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Abstract
In the current digital age where virtual assistants are widespread and sarcasm is frequently used on-
line, the detection of sarcasm has become a critical challenge. Traditional sarcasm detection methods
have largely focused on textual data, but the emergence of multimodal analysis has introduced new
dynamics into the field, reflecting the complex nature of human communication where sarcasm often
involves discrepancies across different modalities. For example, a sarcastic remark might be made
with a positive tone but accompanied by a sarcastic facial expression.

This thesis introduces the Contrastive-Attention-based (ConAtt) model, designed to enhance sarcasm
detection by leveraging a cross-modal contrastive attention mechanism. This model effectively cap-
tures and analyzes inconsistencies between modalities—such as textual praise accompanied by a com-
plaining tone—by extracting several contrastive features from the discourse. Experimental validations
on the Multimodal Sarcasm Detection Dataset (MUStARD) dataset demonstrate the ConAtt model’s
effectiveness, marking a significant advancement over traditional sarcasm detection approaches.

The ConAtt model exhibits substantial improvements in key performance metrics including Preci-
sion, Recall and F-Score, highlighting the benefits of integrating multimodal data for detecting sar-
casm. This study not only emphasizes the importance of multimodal integration but also validates
the efficacy of the contrastive attention mechanism in parsing complex and subtle cues across various
communication channels. The capabilities of the ConAtt model are pivotal for the accurate iden-
tification and interpretation of sarcasm, offering substantial potential for applications that require a
nuanced understanding of human interactions.

These findings lay a robust foundation for future research in multimodal sarcasm detection, opening
new avenues for exploring more intricate and nuanced forms of communication. This work under-
scores the growing relevance of advanced multimodal analysis techniques in the broader context of
natural language processing and human-computer interaction.

Key Words: Sarcasm detection, Multimodalities, Contrastive attention
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1 Introduction

The rapid evolution of instant messaging technologies has significantly transformed the landscape of
communication, introducing new platforms like Twitter where individuals share their daily lives and
express views using figurative language such as irony and sarcasm. Unlike traditional communica-
tion, which predominantly utilized textual content, modern interactions increasingly employ a mix
of modalities including text, audio, and video. This multimodal data surge provides a rich reservoir
for understanding complex communicative phenomena like sarcasm. Sarcasm involves a complex
interplay of sentiments where the expressed sentiment is often the opposite of the literal meaning
conveyed by the text. For example, a phrase such as “that’s really funny” that is accompanied by a
sarcastic tone or laughter may actually indicate sarcasm rather than genuine amusement. This inher-
ent characteristic makes sarcasm detection a particularly challenging domain within natural language
processing.

Sarcasm detection, also known as sarcasm recognition, is a traditional subfield of sentiment anal-
ysis and natural language processing. Traditionally, this area focused primarily on textual content,
employing analysis of special characters, emoticons, and unique syntactic and semantic patterns to
identify sarcastic expressions [1] [2]. However, text-based methods have limitations, as sarcasm can
manifest in forms that extend beyond mere text, necessitating broader analytical approaches. With
technological advancements, multimodal sarcasm detection has emerged as a promising field. This
approach integrates text, audio, and visual cues to enhance detection accuracy. Early initiatives, such
as those by Morency et al. [3], demonstrated the effectiveness of combining visual, auditory, and tex-
tual features for more accurate sarcasm detection. This has been substantiated by subsequent research
indicating that acoustic features like pitch variability and speech rate are indicative of sarcasm in au-
dio modes [4]. The inclusion of audiovisual multimodal datasets has reduced the relative error rates
in sarcasm detection by 12.9%, highlighting the superiority of multimodal methods over traditional
single-text modalities [5].

The main challenge in multimodal sarcasm detection is accurately discerning the underlying intent
behind the text, which often contradicts its apparent meaning. This task requires a nuanced under-
standing of both the content and the context in which it is presented. Sarcasm detection techniques
have included rule-based methods, statistical methods utilizing specific features and algorithms, and,
with the advent of more complex technology, deep learning methods. Deep learning methods have ad-
vanced to account for the nuanced cues embedded across textual, auditory, and visual signals, extract
features from different modalities, and establish cross-modal relationships to enhance these features
[6] [7]. Despite these advancements, effectively fusing cross-modal features remains a significant
challenge. Most current approaches rely on concatenating features from various modalities, assigning
equal importance to each. This method may not always accurately reflect true communicative intent.
Additionally, effectively capturing modal inconsistencies—which play a pivotal role in detecting sar-
casm—remains an underexplored area in multimodal analysis.

Human communication exhibits dual dynamics, such as inter-modal and intra-modal dynamics [8].
Inter-modal dynamics pertain to how different communication modalities interact, such as the com-
bination of textual content and vocal tone in a sarcastic remark. Intra-modal dynamics, on the other
hand, focus on variations within a single modality, such as changes in tone or facial expressions.
These dynamics are crucial for detecting sarcasm, as they often exploit inconsistencies that can be
subtle and highly context-dependent. For example, a sarcastic remark might be delivered with a
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cheerful tone and a smile, which contradicts the negative sentiment of the spoken words.

To address the intricacies of multimodal sarcasm detection, we propose the ConAtt model. This model
uses a contrastive attention fusion strategy that is adept at capturing both intra-modal and inter-modal
inconsistencies [9]. By focusing on differences within and between modalities, the ConAtt model ef-
fectively improves the detection of sarcasm. The advantage of this model lies in its ability to discern
contrasts between linguistic content and accompanying audiovisual signals, which are key factors
in sarcasm detection. For example, when the textual components of an utterance appear neutral or
positive, but the corresponding audio and visual cues—such as a complaining tone or a somber fa-
cial expression—indicate negativity, this discrepancy signals sarcasm. The ConAtt model utilizes
a contrastive attention mechanism to target these inter-modal inconsistencies. It generates oppos-
ing attention weights for interactions between modalities, effectively highlighting contrasts between
them. This approach not only underscores inconsistencies across different modal expressions—such
as when audio and visual cues are consistent but textual content differs—but also enhances sarcasm
detection in scenarios where traditional monomodal approaches may fail. This focused analysis across
modalities enables ConAtt to effectively detect both subtle and overt cues of sarcasm.

