset, it achieved word error rates (WER) as low as 1.8/3.3 on clean/other test sets, significantly
improving over previous methods. An exceptional achievement of wav2vec 2.0 is that its large pre-
trained version reaches a WER as low as 4.8% on the clean test set of LibriSpeech with only 10
minutes of labelled training data, suggesting its potential to facilitate speech recognition technologies
in languages and dialects with limited available data. This capability of training on minimal data aligns
with the principles of human language acquisition, where exposure rather than explicit instruction drives
learning, paralleling the findings in the broader field of machine learning and language processing,
which allows the model to be pre-trained on a large dataset of multiple languages and fine-tuned on
a small dataset of a low-resource language. The model can also be fine-tuned to work with different
voices or in noisy environments.

The choice of wav2vec 2.0 for fine-tuning in this study is rooted in its robust architecture and its
proven track record in handling complex audio processing tasks. Wav2vec 2.0 is designed to learn
useful representations from raw audio data through a self-supervised learning mechanism before
fine-tuning on transcribed speech. This model’s ability to efficiently utilize both labeled and unlabeled
data makes it especially potent for scenarios with limited annotated resources. Additionally, wav2vec
2.0’s adaptability to varied acoustic environments and its capacity to improve through exposure to
specific noise conditions align perfectly with the objectives of this research. By training on datasets
augmented with vehicular and public noises, the model leverages its inherent strengths to enhance its
noise robustness and recognition accuracy, making it an ideal choice for advancing ASR performance
in real-world, noisy settings. The use of this model allows for a nuanced understanding and tackling
of the challenges posed by different noise types, demonstrating its versatility and effectiveness in
enhancing speech recognition technologies.

2.3 Noise Robustness in ASR
ASR systems are critical in various applications, from voice-activated assistants to automated transcrip-
tion services. Their ability to convert spoken language into text accurately is important for effective
communication between humans and machines. The performance of these systems, however, can
significantly vary based on the quality and clarity of the input audio.

In ideal conditions, clean recordings, where the speech is unobscured by background noise, allow ASR
systems to achieve their highest accuracy. The algorithms are optimized to detect and process clear
speech signals effectively. However, real-world scenarios seldom provide such optimal conditions.
Recordings often contain background noises from multiple sources, including street sounds, conversa-
tions, and mechanical noises. These noises can overlap with speech frequencies, masking the speech
signals and significantly increasing error rates in speech recognition.
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Research into ASR technology reveals that these systems’ performance under different noise condi-
tions can vary dramatically. For instance, vehicular environments present a particularly challenging
noise scenario due to the complex composition of sounds—ranging from engine noises to road vi-
brations—that are spread out over a wide frequency range and often overlap with the frequencies of
human speech. Traditional speech denoising methods described by Van Segbroeck and Narayanan
(2013), which typically exploit the contrast in periodicity between speech and other sounds, are less
effective in such settings.

Recent studies, such as those cited by researchers like Ochiai et al. (2024), suggest that addressing
noisy speech recognition directly might be more effective than attempting to clean or enhance the
audio before processing. This approach is particularly beneficial when dealing with non-stationary
noises that fluctuate in volume and type.

To improve ASR performance in noisy conditions, recent advancements have focused on training,
pre-training on noisy speech (Likhomanenko et al., 2020), fine-tuning on noisy speech (Schlotterbeck
et al., 2022; Zhu et al., 2022; Prasad, Jyothi, & Velmurugan, 2021), and fine-tuning on noise-clean
paired data (Maas et al., 2012). and applying attention (Higuchi et al., 2021). This involves training
or adapting existing ASR models using datasets that encapsulate a variety of noise scenarios. By
exposing the models to noisy data during training, they develop an enhanced ability to discern and
interpret speech with background noise. This not only boosts the robustness of the systems but also
their accuracy in less-than-ideal acoustic environments.

One effective strategy for fine-tuning involves using augmented noisy speech data, which artificially
introduces various types of noise to clean speech during the training process. This method helps
the model learn to recognize and differentiate speech from noise. Another approach is employing
real-world noisy datasets, which provide a more realistic training environment for the models. For
example, projects like the GitHub repository 1 on ASR for clean and noisy speech data illustrate
how models such as Wav2Vec 2.0 can be fine-tuned with custom pre-processed noisy speech data to
improve text recovery accuracy from noisy audio streams.

Fine-tuning on noisy speech not only improves the robustness of ASR systems but also prepares them
to handle a broader range of acoustic scenarios. This is crucial for applications in diverse environments,
from busy urban settings to bustling commercial areas, where noise levels can significantly impact the
effectiveness of voice-activated systems.

1https://github.com/romtrost/ASR-for-clean-and-noisy-speech-data

https://github.com/romtrost/ASR-for-clean-and-noisy-speech-data


Chapter 3

Methodology

I take fine-tuning as the method employed to address the research question. In order to get the result
that whether a model fine-tuned on a specific noise environment offers advantages over a general
noise-robust model, I developed two datasets from distinct noise environments. Using these datasets, I
fine-tuned the base model into two different models, employing a methodology according to the same
method used by Schlotterbeck et al. (2022). This chapter provides a detailed explanation of how the
noise datasets were constructed and offers a deeper discussion of the experimental setup.

3.1 Data
One of the objectives of this paper is to simplify the process of optimizing models for specific
acoustic settings. This involves minimizing the necessary costs and resources without compromising
performance, allowing the process to be easily applied across multiple locations.

With the advancement of technology, the widespread use of in-vehicle voice interaction devices has
replaced the manual control of primitive electronic vehicle devices, significantly enhancing driver
concentration and ensuring driving safety. However, the interference from ambient noise in the vehicle
environment during driving leads to a low accuracy rate in recognizing voice interaction commands,
severely impacting the user experience of voice interactions. Therefore, suppressing noise interference
and isolating the target speaker’s voice from complex driving environments has become a focal point
of research.

