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Abstract
This research attempts to implement age control in a text-to-speech (TTS) system to allow changing
the perceived age of the synthetic voice while keeping the perceived speaker identity. The system
uses a non-auto-regressive multi-speaker TTS model, namely FastSpeech2 (Chien et al., 2021) and
was inspired by the pipeline outlined for ChildTTS (Jain et al., 2022). It uses Resemblyzer, a pre-
trained speaker encoder, and entails an age encoder to extract embedding vectors used to generate
speech by children, adults and elderly people. The system is developed for English using a corpus
drawn from the Common Voice 17.0 English dataset (Ardila et al., 2020) and the My Science Tutor
corpus (Pradhan et al., 2023). The model’s performance was evaluated by acoustic analysis of the
synthetic speech features and the calculation of Mel-Cepstral Distortion. The proposed system is
designed to enhance the customisation of Speech Generating Devices (SGDs) and, additionally,
to tackle the challenge of developing TTS systems for non-standard voices. The outcome of this
research not only contributes to the broader understanding of voice personalisation techniques but
also may play a part in providing new insight into the impact of the ageing process on voice. This
will positively affect the industry, enabling more efficient creation of tailored voices, e.g. for Voice
Assistants and vocal personas, as well as SGDs users. Age is an integral part of identity, and the
ability to recreate a synthesised voice that a person identifies with can be an invaluable tool for those
who have lost the ability to speak naturally.
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1 Introduction
Part of who we are as people in society is influenced by our age, which can be understood not
only as a biological fact but also as a part of our social identity (Johfre and Saperstein, 2023).
Communicating with a voice that does not reflect our age can often mean communicating with
a voice that does not match our identity. This case often applies to Speech Generating Devices
(SGDs) users, who might be using these devices across different stages of their lives, spanning many
years. The current advancement of technology makes speech synthesis systems capable of creating
powerful tools and enabling everyone to speak with their own voice, expressing who they are through
speech, too.

Nonetheless, SDGs often have only a limited set of voices and the level of customisation is low,
especially in the long run. One of the implications is that people of different ages and in different life
phases will most likely be using the same voice, with which they might not identify. To address the
need for a match between the synthetic voice and one’s age identity, I will research how to generate
synthetic speech that can be customised according to the user’s age throughout the years.

The state-of-the-art TTS engines are quite advanced, and cloning a voice from available data is
not the challenge that was a few years ago (Hasanabadi, 2023). Nonetheless, voice cloning tech-
niques do not solve the issue depicted above, for two main reasons. First of all, it is not given that
people in need of an SGD can produce speech sufficiently good to clone their voice. Secondly, voice
cloning will provide users with a voice that represents theirs at the moment of the recording. If the
speech available for cloning is from a younger age or the person is in a phase of life that involves
significant changes on a vocal level (e.g. teenage years), the cloned voice will soon be obsolete in
terms of identity representation. For this reason, I believe the system I intend to implement can be
beneficial, even in a moment in which TTS and voice cloning systems are very advanced1.

There are already TTS models that address the issue of synthesising non-standard speech (i.e.,
speech not produced by a healthy adult male speaker). For example, Davatz et al. (2021) developed a
vowel synthesiser for young, middle-aged and elderly adults, while ChildTTS, a model for children’s
speech synthesis, was successfully developed by Jain and colleagues (2022). On the contrary, to my
current knowledge, no system was developed with the specific intention to synthesise a voice that can
be parametrically shifted from old to young and vice versa, without having to re-train or fine-tune
the model with specific data.

As it will be further discussed (2.1), speech from speakers of different age groups differs in many
aspects. First of all, there are acoustic differences in the produced speech. This is due to changes
in the vocal tract and in the respiratory system that occur with the aging process (Cho et al., 2021;
Kuppusamy and Eswaran, 2022). Secondly, the morphosyntactic structure and the lexical choice are
greatly affected by the age of the speakers (Cho et al., 2021). While the latter is quite self-evident to
almost any language user, the former are more subtle and require a deeper analysis. This thesis will
consider only the changes that occur on the phonetic level, the acoustic correlates of age in speech.