The organization of this thesis is as follows: The document is divided into five main sections. The
introduction is followed by a literature review of the paper. This review examines traditional rule-
based methods for sarcasm detection (Section 2.1.1), machine learning approaches (Section 2.1.2),
deep learning approaches (Section 2.1.3), and multimodal sarcasm detection (Section 2.2), which
leads to the formulation of research questions and hypotheses. The methodology is detailed in the
third section, which includes an overview of the dataset structure, the architecture of the model, and
specific details of the experimental design. The fourth section presents the results, comparing the per-
formance of the baseline models with the ConAtt model. Additionally, an ablation study is conducted
to explore the impact of different components on multimodal sarcasm recognition. By incrementally
adding various modalities and applying the contrastive attention mechanism, the influence of each
component on sarcasm detection is examined. These findings are then compared with previous re-
search results. Discussions on the model’s structure highlight the limitations of the current study and
suggest directions for future research. Finally, the fifth chapter provides conclusions and perspectives
on future research directions.
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2 Literature Review

The field of sarcasm detection has seen significant transformations, evolving from simple text-based
analyses to sophisticated multimodal approaches. Initially, rule-based methods were prominent, re-
lying heavily on textual indicators and semantic inconsistencies to identify sarcasm. However, these
approaches often struggled with accuracy and adaptability across different domains. The advent of
machine learning brought about a shift towards statistical models, enhancing sarcasm detection ca-
pabilities through supervised learning and manual feature extraction. As technology advanced, deep
learning methods, particularly neural networks, became pivotal in sarcasm detection, offering the
ability to automatically learn complex patterns and handle high-dimensional data. The limitations of
text-only analysis led to the integration of multimodal methods, combining textual, visual, and audi-
tory data to capture the nuanced expressions of sarcasm more effectively.

2.1 Text-based Sarcasm Detection

2.1.1 Rule-based Approaches

In the field of sarcasm detection, early methods primarily relied on rule-based approaches, which
focused on identifying inconsistencies in sentiment polarity within the text to detect sarcasm. Such
methods involved recognizing specific indicators or patterns within sentences that are commonly as-
sociated with sarcasm, including the analysis of punctuation, hashtags, and syntactic structures [10]
[11] [12]. For instance, Suhaimin et al. decomposed the corpus into words and symbols, utilized
Malay and English dictionaries to correct spelling errors, performed stop-word removal to eliminate
meaningless words, extracted lexical features in n-gram form, and converted all tokens to lowercase
to ensure consistency [13]. In addition to lexical features, syntactic features focused on the construc-
tion and structure of sentences were analyzed, where Suhaimin et al. tagged the translated corpus
with POS, including 36 different tags representing various grammatical categories, mapped to corre-
spondence groups (NOUN, VERB, ADJECTIVE, ADVERB), with non-conforming words removed
to emphasize word-tag pairs representing syntactic features [13].

Semantic properties also play a critical role, as they involve the meaning of language and individ-
ual words, which can vary depending on context. Semantic methods are widely used due to their
effectiveness in identifying sarcasm, for example, Bharti et al. employed a semantic-based approach
where a sentence containing a negative phrase within a positive context was considered sarcastic [14]
[15]. Moreover, early research in sentiment analysis often treated the task as an unsupervised learning
problem, where researchers developed sentiment dictionaries and judgment rules for specific domains
through manual curation. These lexicon-based methods involved data preprocessing, including clean-
ing and noise reduction, tokenization, and computing sentiment scores and classification results based
on the emotional polarity of words [16].

In summary, while these rule-based approaches are intuitive and straightforward, they have significant
limitations such as an over-reliance on the construction of dictionaries and rules, which not only
affects accuracy but also increases manual labor costs and struggles to adapt to texts from different
domains. Furthermore, these methods often fail to effectively handle ambiguous or context-dependent
sarcastic expressions, highlighting the need for more sophisticated techniques in sarcasm detection.
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2.1.2 Machine Learning Approaches

Supervised learning involves analyzing a large volume of sample data to build classifiers or regressors
for predicting new data. Common classification algorithms include Naive Bayes (NB), Support Vec-
tor Machine (SVM) [17], and Maximum Entropy (ME). For instance, Pang et al. [18] demonstrated
the superiority of machine learning methods over traditional sentiment dictionary approaches. Xin
Guo et al. [19] used WordNet for feature extraction and vector representation, building SVM models
for sarcasm detection.

However, machine learning-based methods, despite their robust capabilities in detecting sarcasm, typ-
ically require manual feature extraction, including lexical polarity, text labels, grammatical structures,
and sarcastic expressions. For example, Ptáček et al. [20] collected tweets labeled with “#sarcasm”
using the Twitter API to mark sarcastic sentiments and designed manual features based on lexical fre-
quency and sarcasm indicators such as emoticons, punctuation, quotes, and capital letters, evaluated
using SVM and ME classifiers. Eke et al. [21] extracted a variety of features from texts, including
lexical features, text length, grammatical features, syntactic features, emoticon features, tag features,
and semantic features, and employed a two-stage classification process using decision trees, SVM,
K-Nearest Neighbors (K-NN), logistic regression trees, and random forests; the first stage used Bag-
of-Words and Term Frequency-Inverse Document Frequency (TF-IDF) to process lexical features into
a dictionary, and the second stage utilized this dictionary along with other features for sarcasm detec-
tion. Choosing the appropriate classifier is crucial, as different classifier combinations can impact the
analysis outcomes.

2.1.3 Deep Learning Approaches

With the advent of deep learning technology, neural network-based methods have significantly ad-
vanced the field of natural language processing, particularly in sarcasm detection. Techniques such as
Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) [22], and Long Short-
Term Memory networks (LSTMs) have become fundamental due to their capability to automatically
learn features and patterns from data, enhancing their ability to handle high-dimensional data and
understand text sequences. Originally developed for image recognition, CNNs have shown remark-
able performance in text processing tasks, effectively extracting local features from input texts using
multiple convolutional kernels, which enhances classification performance [23] [24]. Wang et al.
[25] introduced a densely connected CNN model that incorporates a multi-scale feature attention
mechanism to improve accuracy in classification tasks. On the other hand, RNNs and LSTMs are
particularly well-suited for processing sequential data [26], such as text or speech, due to their ability
to capture temporal and sequential information which is crucial for understanding language struc-
tures. However, RNNs are prone to issues like gradient vanishing or exploding, which can limit their
performance and stability. To address these issues, Hochreiter et al. [27] introduced LSTM, which
includes design elements such as input gates, forget gates, and output gates to effectively mitigate
gradient problems and handle long-term dependencies.

In sarcasm detection, Jain et al. investigated the structural characteristics of sarcastic sentences using
a hybrid model combining LSTM and CNN to capture contrasts in sentences at different memory
levels [28]. Similarly, Ghosh and Veale [29] employed a method for sarcasm detection through so-
cial media by collecting tweets tagged with #sarcasm and expanding the dataset using an LSA-based
approach to include additional indicative tags. They created a balanced training dataset and an an-
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notated test set, and developed a deep neural network model. This model integrates contextual cues
such as tags, profile references, and emoticons, utilizing the Stanford constituency parser to enhance
the extraction of relevant features from the data. The network architecture includes an LSTM layer
followed by a fully connected Deep Neural Network (DNN) layer, which utilizes the outputs from the
LSTM to generate a high-order feature set that aids in effective classification. These models showcase
the effectiveness of deep learning in identifying nuanced expressions of sarcasm across various data
forms.

Although single-modality methods are effective in text-based domains, such as processing Twitter
data, their limitations become apparent in real-life communication scenarios. In these settings, com-
munication often extends beyond mere text to include tone of voice, facial expressions, and body lan-
guage. The absence of this multimodal information hinders the effectiveness of traditional sarcasm
detection methods. Consequently, there is a growing emphasis in current research on developing mul-
timodal detection methods. These methods aim to integrate data from various modalities—textual,
auditory, and visual—to enhance the accuracy and efficiency of sarcasm detection. By capturing the
complexity of human communication more fully, multimodal approaches are better able to identify
and analyze sarcasm in different contexts.