Due to time constraints, it is essential to remember the goal of minimizing the workload of the process;
thus, the process of recording data should also be as simplified as possible. Directly recording training
voices in noisy environments might yield the best model performance, but this process is complex and
time-consuming. A simpler approach is to directly obtain the noise environment and then mix it with
an existing available voice dataset, which is the method I employed in this project.

The first dataset was created using in-vehicle noise from the NoiseX-92 noise database, specifically
Volvo car noise, and further enhanced with military vehicle noise (Leopard) to strengthen and refine
the dataset. This compilation is referred to as the “Vehicular Noise Speech” dataset. And the second
dataset was constructed using a collection of various noises collected from FreeSound 2, including
sounds from airports, cafes, hospitals, metros, and vacuum noise. This compilation is referred to as the
“Public Other Noise Speech” dataset.

3.1.1 LibriSpeech

In this thesis, to ensure an optimal comparison with earlier literature (Zhu et al., 2022),the well-known
LibriSpeech corpus (Panayotov, Chen, Povey, & Khudanpur, 2015) was utilized. This speech corpus
comprises audio and transcriptions sourced from English audiobooks. It is segmented into training,

2https://freesound.org/
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testing, and development sets, with recordings categorized as “clean” or “other”, each covering different
data subsets aimed at providing diverse data to support the training and evaluation of ASR systems.

The selection criterion is based on calculating the Word Error Rate (WER) of LibriSpeech recordings
using the acoustic model from the Wall Street Journal (WSJ). Recordings from speakers with lower
error rates are categorized as “clean”. Such recordings are typically of higher quality and feature
accents closer to Standard American English.

The “clean” configuration is suitable for those focused on developing speech recognition systems in
clear speech environments. The “other” configuration includes more challenging recordings (with
higher WER), often containing more background noise or accent variations, making it suitable for
applications requiring the model to perform well in complex or noisy environments.

The model employed in this study was pre-trained on the training set, which includes train-clean-100,
train-clean-360, and train-other-500, these three subsets collectively provide the model with 960 hours
of speech data, encompassing a variety of voice qualities. This diversity enables the model to better
adapt to different acoustic environments. For fine-tuning, the development set (dev-clean) was used,
and the test set (test-clean) was utilized for evaluation.

3.1.2 Vehicular Noise

In the process of driving, due to the complexity of the environment and noise sources, vehicle noise
signals can be divided into interior noise, exterior noise, and vehicle body noise.

Figure 2: Feature analysis diagram of vehicle noise signal

1. Interior noise primarily includes noise generated by the internal systems of the vehicle,
such as the air conditioning system, which, when operating, can interfere with the
driver’s command recognition. This noise signal predominantly consists of low-frequency
information. Additionally, conversations among passengers can overlap with the driver’s
voice commands used to control the vehicle’s systems.
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2. Exterior noise is influenced by the surrounding environment during the vehicle’s operation.
For example, wind noise increases with speed, and noise from the interaction of tires with
the ground or from gravel on the road constitutes road noise. Other environmental noises,
such as the horns of other vehicles, also contribute to the complexity of exterior noise
signals, which change according to the different environments the vehicle traverses.

3. Vehicle body noise mainly stems from the vehicle’s hardware, including noise from the
engine when it is operational and vibrations of the car body while driving. Noise from
the vehicle’s exhaust system and noise generated by airflows and acoustic excitation are
characteristic of this category, primarily consisting of low-frequency sounds.

The spectrograms of various types of vehicle noise signals are shown in Figure 2. Image (a) displays
the interior noise, from which it can be seen that the noise is mainly concentrated in the low-frequency
range. The interference from passengers inside the vehicle is shown in Image (b). Image (c) represents
the exterior noise, which primarily includes traffic noise during driving. Image (d) shows the vehicle
body noise, mainly consisting of engine noise.

According to these vehicular noise characteristics, the noise data I chose to use in the study are from
the NoiseX-92 noise library, specifically vehicle noises from a Volvo and a Leopard. The Volvo noise
data was recorded inside a Volvo vehicle while driving on an asphalt road at 120 km/h in 4th gear
during rainy conditions. The final recording obtained is a 235-second sample with a sampling rate of
19.98 KHz, stored in 16-bit format.

Similarly, the Leopard noise was recorded inside the Leopard 1 military vehicle. During the recording,
the vehicle was moving at a speed of 70 km/h. The environment of the recording captured a sound
level of 114 dBA. Like the Volvo noise, the final recording is a 235-second sample with a sampling
rate of 19.98 KHz, stored in 16-bit format.

Incorporating noise from the Leopard military vehicle into training is essential because military settings
are often noisy, and challenging voice recognition systems. Training with this noise improves the
system’s ability to distinguish speech in noisy environments and enhances overall robustness, enabling
better performance in various challenging acoustic settings.

3.1.3 Public Other Noise

The second dataset builds on the approach used by Prasad et al. (2021), adhering to the methods
described by Zhu et al. (2022) to ensure methodological consistency. This method of training or
fine-tuning the model using datasets derived from different noisy backgrounds is referred to as ‘multi-
condition training’ (Du et al., 2014). This training approach is designed to enhance the robustness of
voice recognition systems by exposing them to a wide range of acoustic disturbances.

Prasad et al. (2021) compiled a diverse array of noise recordings from FreeSound.org 3, which included
ambient sounds from public places like traffic and restaurants, as well as continuous machine hums
and overlapping conversations known as babble noise. Similarly, I developed a comprehensive noise
dataset from FreeSound, which encompasses a variety of realistic environments such as airports, cafes,
hospitals, subway stations, and the distinct sound of vacuum cleaners 4.