2.2 Multimodal Sarcasm Detection

Due to the limitations of text-based unimodal sarcasm detection, which cannot utilize features from
different modalities, the integration of multimodal methods has become increasingly important. Mul-
timodal sarcasm detection integrates textual, visual, and auditory information to enhance detection
performance by capturing the nuanced expressions of sarcasm that unimodal data often miss [30].
This approach leverages the rich, complementary information available across different modalities,
helping to overcome the ambiguity that often accompanies text-only analysis.

2.2.1 Multimodal Fusion Methods

The fusion techniques employed in multimodal sarcasm detection typically include early fusion, late
fusion, and hybrid fusion. Early fusion, also known as feature fusion, involves integrating features
from all modalities at an early stage before any model training occurs. This method can capitalize
on the high correlation between modalities to enhance model training efficiency. However, managing
high dimensionality and preserving relevant information without introducing redundancy pose sig-
nificant challenges [31]. On this basis, Busso et al. [32] focused on the interactions between facial
features such as lips, eyebrows, and head movements, and vocal features, significantly advancing the
development of multimodal feature fusion. Morency et al. [3] utilized Hidden Markov Models to
integrate textual, visual, and auditory features for tri-modal emotion analysis. They constructed a
YouTube video emotion dataset to support their experimental data.

Late fusion, or decision fusion, involves training separate models for each modality and then com-
bining their outputs towards the final decision-making process. This method is less susceptible to
the complexities of direct feature integration and can effectively manage the uncorrelated errors from
different modal outputs [33]. Common late fusion techniques include weighted averaging, concatena-
tion, and summation, using advanced models like CNNs and RNNs to integrate results effectively. For
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instance, Wu et al. [34] proposed a method that extracts prominent emotional features from voice and
inputs them to an SVM and Multi-Layer Perceptron (MLP) for localized recognition results, which
are then fused using a linear weighting method to enhance performance. Ellis et al. [35] utilized three
separate SVM to classify textual, video, and audio features respectively. They then applied a linear
weighting strategy for decision fusion, demonstrating the significance of multimodal integration.

Hybrid fusion combines the strengths of both early and late fusion, integrating some features early on
and leaving other aspects of decision-making to be combined after individual modal analyses. This
method potentially yields a more robust model by leveraging both feature-level and decision-level
insights, albeit at the cost of increased model complexity and training challenges [36]. Poria et al.
[37] used a Gaussian kernel-based feature fusion for integrating text, visual, and voice features, and
designed a decision fusion method based on weighted rules, choosing an Extreme Learning Machine
(ELM) as the classifier for sentiment analysis. Rozgic et al. [38] initially utilized overlapping seg-
ments of electroencephalogram (EEG) signal sequences. Subsequently, they merged segment-level
features to obtain response-level feature vectors. Finally, they employed decision fusion to achieve
emotional classification results. Sayedelahl [39] proposed a hybrid fusion approach, combining fea-
ture and decision modalities, to enhance the assessment of emotions from spontaneous spoken dia-
logues.

2.2.2 Constrastive Attention

Advancements in multimodal fusion techniques are continuously addressing the challenges of effec-
tively modeling the dynamics between different modalities. For instance, Morency et al. [3] utilized
Hidden Markov Models to integrate text, visual, and audio features for tri-modal emotion analysis,
creating a YouTube video emotion dataset to support their experimental data. Similarly, Sebe et al.
[40] tackled the challenges of visual and audio emotion recognition by proposing the use of probabilis-
tic graphical models, such as Bayesian networks, to probabilistically merge facial and vocal features,
enhancing the accuracy of emotion detection. However, these approaches often focus mainly on the
integration of modalities and tend to overlook the inconsistencies between them.

As attention mechanisms become increasingly prevalent in the field of deep learning, researchers are
integrating these mechanisms into multimodal feature fusion frameworks more extensively. For ex-
ample, Bedi et al. [41] developed a Hindi-English mixed code dataset (MaSaC) for detecting sarcasm
in conversations, proposing a multimodal hierarchical attention network structure. This structure cap-
tures the correlations between modalities, thus effectively uncovering sarcastic sentiments. Extending
this approach, Pan et al. [42] proposed a multimodal sarcasm framework based on images, text, and
post tags that not only integrates features across modalities but also uses attention mechanisms to
simulate inconsistencies between them. Furthermore, Wang et al. [43] considered using a pretrained
language model to model multimodal information by concatenating image and text features and in-
putting them into a BERT model, allowing the model to focus on inconsistencies between modalities
using attention mechanisms.

To further enhance the detection of sarcasm, researchers implement the contrastive attention mecha-
nism [44] [45], which is specifically designed to extract inter-modality incongruent information. This
innovative approach leverages the discrepancies between different types of data to identify sarcasm
more effectively, emphasizing the importance of detecting contrasting cues that are often pivotal in
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understanding sarcastic expressions.

Despite these advances, as research progresses, the field of multimodal fusion methods continues to
evolve significantly. However, the effective integration of multimodal features for accurate modeling
remains a primary challenge in sarcasm detection.

2.3 Research Question and Hypothesis
In the rapidly evolving field of digital communication, the integration of diverse modalities such as
text, audio, and visual cues has significantly enriched the complexity of interpreting communicative
cues, particularly sarcasm [9]. Despite the considerable advances in multimodal sarcasm detection,
effectively integrating these modal features to capture nuanced incongruities between different modal-
ities remains a formidable challenge. These incongruities are often pivotal in sarcasm detection, as
sarcasm frequently exploits discrepancies, such as a mismatch between the tone of voice and the text
content, to convey meanings contrary to the literal interpretation of words [46].

Building on the complexities and challenges identified in the field of multimodal sarcasm detection,
we propose the following research question: How can different feature fusion methods utilizing mul-
tiple modalities affect the accuracy of sarcasm recognition? Based on the research question exploring
how different feature fusion methods affect sarcasm recognition accuracy, this thesis hypothesizes
that the ConAtt model, which utilizes a contrastive attention mechanism [47], will surpass early fu-
sion methods in terms of Precision, Recall and F-Score. The ConAtt model is designed to specifically
enhance the recognition of sarcasm by highlighting and effectively utilizing modal discrepancies. This
approach is expected to provide a more nuanced and accurate detection of sarcasm, particularly by
capturing and emphasizing the incongruities between different modalities, such as textual, auditory,
and visual cues. Additionally, the hypothesis underscores the role of multimodal data in improving
sarcasm detection performance, positing that the integration of multimodal data not only enriches
the context available for analysis but also significantly refines the detection capabilities of sarcasm, a
complex communicative phenomenon often embedded in subtle cues and contradictions [48].
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3 Methodology
In this chapter, we introduce the early fusion method as Experiment 1, which serves as a compara-
tive experiment. Experiment 2 employs the ConAtt model, designed to validate that the contrastive
attention strategy enhances model performance by capturing discrepancies between modalities. The
organization of this chapter is as follows: initially, we discuss the structure of the dataset and the pro-
cess of feature extraction. Subsequently, we detail the model architecture, including Experiment 1 for
comparison, and provide a comprehensive description of the structure and fusion process of Experi-
ment 2—the ConAtt model. Lastly, we outline the experimental procedures, including the evaluation
measures used and the cross-validation methods employed. This structure provides a clear framework
for understanding the dataset creation, feature extraction, and experimental design aspects of our re-
search.

3.1 Dataset and Feature Extraction
In this section, we will introduce the MUStARD [47] and the methodology for extracting textual,
auditory, and visual features to be utilized in the experiment. Three vectors are used to represent
each utterance: a textual feature (T) for linguistic content (text), an acoustic feature (A) for acoustic
characteristics (audio), and a visual feature (V) for visual information.

3.1.1 Dataset

We use the MUStARD from GitHub1 as the benchmark for detecting sarcasm. This dataset consists
of video clips from four popular TV shows: Friends, The Big Bang Theory, The Golden Girls, and
Sarcasmaholics Anonymous. The dataset includes a total of 690 videos, with an equal distribution of
sarcastic and non-sarcastic samples.

The MUStARD dataset is designed to capture sarcasm by incorporating complementary information
from multiple modalities—vision, audio, and text, along with speaker identification. Each sample in
the dataset includes these three modalities and the identity of the speaker, providing a comprehensive
context for sarcasm detection.

The dataset is divided into two main parts: the final utterance and the preceding sentences of the final
utterance, which provide the context. The context provides additional information that is crucial for
understanding whether a statement is sarcastic or not. Statistical details of the dataset can be found in
Table 1 [5].

3.1.2 Audio Preprocessing

The preprocessing steps involve the reduction of background noise from all audio files, followed by
resampling to a uniform 22,050 Hz and conversion to a mono channel to ensure consistency in audio
quality across the dataset.

1https://github.com/soujanyaporia/MUStARD

https://github.com/soujanyaporia/MUStARD
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Table 1: Dataset statistics by utterance and context.

Statistics Utterance Context
Unique words 1991 3205
Avg. utterance length (tokens) 14 10
Max. utterance length (tokens) 73 71
Avg. duration (seconds) 5.22 13.95

3.1.3 Feature Extraction

Text Features: Textual feature (T) is generated using a pre-trained BERT model [49], and finally a
768-dimensional (dt = 768) vector representation is extracted for each target sentence. The procedure
starts with tokenizing each sentence using the BERT tokenizer, which converts text into a sequence of
tokens. To standardize input lengths, shorter sentences are padded with [PAD] tokens, while longer
sentences are truncated to the maximum length of 512 tokens. This ensures all sequences are uni-
formly processed. The core of the feature extraction involves initially computing the average of the
hidden states from the last four transformer layers of the first [CLS] token, as these layers typically
capture a richer contextual representation of the sentence. However, subsequent empirical findings
highlighted in [50] suggest that a more accurate representation is obtained by using the hidden state
of the last [CLS] token. Thus, in later stages, this approach is adopted.

Speech Features: In our research, we employ the Librosa library [51] to extract low-level acoustic
features from each utterance within our dataset. Feature extraction is carried out by segmenting each
audio signal into dw non-overlapping windows. This segmentation enables the extraction of local
features such as Mel-frequency cepstral coefficients (MFCCs), mel-spectrograms, spectral centroids,
and their respective temporal derivatives (delta features). Here is an overview of each feature and its
relevance to our analysis:

MFCCs: These capture the spectral characteristics and energy distribution within short-time frames,
proving essential for distinguishing between sarcastic and non-sarcastic utterances based on acoustic
differences.

Mel-spectrogram: This feature offers a visual representation of the frequency content over time, em-
phasizing regions of higher energy. It is instrumental in analyzing spectral patterns and acoustic cues
within both sarcastic and non-sarcastic speech.

Spectral centroid: It characterizes the “center of mass” of the frequency distribution, providing in-
sights into pitch and tonal differences between different types of speech.

Temporal derivatives: Representing the rate of change of acoustic features over time, these deriva-
tives capture dynamic changes in speech delivery, which are crucial for identifying sarcasm due to its
unique temporal variations.

To handle the variable lengths of audio sources in our dataset, we compute the average of these acous-
tic features for each focused utterance, referred to as acoustic feature A, with a dimensionality of 298
(da = 298), to create a consistent framework for further analysis.
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Video Features: To accurately extrate the visual features, we adopt a structured approach using the
pre-trained ResNet-152 model, which is based on the ImageNet dataset. Specifically, we focus on the
pool5 layer of ResNet-152 [52], recognized for its ability to encapsulate high-level visual descriptors.
For each frame in the dataset, designated as the f frame, we use this layer’s output as a feature
vector. The pool5 layer generates a 2048-dimensional vector, capturing a rich set of visual data points
that represent key aspects of the image content effectively. To create a uniform feature set for each
utterance, regardless of the number of frames it contains, we compute the average of these vectors
across all frames within a focused utterance. This averaging process smooths out anomalies and
provides a stable, representative visual feature set. The resultant average vector, denoted as visual
feature (V), retains the 2048-dimensional structure (dv = 2048).

3.2 Multimodal Fusion

In our study, we explore multimodal frameworks which are essential for integrating and correlat-
ing multiple types of data simultaneously, specifically acoustic, visual, and textual information [53].
These frameworks employ three principal fusion strategies: early, late, and hybrid fusion, each cater-
ing to different aspects of data integration and processing.

Early Fusion [54] involves integrating different sources of data into a single, comprehensive feature
vector before any classification process. This vector is then fed into a single classifier. In contrast,
Late Fusion [55] refers to the aggregation of outputs from multiple classifiers, each trained indepen-
dently on different modalities. The final decision is typically made by averaging these outputs or
through more complex decision-making mechanisms like voting. Hybrid Fusion [56] employs an in-
termediate shared representation layer where data from various modality-specific sources are jointly
learned. This shared layer facilitates a deeper integration of modalities, allowing the model to lever-
age both inter-modal and intra-modal interactions more effectively.

In the context of our research, we first employ early fusion methods in Experiment 1 to demonstrate
how integrating multimodal data can enhance sarcasm detection performance. This establishes a
foundational comparative framework for evaluating the effectiveness of more advanced fusion tech-
niques. Subsequently, we focus on the application of the ConAtt model as Experiment 2, which serves
as a prime example of the contrastive attention mechanism. The ConAtt model was specifically se-
lected due to its innovative use of contrastive attention mechanisms. These mechanisms significantly
heighten the model’s sensitivity to the subtle nuances typically found in sarcastic expressions. Exper-
iment 2 aims to validate the hypothesis that the contrastive attention mechanism can improve model
performance further by adeptly capturing discrepancies between modalities.

The ensuing sections will detail the experimental setup, the specific architectures employed for each
fusion strategy, and the results obtained from our comparative study.