3https://freesound.org/
4The noise used in this thesis can be downloaded directly from https://github.com/DongwenZhu/Noise Robust

-ASR/tree/main/PublicOtherNoise

https://freesound.org/
https://github.com/DongwenZhu/Noise_Robust-ASR/tree/main/PublicOtherNoise
https://github.com/DongwenZhu/Noise_Robust-ASR/tree/main/PublicOtherNoise
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3.1.4 Dataset Processing

For this study, the training utilized the LibriSpeech dev-clean subset and the evaluation employed the
test-clean subset (Panayotov et al., 2015). The LibriSpeech dataset features mono channel recordings
at a 16 KHz sample rate. Conversely, the vehicular noise recordings present a higher sample rate of
19.98 KHz, and the public other noise samples vary in format, with some at a 44.1kHz sample rate
and possibly in stereo channels. As such, all noise recordings required resampling to 16 KHz and
conversion to mono channel to align with the speech data 5.

Then each speech file from LibriSpeech was combined with a randomly selected noise file. A
script 6 was developed to facilitate this process, incorporating various Signal-to-Noise Ratios (SNRs)
ranging from -20 dB to +20 dB to replicate diverse auditory environments. This approach introduces
considerable variability, closely mimicking the fluctuating background noise levels encountered in
real-world settings, thereby enhancing the robustness of the system across different scenarios.

The procedure initiates by retrieving ‘.wav’ files from specified directories, ensuring dataset diversity.
Each clean speech file is paired with a noise file, with the SNR randomly selected from a predefined
range. The add noise‘ function standardizes the sample rate for consistency, adjusts the noise file’s
length to sync with the speech file by either repeating or trimming, and modifies the noise volume to
achieve the targeted SNR by adjusting its RMS value in relation to the clean speech. This modified
noise is then merged with the clean speech to generate the mixed audio. To avoid clipping, the audio’s
amplitude is reduced if it exceeds the format’s representable range. The script also prevents repetitive
selection of noise files and SNRs, promoting an even distribution of noise types and levels throughout
the dataset. The resultant mixed files are named to reflect the speech and noise file IDs along with the
SNR level, aiding in traceability.

These approaches resulted in two mixed datasets: Vehicular Noise Speech and Public Other Noises
Speech, used in later experiments. The limitations and implications of these methodologies are
elaborated upon in Chapter 5.

3.2 Experimental Settings

3.2.1 Baseline Model

The baseline model I used is “wav2vec2-base-960h” (Baevski et al., 2020) 7. This model incorporates
an advanced architecture and was pre-trained on 960 hours of English audio from the LibriSpeech
corpus, which includes a diverse set of speakers and accents. This extensive training provides a robust
foundation for the model to learn a wide variety of linguistic features. The “960h” in the model’s name
indicates that it was not only pre-trained but also fine-tuned on this significant set of labeled audio,
optimizing its performance for English speech recognition tasks. The model utilizes 12 transformer
layers, each with 768 hidden units and 8 attention heads, enabling it to model complex audio patterns
and dependencies effectively.

Wav2vec technology began with the original wav2vec model developed by researchers at Facebook
AI. This model marked a significant advancement in speech recognition by allowing systems to learn

5The full resampling code is available at https://github.com/DongwenZhu/Noise Robust-ASR/blob/main/
16kHz.py

6The complete script for mixing speech and noise can be accessed at https://github.com/DongwenZhu/Noise
Robust-ASR/blob/main/mix noisespeech difflen SNR.py

7The baseline model can be found at https://huggingface.co/facebook/wav2vec2-base-960h

https://github.com/DongwenZhu/Noise_Robust-ASR/blob/main/16kHz.py
https://github.com/DongwenZhu/Noise_Robust-ASR/blob/main/16kHz.py
https://github.com/DongwenZhu/Noise_Robust-ASR/blob/main/mix_noisespeech_difflen_SNR.py
https://github.com/DongwenZhu/Noise_Robust-ASR/blob/main/mix_noisespeech_difflen_SNR.py
https://huggingface.co/facebook/wav2vec2-base-960h
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valuable representations of audio directly from raw waveforms without relying on annotated data. This
dramatically reduced the dependency on costly labeled datasets and enabled more scalable and efficient
development of robust speech recognition models.

Building on the strengths of the original model, wav2vec 2.0 introduced an enhanced architecture
and learning process. This version features a two-stage training strategy: initial pre-training on
large amounts of unlabeled data followed by fine-tuning on a smaller set of labeled data. The
architecture of wav2vec 2.0 is fortified with transformer networks, which are highly effective in
handling sequential data such as natural language and audio. These improvements allow wav2vec 2.0
to handle more complex patterns and longer dependencies in speech data, significantly enhancing its
ability to understand and transcribe spoken language.

The capabilities of the wav2vec2-base-960h model ensure it excels in accurately transcribing English
speech, outperforming many other models trained on traditional supervised learning methods. By
learning from both labeled and unlabeled data, it achieves a higher degree of accuracy and adaptability,
making it an ideal choice for applications requiring reliable speech recognition.

3.2.2 Fine-tuning

The Hugging Face’s tutorial “Fine-tune a pretrained model”8 outlines the steps necessary for fine-
tuning a pre-trained model. The initial step is to prepare and uniform the dataset, focusing particularly
on the ‘audio’ column to understand properties such as the sampling rate. In this experiment, it is
essential to match the sampling rate of the audio files, both speech and noise files, to the model’s
expected rate of 16kHz.

Next, employ a feature extractor to convert the audio files into a format suitable for the model, like
log-mel spectrograms, while a compatible tokenizer processes the transcription texts associated with
these audio files.

Additionally, setting up an efficient data collator is crucial to handle and batch the pre-processed data
properly, involving the correct padding of inputs and labels for model processing. A pre-trained model
checkpoint is then loaded and configured for training, including the definition of the loss function and
optimization parameters.

To organize the data for model training, it’s useful to create a CSV file named metadata.csv 9. This
file should list each audio file and its transcription in the format shown in Table 2.