3.2.1 Experiment 1

In Experiment 1, we utilize the early fusion method, also known as feature-level fusion. This method
involves combining features from different modalities—namely, textual, visual, and auditory—into a
single multimodal feature vector. The primary advantage of this approach is its ability to capture the
interrelationships among features from different modalities, which can significantly enhance perfor-
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mance by leveraging these integrated features for more robust predictions.

Our methodological approach begins with the extraction of features specific to each modality: tex-
tual(T), visual(V), and acoustic(A) features are obtained using the aforementioned methods 3.1.3.
Once these features are extracted, they are concatenated to form a unified feature vector that repre-
sents all modalities.

This integrated multimodal feature vector, as depicted in the Feature Fusion phase of Figure 1, is then
fed into a classifier for training and prediction. The selection of robust classifiers capable of handling
large, complex feature sets is crucial. Suitable classifiers include deep learning models such as MLP,
LSTM, and SVM.

MLP: MLP is well-suited for processing high-dimensional feature vectors derived from early fusion.
It utilizes its multilayer structure to learn complex patterns within the input data. MLP’s effectiveness
lies in its ability to integrate and classify various input features through nonlinear activation functions,
such as ReLU or Sigmoid, which are pivotal for understanding and interpreting the implicit correla-
tions present in multimodal data.

LSTM: LSTM is particularly applicable to the analysis of multimodal data with temporal dynamics,
such as joint textual and auditory cues [26]. LSTM’s gating mechanisms help the model process and
remember long-term dependencies without losing information over time, which is crucial for under-
standing the subtle linguistic and tonal variations inherent in sarcasm.

SVM: SVM [57] is a powerful supervised learning algorithm commonly used for both classification
and regression tasks. SVMs operate by finding a hyperplane in the feature space that maximizes the
margin between different data point categories. This model is particularly well-suited for handling
high-dimensional data, effectively performing even when the number of data points is less than the
number of features. SVMs enhance their adaptability and flexibility by employing kernel techniques,
such as linear, polynomial, and radial basis function kernels, to manage data that is not linearly sepa-
rable. This capability makes SVMs perform excellently on small datasets and particularly suitable for
intricate pattern recognition challenges, such as distinguishing between sarcastic and non-sarcastic
expressions.

SVMs were selected as the baseline classifier for Experiment 1 due to their proven effectiveness in
efficiently classifying small to medium-sized datasets [57]. In subsequent ablation studies, we will
conduct comparative analyses using MLP and LSTM to further evaluate the performance across dif-
ferent models. The detailed structure is shown in Figure 1. Here, V, T, and A represent the visual
features, textual features, and acoustic features, respectively. Additionally, the early fusion model’s
source code is open and publicly available on GitHub2.

2https://github.com/soujanyaporia/MUStARD

https://github.com/soujanyaporia/MUStARD


Chapter 3 METHODOLOGY 17

Figure 1: The Proposed Early Fusion Method

3.2.2 Experiment 2

In this section, we detail the architecture and functional components of the ConAtt model [47], which
is designed for multimodal sarcasm detection. Our model effectively evaluates sarcasm within a con-
versational context, providing a nuanced analysis that incorporates historical interactions. The ConAtt
model is open source code for public use and available on github3.

The multimodal sarcasm detection task involves analyzing an utterance sequence Si = {u1,u2, . . . ,ui}
within a conversation that has proceeded for t turns. The focus is on the i-th utterance ui, which is the
subject of testing, while the preceding utterances serve as its historical context. The objective of the
ConAtt model is to assign a binary label to ui (1 for sarcasm and 0 for non-sarcasm), conditioned on
both the utterance itself and its interaction with previous utterances. Here, Si denotes the sequence
of utterances in the conversation up to the i-th utterance, ui points to the i-th utterance in the sequence.

3https://github.com/xiaoqiangzhang203/Multi-modal-Sarcasm-Detection-ConAttSD

https://github.com/xiaoqiangzhang203/Multi-modal-Sarcasm-Detection-ConAttSD
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Figure 2: The Proposed ConAtt Model Construction

The ConAtt model, as illustrated in the Figure 2 [47], consists of four main components: Feature
Extraction, the Sequential Context Encoder, the Contrastive-Attention-based Encoder, and the Linear
Decoder. Feature Extraction employs the methods discussed above to extract features from text, au-
dio, and video. Subsequently, the Sequential Context Encoder dynamically captures the intra-modal
influences that are transmitted throughout the conversation, effectively processing the sequential flow
of dialogues. Then, the Contrastive-Attention-based Encoder, utilizing an inter-modal contrastive
attention mechanism, extracts inconsistencies between different modalities within the conversation,
highlighting discrepant cues that are indicative of sarcasm. Finally, the Linear Decoder assigns a sar-
casm label to the utterance by synthesizing the insights gathered from both encoders, thus determining
the presence or absence of sarcasm based on the integrated feature representation. This structured ap-
proach allows for nuanced detection of sarcasm across varied communicative cues.

Sequential Context Encoder: In this study, we introduce a sequential context encoder designed to
analyze the sequence and context of conversations, focusing on how utterances influence each other
across time. As illustrated in Figure 3, this encoder comprises two sub-encoders: one based on Gated
Recurrent Units (GRU) and another based on the Transformer architecture.
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Figure 3: Sequential Context Encoder

The GRU-based encoder extracts the sequential context information. Specifically, it uses a GRU
mechanism to update the global state for each utterance, which represents the sequential context [47]
as follows:

gm
i = GRUm

G
(
(um

i ⊕ cm
i ) ,g

m
i−1

)
(1)

Here, m ∈ {T,A,V} denotes the modality, gm
i is the global state for the i-th utterance in modality, um

i
is the i-th utterance, and cm

i is the context, which captures both intra-modal and inter-modal influ-
ences. The global state gm

i is updated by concatenating um
i and cm

i using the concatenation symbol ⊕,
expressed as: gm

i = um
i ⊕ cm

i .

In the Transformer-based sub-encoder, we enhance the capability to capture extensive sequential con-
text by utilizing the Transformer model, known for its efficiency in handling long-range dependencies.
The Transformer operates over the global states, applying multiple layers of self-attention and feed-
forward neural networks to produce a refined sequential context vector hm

i for each utterance.

Contrastive-Attention-based Encoder: In order to discern incongruent information across multi-
ple modalities for effective sarcasm recognition, following the work of [47], we introduce the inter-
modality contrastive attention mechanism. This mechanism utilizes contrastive attention to process
three sequential context vectors—hT

i (textual), hA
i (audio), and hV

i (visual)—derived from the se-
quential context encoder. The contrastive attention mechanism, initially developed for person re-
identification in computer vision and later adapted for natural language processing tasks such as text
summarization, extends from the traditional self-attention mechanism utilized in Transformers. The
process involves three primary steps: calculation of conventional attention weights ac using Eq. 2,
derivation of opponent attention weights ao via an opponent function followed by a softmax operation
as defined in Eq. 3, and the formation of a contrastive vector through the weighted summation of the
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elements of V , using opponent attention weights as specified in Eq. 4. Here, Q, K, and V represent
the queries, keys, and values, respectively, with dk denoting the dimension of the key vector K.

ac = softmax
(

QKT
√

dk

)
(2)

ao = softmax(1−ac) (3)
r = aoV (4)

This contrastive attention framework aims to highlight less relevant or irrelevant aspects between two
vectors. Specifically, in the context of this research, the text modality serves as the anchor. Directed
bi-modal variants, such as T → A and T → V, are formulated by designating the textual vector hT

i
as Q and the respective audio and visual vectors as K. The vectors hA

i and hV
i are then used as V

to generate the inter-modality contrastive vectors, namely rT→A
i and rT→V

i . These vectors represent
the incongruence within their corresponding bi-modal interactions, effectively isolating discrepancies
between text and the other modalities.