File name Transcription

train/84-121123-0012.wav THE OLD MAN’S EYES REMAINED FIXED ON THE DOOR

test/1089-134691-0000.wav HE COULD WAIT NO LONGER

Table 2: Example of metadata.csv content

Each line in the CSV file represents a data point, where the “file name” indicates the path to the audio
file and “transcription” provides the text that the audio file contains. This format helps in mapping each

8Hugging Face Fine-tune a pretrained model can be found at https://huggingface.co/docs/transformers/
v4.27.2/en/training

9For the complete “metadata.csv” creation code, see: https://github.com/DongwenZhu/Noise Robust-ASR/
blob/main/create metadata.py

https://huggingface.co/docs/transformers/v4.27.2/en/training
https://huggingface.co/docs/transformers/v4.27.2/en/training
https://github.com/DongwenZhu/Noise_Robust-ASR/blob/main/create_metadata.py
https://github.com/DongwenZhu/Noise_Robust-ASR/blob/main/create_metadata.py
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audio file to its corresponding text, making it easier to train models that need to learn from audio-text
pairs.

Training parameters such as learning rate, batch size, and the number of epochs are then defined.
Specifically, I set the model to be trained for 59 epochs with a batch size of 8, and a learning rate of
1e-57. The training process is facilitated using Hugging Face’s Trainer API, which manages loops,
logging, and checkpoint saving. Checkpoints were saved every 1000 steps to choose the optimal
number of steps.

Building upon this foundation, I fine-tuned 10 the baseline model on two distinct noise datasets that
were explained earlier, the Vehicular Noise Speech dataset and the public Other Noise Speech dataset,
resulting in three different models: the baseline model, the model fine-tuned on Vehicular Noise,
and the model fine-tuned on Public Other Noise. Details of the relationship of the three models are
provided in Figure 3.

Figure 3: Fine-Tuned

3.2.3 Evaluation

To evaluate the effectiveness of speech recognition systems, I use two primary metrics: Word Error
Rate (WER) and Character Error Rate (CER). Both metrics serve to quantify how accurately a model
transcribes spoken language into text.

The Word Error Rate (WER) measures the performance by calculating the ratio of the total number of
errors (which include substitutions, insertions, and deletions) to the number of words in the reference
text. Essentially, it indicates how many words out of every hundred were incorrectly transcribed by
the speech recognition system. The Character Error Rate (CER) functions similarly but operates at
the character level, assessing the number of letter errors against the total number of characters in the

10The complete fine-tuning code can be found at https://github.com/DongwenZhu/Noise Robust-ASR/blob/
main/finetune.py

https://github.com/DongwenZhu/Noise_Robust-ASR/blob/main/finetune.py
https://github.com/DongwenZhu/Noise_Robust-ASR/blob/main/finetune.py
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original script. CER provides a more detailed analysis of transcription accuracy because it considers
each individual character, making it particularly useful for languages where character accuracy is more
indicative of overall performance.

WER =
S+ I +D

N

This formula calculates the Word Error Rate by dividing the sum of substitutions (S), insertions (I),
and deletions (D) by the total number of words (N) in the reference.

CER =
Sc + Ic +Dc

Nc

This formula calculates the Character Error Rate, similarly to WER, but at the character level. It
divides the sum of character substitutions (Sc), insertions (Ic), and deletions (Dc) by the total number
of characters (Nc) in the reference.

It is important to recognize that these metrics do not effectively measure how well the meaning is
conveyed, since some words carry more significance than others (Wang, Acero, & Chelba, 2003). This
scenario could result in a low Word Error Rate (WER) yet produce a transcription that lacks critical
information, rendering it unintelligible. While I chose these metrics to align with previous research for
consistency, it’s crucial to acknowledge that they do not reflect various performance aspects, such as
the impact of specific noises on accuracy.

In my thesis, I analyzed three speech recognition models 11: the baseline model, the model fine-
tuned on Vehicular Noise, and the model fine-tuned on Public Other Noise. The purpose of my
experiment was to demonstrate whether that the model fine-tuned on Vehicular Noise performs better
in environments with vehicular noise, using the model fine-tuned on Public Other Noise as a control
group for comparison. These models were tested using both noisy datasets and a clean speech dataset
consisting of 120 randomly selected speech files from the LibriSpeech test-clean set. Details of the
experimental setup are provided in Figure 4.

Each model was evaluated under three conditions:

1. Targeted Noise: Testing the vehicular model in vehicular noise settings and the public
noise model in various public noise settings to assess performance in intended conditions.

2. Non-targeted Noise: Assessing how each model performs in noise conditions it was not
specifically tuned for.

3. Clean Condition: Evaluating model performance in the absence of noise to gauge any
loss of general ASR capability due to fine-tuning.

The first experimental setting, Targeted Noise, involves testing each model in the noise environment
for which it was specifically fine-tuned—this directly addresses Hypothesis 1 (H1), which posits that
models fine-tuned for specific noise environments will outperform the general noise-robust model
in those same environments. If the fine-tuned models show superior performance in their respective
environments under this condition, H1 is supported. The second setting, Non-targeted Noise, assesses

11The complete evaluation code can be found at https://github.com/DongwenZhu/Noise Robust-ASR/blob/
main/eval.py

https://github.com/DongwenZhu/Noise_Robust-ASR/blob/main/eval.py
https://github.com/DongwenZhu/Noise_Robust-ASR/blob/main/eval.py
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Figure 4: Evaluation

model performance in noise environments for which they were not specifically fine-tuned. This
setting is critical for testing H2, which suggests that each fine-tuned model will perform worse in
unfamiliar noise environments compared to the general noise-robust model. A drop in performance
under this condition would support H2. The third condition, Clean Condition, evaluates how each
model performs in an environment without any noise, aimed at testing H3 and H4. H3 suggests that
models fine-tuned on specific noises will perform better than a general model when evaluated on data
from both environments’ noises—indicative of their ability to handle diverse noise settings effectively
if supported. Conversely, H4 posits that these fine-tuned models will underperform in clean, noise-free
conditions, highlighting a potential overfitting to noisy data—if the general model performs better in
clean conditions, then H4 is supported, showing a loss of general ASR capabilities in the fine-tuned
models.