Linear Decoder: As illustrated in Figure 2, the classification process relies on the integration of
output vectors from distinct encoding stages. Specifically, three sequential context vectors—hT

i (tex-
tual), hA

i (audio), and hV
i (visual), generated by the sequential context encoder—are merged with the

two inter-modal contrastive vectors—rT→A
i and rT→V

i , produced by the Contrastive-Attention-based
Encoder. The combined vector is then fed into a softmax classifier. This classifier is responsible for
determining the sarcasm label of the utterance ui. It assesses whether the utterance expresses sarcasm
by analyzing the complex interplay of multimodal signals encapsulated within the combined vector.
This method highlights the importance of integrating diverse modal inputs to enhance the precision
of sarcasm detection in intricate communicative contexts.

3.3 Experiment
3.3.1 Baselines

In our exploration of sarcasm recognition using the MUStARD dataset, we conduct two key experi-
ments. Experiment 1 is designed to validate whether integrating multimodal data enhances sarcasm
detection performance. In Experiment 2, we test the effectiveness of the ConAtt model. This ap-
proach is hypothesized to further improve model performance by effectively capturing discrepancies
between modalities, thereby demonstrating the comparative advantages of our proposed method over
Experiment 1. The code for my model is currently available on github4.

Experiment 1: Following the methodology outlined in [5], we implement an early fusion strategy to
integrate features from three modalities—speech, text, and audio—into a single feature vector. This
integrated vector is then input into a SVM classifier for training and evaluation.

Experiment 2: Based on the work referenced in [47], our ConAtt model integrates four key compo-
nents: Feature Extraction, the Sequential Context Encoder, the Contrastive-Attention-based Encoder,
and the Linear Decoder. This integration enables nuanced detection of sarcasm across diverse com-
municative cues. The architecture of this model is depicted in Figure 2.

4https://github.com/youyang-cai/Multimodal-sarcasm-recognition

https://github.com/youyang-cai/Multimodal-sarcasm-recognition
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Table 2: Hyperparameters for fine-tuning ConAtt

Optimizer Batch size Learning rate Dropout rate
Adam 64 0.0001 0.5

3.3.2 Setup

Following the work of [47], there are two setups available for experiments, we have opted for a
speaker-dependent setup, as it simplifies the processing requirements. We implement a five-fold cross-
validation method in our experiments, ensuring each fold is randomly generated in a stratified manner
to maintain label balance across the dataset. During each iteration of the validation process, one fold is
designated as the test set, while the others are used for training. Validation subsets are systematically
derived from the training folds during each iteration of the cross-validation process. Specifically, 10%
of each training set is further partitioned to serve as the validation subset. To evaluate the effectiveness
of our sarcasm detection models, our study conducted Experiment 1 and Experiment 2. Experiment 1
was divided into unimodal and multimodal tests, employing SVM to process features from respective
modalities. This was done to validate the importance of multimodal data over unimodal data when it
comes to sarcasm detection and to establish a baseline for Experiment 2.

In Experiment 2, we employed the contrastive attention mechanism, which integrates data from mul-
tiple modalities and focuses on capturing discrepancies between these different modalities. This
strategy aligns with our hypothesis that such an approach would yield superior model performance
by effectively highlighting and utilizing these discrepancies. To deepen our analysis, we conducted
ablation studies in Experiment 1 by varying the type of classifier used. We replaced the SVM with a
MLP and a LSTM network in separate trials to test the robustness of our findings and to further vali-
date the significance of multimodal data in sarcasm detection. Experiment 2 explored the efficacy of
the contrastive attention mechanism by conducting trials with and without the Contrastive-Attention-
based Encoder. This part of the study was crucial for demonstrating how the contrastive attention
mechanism aids in recognizing inconsistencies across modalities, which is essential for accurately
detecting sarcasm.

Additionally, due to the randomized nature of fold creation which led to an overlap of speakers across
training and testing sets, we classified our approach as speaker-dependent. This classification was
important for interpreting the performance metrics of our models. We used weighted metrics for
Precision, Recall, and F-Score, where weights were determined based on the relative frequencies of
sarcasm and non-sarcasm instances within the dataset, ensuring that our evaluation metrics reflected
the distribution of the classes accurately.

During the training phase, we employ the Adam optimizer [58] to fine-tune all hyperparameters. A
detailed overview of the hyperparameters is given in Table 2. Each training batch consists of 64 con-
versations, with a learning rate meticulously set to 0.0001 in order to optimize convergence speed
and stability. In the GRU component of our model, a dropout rate of 0.5 is implemented to reduce
overfitting, enhancing the model’s generalization capabilities across unseen data. The hidden repre-
sentations within the GRU are configured to a dimensionality of 150, providing a balance between
model complexity and computational efficiency. Furthermore, for the Transformer-based components
of our architecture, we configure three blocks (B=3) and set the number of attention heads to six. This
configuration is chosen to effectively capture the intricate dependencies within the data while main-
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taining manageable computational demands. These settings collectively ensure that our model is
robust and capable of handling the complexities inherent in multimodal sarcasm detection.
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4 Results
This chapter presents a detailed analysis of the impact of multimodal data integration on sarcasm
detection. Through a series of methodically designed experiments, we explore how the combination of
various modalities—text, audio, and visual—enhances the performance of sarcasm detection systems.
The results from these experiments provide empirical evidence supporting the hypothesis that the
ConAtt model, which utilizes a contrastive attention mechanism to highlight modal discrepancies,
enhances sarcasm detection accuracy compared to early fusion methods. This underscores the benefits
of leveraging diverse datasets and the contrastive attention mechanism in capturing the subtleties
of sarcastic expressions. This chapter is structured to first discuss the comparative performance of
different modal setups, followed by insights from ablation studies, and concluding with the limitations
of the current study and directions for future research.

4.1 Comparison With Baselines

In an effort to explore the impact of multimodal data on sarcasm detection performance, we con-
ducted an analysis using various modality configurations across two distinct experiments. The results
of these experiments are summarized in Table 3. Here, the Error Rate Reduction (ERR) quantifies
the decrease in relative error, calculated as the difference between these two values divided by the
absolute error of the unimode, exemplified by the formula 3.8/(100−68.1).