Chapter 4

Results

This chapter presents the outcomes of the experiments conducted to assess the performance of the
ASR models fine-tuned for specific noise environments. Following a rigorous methodology outlined in
the previous sections, the models—including the baseline, the model fine-tuned on Vehicular noise,
and the model fine-tuned on Public Other noise—were evaluated across two specific noise datasets
and one clean dataset. The results, encapsulated in comprehensive statistical analyses and visual
representations, aim to illuminate the effectiveness of these models under varying acoustic conditions.

4.1 Model Performance
After fine-tuning the models, I utilized the evaluation code to conduct assessments on all three datasets.
This process was executed according to the steps outlined in the evaluation section’s diagrams. Each
of the three models—the baseline model, the model fine-tuned on Vehicular Noise, and the model
fine-tuned on Public Other Noise—was evaluated using two noise-specific speech datasets and one
clean dataset. The results of these evaluations are presented in the Table 3, and the Word Error Rate
(WER) for each model is illustrated in a line chart presented in Figure 5. This chapter will also explore
potential explanations for the findings based on the observed performance differences among the
datasets.

Models VehicularNoise Speech PublicOtherNoise Speech LibriSpeech
WER CER WER CER WER CER

Vehicular Model 11.26% 5.45% 59.08% 42.59% 4.09% 1.13%
Public Other Model 16.05% 8.81% 43.49% 30.68% 4.04% 1.13%
Baseline Model 19.77% 11.96% 56.71% 45.83% 3.39% 0.96%

Table 3: Model Performance under Different Noise Conditions

4.2 Answering Research Question
In this section, I address the central research questions posed in Chapter 1 concerning the performance
of an ASR model fine-tuned with noise samples specific to a vehicuar environment versus a general
noise-robust ASR model across different noise conditions.

4.2.1 Research Question Analysis

Q1. How does the performance of an ASR model fine-tuned for a specific noise environment
compare to a general noise-robust ASR model when evaluated on data from the same
noise environment?

22
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Figure 5: WER across Different Noise Models

Q2. How does the performance of an ASR model fine-tuned for a specific noise environment
compare to a general noise-robust ASR model when evaluated on data from different
noise environments?

Q3. How do two ASR models, each fine-tuned for specific but different noise environments,
compare to a general noise-robust ASR model when evaluated on data that includes both
environments?

Q4. How do two ASR models, each fine-tuned for specific noise environments, perform
compared to a general noise-robust ASR model when evaluated on a clean (no noise) test
dataset?

To answer these questions, I conducted experiments comparing two fine-tuned models—one targeting
vehicular noise and the other optimized for a variety of public noises—with a baseline general noise-
robust model. The findings are summarized below:

• Vehicular Noise Environment: The model fine-tuned for vehicular noise demonstrated superior
performance in its targeted environment, with a Word Error Rate (WER) of 11.26% and a
Character Error Rate (CER) of 5.45%, substantially outperforming the general model and the
public noise model in these conditions.

• Public Other Noise Environment: In contrast, the model tailored for public noises performed
best in its specific conditions, achieving the lowest WER and CER among the models in such
environments. It shows that specificity in training correlates with enhanced performance in
corresponding environments.

• General Noise-Robust Model Performance: The baseline model, designed to handle a broad
range of noises, showed the most consistent performance across diverse environments but did
not excel in any specific noise condition as the specialized models did.
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4.2.2 Hypotheses Validation

The evidence gathered from the different noise environments and the performance of each model type
is critically examined below:

H1. The ASR model fine-tuned by a specific noise environment will perform better than the general
noise-robust (no noise-robust) ASR model when evaluated on data from that particular noise
environment.

It was hypothesized that the ASR model fine-tuned on a specific noise environment (vehicular
noise) would perform better than a general noise-robust model when evaluated in that particular
environment, which is the main research objective of this thesis. The results strongly support this
hypothesis, as the vehicular model achieved a WER of 11.26% and a CER of 5.45% in vehicular
noise conditions, which is significantly lower compared to the baseline model’s WER of 19.77%
and CER of 11.96%. This marked improvement underscores the effectiveness of targeted noise
training in enhancing model accuracy in specific settings.

H2. The ASR model fine-tuned by a specific noise environment will perform worse than the general
noise-robust (no noise-robust) ASR model when evaluated on data from other noise environ-
ments.

The testing corroborates this, as seen when the vehicular model was subjected to public noise
environments, yielding a WER of 59.08% and a CER of 42.59%, substantially higher than the
baseline model’s performance (WER of 56.71% and CER of 45.83%) in the same conditions.
This outcome illustrates the limitations of specialized training when applied to non-targeted
noise environments.

H3. The two ASR models fine-tuned by a specific noise environment will perform better than the
general noise-robust (no noise-robust) ASR model when evaluated on data from both environment
noises.

The expectation was that the two ASR models fine-tuned on specific environments would
outperform the general noise-robust model when evaluated across both environment noises. The
data partially support this hypothesis. In their respective targeted environments, both models
significantly outperformed the baseline model. However, in non-targeted noise settings, their
performance declined, indicating that while specialization improves performance in familiar
settings, it does not universally enhance performance across diverse noise conditions.

H4. The two ASR models fine-tuned by a specific noise environment will perform worse than the
general noise-robust (no noise-robust) ASR model when evaluated on data from a clean (no
noise) test dataset.

The results confirm this hypothesis, as the baseline model exhibited the lowest WER (3.39%)
and CER (0.96%) in clean conditions, compared to the vehicular model (WER 4.09%, CER
1.13%) and the public other noise model (WER 4.04%, CER 1.13%). This suggests that general
models, while not excelling in noisy environments, maintain superior performance in clean
settings where the complexities of specific noise types are absent.

The validation of these hypotheses highlights the intricate balance between model specialization
and generalization. While specialized models excel in their respective noise environments, their
performance can degrade in unfamiliar settings, emphasizing the need for adaptive or hybrid models
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that can leverage both specific and general training methodologies to achieve optimal performance
across varied acoustic scenarios.