Experiment 1 evaluated the effectiveness of unimodal versus multimodal configurations in sarcasm
detection, demonstrating a significant superiority of multimodal setups. The integration of all three
modalities—text, audio, and visuals—proved to be the most effective, achieving Precision, Recall,
and F-Score rates of approximately 71.7%. These metrics indicate an upward trend compared to the
highest-performing single modality, visuals, which scored around 67.4%. This configuration also re-
sulted in an ERR of approximately 11.91%, which further indicates that a single feature cannot fully
express sarcasm, and more information is needed to assist sarcasm detection.

In Experiment 2, the implementation of the ConAtt model led to further enhancements in sarcasm
detection performance by effectively capturing discrepancies between modalities. Using multimodal
data (T+A+V) and the ConAtt model produced improved Precision, Recall, and F-score values of
75.3%, 75.1%, and 75.0%, respectively. With gains of 3.4% in Precision and Recall as well as a
3.3% improvement in the F-score over the best-performing model from Experiment 1, these measures
show improvements in all parameters. This yielded the ERR of up to 11.66%. The performance
boost provided by the ConAtt model underscores the efficacy of contrastive attention fusion strategy
in highlighting modal inconsistencies, illustrating the robustness of the ConAtt model and the impor-
tance of multimodal data integration.

Further exploration into the influence of the three modalities on the ConAtt model involved evalu-
ating its performance using both dual-modal and tri-modal variants. Among the dual-modal setups,
the combination of text and audio (T+A) displayed superior performance, achieving Precision at
71.8%, Recall at 71.7%, and F-Score at 71.7%. Configurations excluding the acoustic feature (T+V)
performed the worst, emphasizing the critical role of audio features in capturing speaker-specific
details such as pitch and intonation, which are essential in detecting sarcasm. The tri-modal vari-
ant (T+A+V), however, achieved the highest performance across all metrics, suggesting that each
modality contains unique and complementary information that contributes significantly to the overall
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Table 3: Comparison With Baselines

Experiment Modality Precision Recall F-Score

Experiment 1

T 65.1 64.6 64.6
A 65.9 64.8 64.8
V 68.1 67.4 67.4

T+A 66.7 66.7 66.6
T+V 71.8 71.6 71.6
A+V 67.4 66.5 66.6
T+A+V 71.9 71.7 71.7

∆multi-unimodal ↑3.8% ↑4.3% ↑4.3%
ERR ↑11.91% ↑13.19% ↑13.19%

Experiment 2

T+A 71.8 71.7 71.7
T+V 70.5 70.3 70.3
A+V 70.9 70.6 70.5
T+A+V 75.3 75.1 75.0

∆Experiment 1 ↑3.4% ↑3.4% ↑3.3%
ERR ↑12.09% ↑12.01% ↑11.66%

∆multi-unimodal ↑7.2% ↑7.7% ↑7.6%
ERR ↑22.57% ↑23.62% ↑23.31%

∆multi-unimodal represents the discrepancy between the peak value observed in multi-mode and the
maximum value achieved by any unimode.

ERR quantifies the decrease in relative error, calculated as the difference between these two values
divided by the absolute error of the unimode, exemplified by the formula 3.8/(100−68.1).

∆Experiment 1 refers to the difference obtained by comparing the optimal model from Experiment 2
with the model from Experiment 1 that has the same input data. The corresponding Error rate
reduction is calculated as the difference between these two values divided by the absolute error of
Experiment 1, exemplified by the calculation 3.4/(100−71.9).
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efficacy of sarcasm detection. Sarcasm is often conveyed through discordance between modalities,
and a contrastive attention mechanism, designed to extract several contrasting features of discourse,
can significantly enhance performance.

4.2 Ablation Study
4.2.1 Role of Multi-modalities

The ablation study reported in Experiment 1 offers a clear illustration of the effectiveness of multi-
modal data integration in sarcasm detection, highlighting the importance of selecting the appropriate
classifier based on the type of data and specific detection needs. Table 4 presents detailed outcomes
using various classifiers, including SVM, MLP, and LSTM.

For the MLP classifier, the integration of text, audio, and visuals (T+A+V) achieved the highest scores
with Precision, Recall, and F-score values of 69.0%, 68.8%, and 68.9%, respectively. These results
represent improvements of 1.1% in Precision, 1.6% in Recall, and 1.7% in F-score compared to the
highest-performing unimodal configuration, which was the visual modality. Similarly, the LSTM
classifier demonstrated its strongest performance when combining the audio and visual modalities
(A+V), achieving Precision, Recall, and F-score values of 72.6%, 72.3%, and 72.2%, respectively.
When compared to the most effective unimodal approach using only visuals, which recorded Preci-
sion, Recall, and F-score of 68.6%, 67.2%, and 66.5%, these results represent significant improve-
ments. Specifically, there was an increase of 4.0% in Precision, 5.1% in Recall, and 5.7% in F-score.
These enhancements underscore the substantial advantages of multimodal approaches over unimodal
approaches, particularly in capturing the complexities of sarcasm detection more effectively.

Moreover, the LSTM classifier demonstrated a clear advantage, consistently outperforming both uni-
modal and multimodal configurations implemented with SVM and MLP classifiers. This suggests
that LSTM networks are particularly adept at handling the complexities of multimodal data integra-
tion in sarcasm detection, likely due to their ability to effectively process sequential and contextual
information [26]. In contrast, the SVM classifier exhibited superior performance compared to the
MLP, which indicates its appropriateness for managing smaller datasets [57], such as the MUStARD
dataset used in this study, where the risk of overfitting is a significant concern. This highlights the
critical importance of choosing the appropriate classifier based on both the nature of the dataset and
the specific requirements of the task.

These findings demonstrate the significance of multimodal data in sarcasm detection. Across SVM,
MLP and LSTM classifiers, configurations utilizing multimodal data consistently outperform those
relying on a single modality. This underscores the vital role that multimodal approaches play in
enhancing the accuracy and depth of sarcasm detection in digital communications. By leveraging
diverse data streams and strategically chosen classifiers, these systems are better equipped to decode
the complexities of communicative phenomena, thus advancing our understanding of sarcasm in a
nuanced and effective manner.

4.2.2 Role of Contrastive Attention

In Experiment 2, the effectiveness of the ConAtt model was thoroughly validated, demonstrating sub-
stantial performance enhancements when integrated with a multimodal fusion strategy. This model’s
adeptness at capturing discrepancies across different modalities aligns seamlessly with our initial
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Table 4: Ablation Study Results

Fusion Type Modality Algorithm Precision Recall F-Score

Experiment 1

T SVM 65.1 64.6 64.6
A 65.9 64.8 64.8
V 68.1 67.4 67.4
T+A 66.7 66.7 66.6
T+V 71.8 71.6 71.6
A+V 67.4 66.7 66.6
T+A+V 71.9 71.7 71.7

∆multi-unimodal ↑3.8% ↑4.3% ↑4.3%

T MLP 61.6 61.2 61.1
A 60.0 58.1 57.1
V 67.9 67.2 67.2
T+A 63.5 63.2 63.2
T+V 68.5 68.1 68.2
A+V 63.2 62.9 62.9
T+A+V 69.0 68.8 68.9

∆multi-unimodal ↑1.1% ↑1.6% ↑1.7%

T LSTM 64.9 63.8 63.9
A 67.0 65.9 65.1
V 68.6 67.2 66.5
T+A 70.2 69.6 69.2
T+V 71.2 67.2 66.2
A+V 72.6 72.3 72.2
T+A+V 71.4 70.5 70.3

∆multi-unimodal ↑4.0% ↑5.1% ↑5.7%

Experiment 2
T+A+V ConAtt w/o CA 70.7 70.4 70.4
T+A+V ConAtt 75.3 75.1 75.0

∆ConAtt w/o CA ↑4.6% ↑4.7% ↑4.6%

∆ConAtt w/o CA This represents the discrepancy between the models with and without the Contrastive-
Attention-based Encoder.
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hypothesis. Equipped with a contrastive attention mechanism, the ConAtt model significantly out-
performed its counterpart without this mechanism across all measured metrics. This represents an
improvement in precision, recall, and F-Score of approximately 4.6% over the model without the
contrastive attention mechanism, which achieved scores of 70.7%, 70.4%, and 70.4% respectively.