It’s important to address that the model fine-tuned on the Public Other Noise dataset demonstrated
less robustness to noise overall. It obtained the lowest result 43.49%, which is already 4 times than
the other two models. One significant reason for this could be the methodology where noises were
recycled across different speech files at varying SNRs, rather than utilizing distinct noises for each
file. This approach aligns with the procedures used in previous studies, such as those by Zhu et
al. (2022), to ensure consistency with existing research. Although data augmentation techniques,
such as reusing noise samples at different SNRs, have been shown to enhance model performance
effectively (Sivasankaran, Vincent, & Illina, 2017), employing a more varied set of original noises
could potentially lead to a broader and more generalizable noise representation within the model. This
decision raises questions about the quality and comparability of the training data sets and models,
suggesting that a more diverse noise dataset might improve general noise robustness.

4.3 Checking for Overfitting
Overfitting occurs when a model is trained too closely to a specific dataset, capturing noise and
outliers as if they were representative of the general trend. This usually results in high performance on
training data but poor performance on new, unseen data. To ensure that our models are both robust and
generalized well beyond the training data, it is crucial to monitor for signs of overfitting during the
training process.

As mentioned in Chapter 3, the models were fine-tuned for 10,000 steps, 59 epochs, and checkpoints
were saved every 1,000 steps, allowing for a periodic evaluation of the models’ performance across
these intervals. Performance metrics WER and CER were regularly checked at each checkpoint. This
periodic evaluation helps to track whether the performance improvements plateau, continue to improve,
or start to worsen, which can indicate overfitting.

The Figure 6 is the performance of the Wav2vec 2.0 model fine-tuned on the vehicular noise dataset,
and the model fine-tuned on the public other noise dataset to check whether overfitting is occurring. For
the Vehicular Noise Speech model, there is a sharp decrease in WER between 2,000 to 4,000 training
steps, after which the WER begins to plateau, albeit with a minor but steady decrease up to 10,000
steps. This trend suggests that while the model quickly learns to adapt to vehicular noise, the learning
rate stabilizes without a subsequent increase in error, indicating no significant overfitting. The Public
Other Noise Speech model shows a gradual decrease in WER until around 6,000 steps, after which the
rate of decrease slows, and the WER slightly fluctuates but generally stabilizes, demonstrating that it’s
not overfitting.

4.4 Statistic Analyses
In the analysis of the effects of model type and noise conditions on the WER, an Analysis of Variance
(ANOVA) was conducted. The results, as summarized in Table 4, highlight significant findings. The
ANOVA results convincingly demonstrated that the type of noise condition profoundly influences
WER (F(2,4) = 60.079, p = 0.001), emphasizing the critical role of specific noise environments in
enhancing model performance. This finding strongly supports H1, which posited that ASR models
fine-tuned for specific noise environments would outperform the general noise-robust model in those
same environments, and underscores the importance of targeted model tuning for improving ASR
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Figure 6: Performance throughout training

accuracy in expected noisy conditions.

Contrastingly, variations in model types did not show a statistically significant effect on WER (F(2,4) =
0.695, p = 0.551). While this finding indicates a lack of significant differences in overall model types,
it partially supports H2 by suggesting that no single model type uniformly outperforms others across
various noise settings, highlighting the challenge in generalizing performance across non-targeted
noise environments. Moreover, this outcome suggests that while fine-tuned models do not always excel
in noise conditions they were not specifically optimized for, there is a positive trend toward refining
ASR models with even minor advancements in model design. This insight aligns with the view in H3,
which expected fine-tuned models to perform better in mixed noise environments but acknowledges
that the performance boost is not universal.

This positive trajectory underlines the importance of continued efforts in environmental adaptation
strategies and the exploration of new model architectures. Emphasizing these aspects could lead to
substantial advancements in ASR technology, reinforcing the need for specialized models that are
adept at handling diverse and challenging acoustic environments.

Source of Variation df Sum Sq Mean Sq F Value Pr(>F)

Model 2 45.835 22.927 0.695 0.551
Noise Condition 2 3965.152 1982.576 60.079 0.001
Residual 4 131.997 33.000 - -

Table 4: ANOVA Results on WER

The experimental outcomes validate the thesis’s premise that an ASR model fine-tuned on specific noise
types outperforms a general noise-robust model in those specific conditions. However, the trade-off
in specialization is the reduced flexibility and performance across varied acoustic environments not
represented in the training data. This insight is crucial for the development of future ASR systems,
suggesting a potential pivot towards hybrid models that combine the robustness of general noise
training with the precision of environment-specific tuning.
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Discussion

This discussion aims to delve into the complexities and implications of the research findings detailed
in this thesis, by analyzing this study’s limitations, future directions, and applications, exploring how
fine-tuning ASR models for specific noise profiles not only advances the theoretical understanding but
also paves the way for practical applications that can significantly improve user interactions within
noisy environments. As unpacking the results and the broader implications, this section critically
examines both the successes and challenges encountered in striving to enhance ASR technology,
thereby guiding future initiatives in this rapidly evolving field.

5.1 Limitations
In this research, I have encountered several significant limitations that could impact the performance
and application of our models under real-world conditions. I aim to outline these limitations to better
understand the potential challenges and areas for future improvement.

The first significant limitation is related to the datasets used and the realism of speech conditions. The
datasets used for fine-tuning and testing these models mostly consist of English speech from audiobooks,
which feature well-articulated and clean audio. This type of speech differs significantly from the diverse
and spontaneous speech patterns found in real-world settings, including overlapping conversations,
slang, and various non-standard dialects. Such a limited scope in dataset diversity might hinder the
models’ robustness and limit their effectiveness across different linguistic contexts, particularly in
real-life applications like voice-activated assistants in public places or devices used by individuals with
pronounced accents or dialect variations (Basak et al., 2023). Additionally, the approach to simulating
noisy conditions in these models involves synthetically mixing clean speech recordings with artificial
noise. While this method is standard in research for controlling variables, it fails to accurately mimic
the complex and dynamic interplay of overlapping conversations and fluctuating noise levels typical in
natural environments. This could potentially lead to an overestimation of the model’s performance
when deployed in real-world conditions, where noise and speech interactions are far less predictable
(Szymański et al., 2020).