Furthermore, the ConAtt model consistently outperforms all configurations tested in Experiment 1,
regardless of the classifier used, demonstrating its robustness and effectiveness in detecting sarcasm.
The results clearly demonstrate the effectiveness of the contrastive attention mechanism. Our ConAtt
model adeptly manages both intra-modal and inter-modal variations, skillfully capturing the subtle
discrepancies between modalities. Specifically, using the MLP classifier in a T+A+V setup in Ex-
periment 1 resulted in an F-Score of only 68.9%, significantly lower than the 75.0% achieved by the
ConAtt model in Experiment 2. Similarly, employing the LSTM classifier in the same modality con-
figuration, the best F-Score from Experiment 1 was 70.3%, which pales in comparison to the 75.0%
attained by the ConAtt model. These comparative results not only underscore the robustness of the
ConAtt model but also its superior effectiveness in detecting sarcasm, illustrating the significant ben-
efits of integrating the contrastive attention mechanism into multimodal fusion strategies.

4.3 Limitations and Future Research

Based on the insights and findings from our experiments, our limitations and directions for future
research are as follows.

4.3.1 Limitations

The very limited size of the dataset utilized in this work is one of its primary weaknesses because
it hinders our ability to thoroughly investigate more precise sarcasm detection. The restricted scope
of the dataset could potentially restrict the applicability of our research findings, as a more extensive
dataset would be able to more consistently confirm the model’s efficacy across various circumstances
and sarcastic kinds. To ensure that sarcasm detection algorithms in real-world contexts are both scal-
able and adaptable, a substantial amount of data is needed to train them to account for cultural and
linguistic variations.

Furthermore, this study’s primary reliance on attention-based multimodal fusion methods introduces
another limitation. While these methods are proficient at integrating data from various modalities,
enhancing the significance of relevant information, and minimizing noise, they may underperform
when correlations between modalities are weak or complex. In scenarios where modal interactions
are not straightforward or easily quantifiable, attention mechanisms might not fully capture the nu-
anced relationships necessary for accurate sarcasm detection.

4.3.2 Future Research

Future research should focus on expanding the dataset size and employing diverse datasets to fur-
ther validate and refine the results. Increasing the dataset diversity would help in testing the models
against a broader spectrum of sarcasm expressions, thus enhancing their applicability and reliability
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in various communication settings.

It is also essential to investigate and create more sophisticated modal fusion techniques. The primary
fusion technique used in this work is a multi-modal approach based on attention mechanisms, which
can fuse several data modes in a targeted manner to increase the weight of important information
while suppressing noise and irrelevant data. However, the fusion approach based on attention mech-
anism may not be able to properly learn the information of the modes when the correlation between
the modes is weak or difficult to define. In order to improve the model’s accuracy and performance,
more focus should be given in future work on the analysis and investigation of the correlation between
modes in order to build an appropriate fusion method.

Moreover, the detection of sarcasm across languages and cultural backgrounds has become a signifi-
cant area of research. Future research can gain from combining emotional computation and sarcasm
recognition for more thorough multimodal assessments. Models’ capacity to identify minute dif-
ferences in sarcasm can be greatly improved by gaining a better grasp of the relationships between
sarcastic and emotional cues. This is especially important in situations when sarcasm is significantly
dependent on tone and a larger communication context, like in texts with intricate storylines or con-
versational talks. By using this method, scholars can process and evaluate texts from a variety of
linguistic and cultural backgrounds more successfully, exposing the texts’ deeper levels of sarcasm.

By addressing these areas, future research can enhance the effectiveness and applicability of sarcasm
detection systems, ensuring that they are not only technically robust but also versatile in handling the
complexities of human communication.
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5 Conclusion
This study has elevated the field of sarcasm detection by introducing and validating the ConAtt model.
This model has demonstrated superior performance over early fusion methods, achieving higher Pre-
cision, Recall and F-Score, particularly in managing dynamic multimodal information. At the core
of the ConAtt model is a contrastive attention mechanism that expertly integrates and analyzes in-
consistencies across different modalities—text, audio, and video. This capability is essential for the
accurate identification and nuanced analysis of sarcasm, which is often subtly conveyed through com-
plex multimodal interactions.

The ConAtt model’s ability to precisely detect subtle variations in sarcastic expressions is critical for
effective detection, showcasing the importance of multimodal features in sarcasm recognition. The
organic integration of textual, auditory, and visual features captures the temporal dynamics and com-
plex information flows of different modalities, significantly enhancing sarcasm detection capabilities.
The superiority of multimodal approaches over unimodal ones enriches the diversity of information
sources. Additionally, the selection of an appropriate classifier plays an important role in the out-
comes of sarcasm detection.

To sum up, the ConAtt model has proven to be effective in detecting sarcasm and has confirmed
the usefulness of contrastive attention mechanisms. Through its efficient integration and analysis of
disparities among textual, audio, and video data, this model presents encouraging paths for future
developments in the field.



30 BIBLIOGRAPHY

Bibliography
[1] A. Joshi, P. Bhattacharyya, and M. Carman, “Automatic sarcasm detection: A survey,” ACM

Computing Surveys (CSUR), vol. 50, no. 5, pp. 1–22, 2017. DOI: 10.1145/3124420.

[2] P. Carvalho, L. Sarmento, M. Silva, and E. De Oliveira, “Clues for detecting irony in
user-generated contents: Oh...!! it’s ”so easy”;-,” in Proceedings of the 1st international
CIKM workshop on Topic-sentiment analysis for mass opinion, pp. 53–56, 2009. DOI:
10.1145/1651461.1651471.

[3] L.-P. Morency, R. Mihalcea, and P. Doshi, “Towards multimodal sentiment analysis: Harvesting
opinions from the web,” in Proceedings of the 13th international conference on multimodal
interfaces, pp. 169–176, 2011. DOI: 10.1145/2070481.2070509.

[4] R. Rakov and A. Rosenberg, ““sure, i did the right thing”: a system for sarcasm detection in
speech,” in Proc. Interspeech 2013, pp. 842–846, 2013. DOI: 10.21437/Interspeech.2013-239.
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