The second limitation is the conflict between Model Specificity and Noise Complexity. The research
demonstrates the effectiveness of models fine-tuned for specific noise environments, such as vehicular
or public noise; however, this approach encounters significant limitations when applied outside
these targeted settings. For instance, a model optimized for vehicular noise shows exceptional
performance within that specific environment but performs poorly in different acoustic settings, such
as public noise in cafes or subway stations. This indicates a critical lack of adaptability, suggesting
that these models may not be versatile enough for real-world scenarios where noise conditions are
variable and unpredictable. Moreover, the models are typically tested against specific types of noise,
such as clear vehicle noise. However, real-life settings often feature more complex and variable
noise environments that combine multiple noise sources, including music, people talking, and traffic.
These unpredictable noise conditions can severely test the models’ effectiveness, leading to potential
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failures in more complex acoustic environments that are common in normal life. Consequently,
developing multiple specialized models to cater to different noise conditions poses a significant
practical challenge, particularly in systems with limited memory or processing capabilities. The
reliance on multiple specialized models exacerbates the issue, as each model’s performance declines
sharply when confronted with non-targeted noise conditions. This decline not only limits their
generalizability but also reduces their utility across broader applications, underlining a fundamental
conflict between model specificity and noise complexity in real-world applications.

The third limitation combines concerns about the generalizability of the research results due to the
methodology used in dataset selection and testing and the evaluation metrics. Firstly, the generalizabil-
ity of the study’s results is further compromised by the choice of using splits from the same speech
corpus for both training and testing the models. This approach, as discussed by Szymański et al. (2020),
while common for maintaining consistency with prior research, limits the robustness of the findings
across different linguistic environments. A more effective approach could have involved using a test set
from a different corpus, such as Mozilla’s Common Voice 12, or comparing model performance across
various corpora. However, constraints such as the limited time available for completing this master’s
thesis prevented the inclusion of more complex evaluations, like testing the models against different
speech datasets mixed with various noise datasets, which could have provided a more comprehensive
understanding of the model’s effectiveness in diverse real-world situations.

Moreover, the reliance on standard evaluation metrics like Word Error Rate (WER) and Character
Error Rate (CER) potentially overlooks crucial aspects of practical usability in ASR systems. These
metrics, while useful for benchmarking basic transcription accuracy, fail to measure the semantic
accuracy or contextual appropriateness of the transcriptions. This oversight can be particularly critical
in applications where the precise understanding of context or intent is necessary, such as in voice-
activated vehicle controls, where misinterpreted commands due to semantic inaccuracies could lead to
significant consequences. For instance, in the provided examples showed in the Table 5, discrepancies
between the transcription and the recognized text demonstrate the limitations of relying solely on
WER and CER. In the first row, the original transcription reads “HE COULD WAIT NO LONGER”,
but the recognized text states “HE WOULD AWAY FOR THE COBE”. Although the WER or CER
might suggest a low error rate due to the similar number of words and characters, the actual semantic
content differs drastically. This points to a significant flaw: these metrics do not account for whether
the ASR system preserves the meaning or intent of the spoken words. Furthermore, in the second
example where “THE UNIVERSITY” is recognized as “IT HUM ADVERSITY”, the issue becomes
more apparent. In contexts such as navigation function, such inaccuracies are not just transcription
errors but could lead to misunderstandings or misdirections that could have serious implications.

File name Transcription Recognition text

test/1089-134691-0000.wav HE COULD WAIT NO LONGER HE WOULD AWAY FOR THE COBE

test/1089-134691-0003.wav THE UNIVERSITY IT HUM ADVERSITY

Table 5: Example of Transcription Discrepancies

In conclusion, while my study provides valuable insights into the design and tuning of speech recogni-
tion models under controlled conditions, it also highlights critical areas where further research and
development are needed. Addressing these limitations could lead to more robust and adaptable ASR

12https://commonvoice.mozilla.org/

https://commonvoice.mozilla.org/
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systems that better serve the diverse needs and challenges of real-world applications. This will require
not only broader and more varied datasets but also advancements in evaluation metrics and testing
methodologies.

5.2 Future Research
The journey through the research presented in this thesis has been both enlightening and challenging.
Due to constraints in time and computational resources, certain aspects of this study could not be
explored as deeply as desired. These limitations, while frustrating, have opened the door to numerous
potential areas for further exploration and improvement. The field of ASR is vast and constantly
evolving, and each piece of research contributes incrementally to our collective knowledge. In this
section, I propose several directions for future research that could address the limitations identified
in this thesis. It is my hope that these suggestions will inspire and guide future efforts to enhance
the robustness and applicability of ASR systems, making them more effective in the complex and
unpredictable environments of the real world.

5.2.1 Development of datasets

The current datasets, derived predominantly from audiobooks, provide high clarity and articulation
but do not capture the complexities of natural speech environments encountered daily. To address this
gap, future research could explore the inclusion of more diverse conversational datasets. For example,
recordings from street interviews can capture varied speech dynamics and background noises typical
in urban settings, while capturing conversations in cafes or transportation hubs could offer insights
into speech patterns amidst mild to moderate ambient sounds (Z. Zhang et al., 2018). Discussions on
social media platforms could also be invaluable, providing examples of colloquial and abbreviated
language usage which are common in informal digital communications.

Moreover, the practice of training fine-tuned models on datasets that artificially mix clean speech with
pure noise samples is inadequate for simulating the nuanced environments where noise and speech
coexist. Future studies should consider utilizing direct recordings from noisy environments—such as
busy marketplaces or public transit—where noise is not just a backdrop but a part of the interactive
context.

Additionally, the variation in speech due to linguistic diversity is profound and impacts ASR perfor-
mance significantly. Speech varies extensively across different languages and even within the dialects
of a single language. Future research should focus on creating region-specific ASR models. For
instance, models fine-tuned on the tonal variations and speech cadences unique to English could be
vastly different from those tailored to Korean’s rhythmic and melodic qualities (Yoo et al., 2024).
Developing such localized models could drastically improve ASR applicability and user satisfaction
by catering specifically to the linguistic nuances of each region.

5.2.2 Improvement of Evaluation Metrics

In the evolution of ASR technologies, enhancing the methods by which these systems are evaluated is
crucial for ensuring their effectiveness and reliability. Currently, the predominant metrics used, Word
Error Rate (WER) and Character Error Rate (CER), focus largely on transcription accuracy without
assessing semantic correctness or contextual appropriateness. This limitation can be particularly
problematic in applications requiring precise command interpretation, such as voice-activated vehicle
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controls or smart home devices. For instance, accurately differentiating commands like “turn on the
lights” from “turn on the right light” is essential for user safety and satisfaction. Thus, future research
should aim to develop evaluation metrics that not only assess transcription accuracy but also examine
the semantic coherence and context-awareness of ASR outputs (Kim et al., 2021). Implementing such
metrics will improve the functional utility of ASR systems, ensuring they perform intended actions
correctly in complex real-world environments.

Furthermore, the evaluation results may not be very accurate as they often rely on very similar types
of data. In this thesis, both the training and testing datasets for these three models are derived from
the LibriSpeech dataset, and mixed with their respective noise datasets in a consistent manner. To
enhance the reliability of these evaluations, it’s crucial to utilize a broad range of speech datasets that
encompass multiple languages and accents. Utilizing a diverse dataset like Mozilla’s Common Voice,
which was previously mentioned in the limitations section, would enable researchers to assess how
ASR systems perform across various linguistic scenarios.

By expanding evaluation metrics to include semantic and contextual accuracy and embracing diverse
linguistic datasets for system testing, future research can significantly enhance the reliability and
applicability of ASR systems.

5.2.3 Future Practical Applications

The success of fine-tuning ASR models for specific vehicular noise environments suggests several
promising directions for enhancing in-car communication systems. Future applications could focus
on integrating these specialized models into vehicle infotainment and navigation systems to improve
reliability and user experience. For instance, voice-activated controls could be optimized to recognize
commands accurately in a variety of driving conditions, from quiet highways to noisy urban settings.
This would not only enhance safety by reducing driver distraction but also improve the functionality of
voice commands under diverse acoustic challenges.

Moreover, the research highlights the potential for deploying these models in new areas of automotive
technology. Autonomous vehicles, for example, could benefit greatly from improved speech recognition
capabilities, enabling more intuitive interaction between the vehicle and its passengers. This could
be crucial as autonomous technologies rely heavily on seamless human-machine communication for
operation adjustments and emergency interactions.

Additionally, considering the broader implications of this research, developers might explore the
application of fine-tuned ASR models in other types of vehicles such as buses and trains where
background noise varies significantly. The integration of robust voice interaction systems in public
transport could enhance accessibility, offering a hands-free control system for information retrieval
and transaction processes, thus improving the passenger experience.

The next phase of research should also investigate the integration of multi-modal feedback systems
that combine voice with visual or tactile responses to enrich the user interface in vehicles. This could
mitigate some of the limitations identified in voice-only systems, particularly in high-noise scenarios.

These practical applications underscore the importance of continuing to advance ASR technology
in specific noise environments, ensuring that the benefits of this research extend beyond theoretical
models to real-world implementations in vehicular and other transportation systems .
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Conclusion

This study has conclusively demonstrated that fine-tuning end-to-end automatic speech recognition
(ASR) models for specific noise environments substantially enhances their robustness and accuracy.

Vehicular environments, especially private cars, are increasingly equipped with smart systems that rely
on voice commands for operation. However, these environments are fraught with various noises—from
engine roars and tire friction to external traffic and environmental sounds—posing significant challenges
for ASR performance. The adaptation of the “wav2vec2-base-960h” model to distinct noise conditions,
particularly vehicular noise and various public noises, has yielded significant improvements. For
instance, in vehicular noise environments, the model achieved a reduction in Word Error Rate (WER)
from 19.77% to 11.26% and in Character Error Rate (CER) from 11.96% to 5.45%. Similarly, in
other noise environments, the WER improved from 56.71% to 43.49%, and the CER from 45.83% to
30.68%.

The experimental results support the initial hypotheses.The ASR model fine-tuned for specific noise
conditions significantly excels in its targeted environment, aligning with the substantial improvements
observed in both WER and CER. However, this specialization resulted in diminished performance when
the models were evaluated in non-targeted, different noise settings, underscoring the limitations of
fine-tuning. While the combination of models did not consistently outperform the general noise-robust
model across mixed environments, both exhibited slight performance declines in clean, noise-free
conditions, indicating a trade-off between specialized effectiveness and general versatility. These
insights emphasize the need for balanced approaches in ASR technology, integrating both specific
enhancements and broad robustness.

In conclusion, these enhancements confirm the potential of targeted fine-tuning in ASR systems.
Notably, these improvements were achieved without compromising the model’s performance in
no-noise conditions, where both fine-tuned models nearly matched the baseline model’s accuracy.
This underscores the effectiveness of environment-specific fine-tuning in not only enhancing ASR
performance in noisy settings but also in maintaining general capabilities in quieter environments. This
thesis advances the field of speech recognition by elucidating how specific fine-tuning strategies can
significantly improve the performance of ASR systems in challenging acoustic settings. The findings
not only enhance our understanding of ASR system adaptability but also pave the way for future
research aimed at optimizing ASR technologies for both general and specific applications, thereby
improving reliability and user interaction in smart vehicular systems and public communication
devices.
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Ethics

This thesis only utilizes open-source databases, audio samples, and models to ensure transparency,
reproducibility, and ethical integrity. The LibriSpeech corpus and NoiseX-92 noise database are public
resources that support unrestricted academic usage. Additionally, public other noise samples were
sourced from FreeSound, a platform that allows free usage of sounds for even commercial purposes
without the need to seek permission from the authors. The use of the open-source wav2vec 2.0 model
by Facebook AI further underscores our commitment to accessible and collaborative scientific inquiry.
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