Non-standard speech, as I defined it above, can be considered a low-resource type of speech,
since at the moment there is little availability of data that covers a wide age range. To be more
precise, it is not the data themselves that are lacking, but rather the type of annotation required for
the training. To be able to correctly learn the voice features of different ages the training data should

1I will leave to future research and developments the implementation of a system that better integrates voice cloning
and age control.



Section 1 INTRODUCTION 7

contain information about the age of the speaker, for each training sample. This condition is often not
satisfied by large corpora available. Big corpora often have this kind of metadata only for a subset of
data, e.g. in the case of Mozilla Common Voice datasets (Ardila et al., 2020), while specific corpora
with explicit age or age range annotation are even more scarce. As a consequence, I believe the
development of this kind of model should put into practice methods developed for under-resourced
languages.

This scenario unveils another shortcoming of current TTS systems. Although state-of-the-art
TTS models demonstrate strong performances, they still face the challenge of using minimal train-
ing data while maintaining the same performances obtained with a larger dataset. This weakness
adds up to the issues of controllability and customisation. This problematic point persists across var-
ious AI domains, where increasingly complex models require ever-larger datasets (Do et al., 2021).
The growth in data requirements will lead to an increase in the number of languages and speaking
communities for which we do not have enough data, making the case of developing solutions for
low-resource languages (LRLs) more pressing than what it is now.

On a more general note, NLP tools and speech technologies are currently working and avail-
able for about 0.3% of the existing languages in the world (Magueresse et al., 2020). Given the
overwhelming majority of languages not covered by today’s technology, I believe that we should
work to fill this gap. The speech tech community should channel its effort towards using fewer and
fewer data so that we will not only be able to develop tools for LRL, but also for other kinds of
under-represented voices.

For these same reasons, the age-controllable TTS system I am about to describe in this work is
developed with having in mind LRL. As I will discuss in further detail throughout this thesis and
especially in Section 6.1, the whole system was implemented to ease the fine-tuning and adaptation
of it for LRL.

To sum up, this work aims to develop a text-to-speech model that will facilitate the customisation
of voices for SGD users, enabling them to speak with a voice that is closer to the one they feel like
their own.

Now that I introduced the reasons and general issues that motivated me to undertake this project,
I will briefly outline the present thesis.

In the upcoming Section (1.1) I will detail my research question together with my hypothesis on
how I achieved my objective and the expected outcome.

In Chapter 2 I will provide a short review of the state-of-the-art in three relevant fields, namely
age-related vocal features (Section 2.1), age-related speech recognition and synthesis systems (Sec-
tion 2.2).

Chapter 3 contains a description of the model (Section 3.1), the data (Section 3.2) and the training
and evaluation methods used to reach my goal. The results and performance of such a system and
the related discussion are covered in Chapter 4.

Before the final remarks (Chapter 6), in which I will cover some of the applications of the pro-
posed work and its relevance, in Chapter 5 I will acknowledge and discuss some ethical concerns
related to the presented system and more generally to TTS systems.

1.1 Research question and hypothesis
To tackle the issues introduced in the preceding paragraphs and fill the gaps in the current state-of-
the-art, in the upcoming pages I will address the following research question:
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How can age-related vocal acoustic features be effectively parameterised and subse-
quently used in a TTS model to reflect different life stages in synthesised speech?

I hypothesise I can generate speech that accurately represents three age stages using a multi-
speaker non-auto-regressive TTS model with age-parameterized training, namely agingTTS. The
target age phases are childhood, adulthood and elder age. The hypothesis will be assessed through
objective evaluation.

The falsification of this hypothesis contributes to highlighting which acoustic features of the
human voice that correlate with age are not captured by machine learning models. As a consequence,
it will provide support in delineating alternative methodologies for speech synthesis with age control.
Some of the approaches that can be adopted to further ameliorate my system are already proposed
in Section 6.1.

More precisely, building on the pipeline presented by Jain and colleagues (2022), chosen both
for its low data requirements and for being suited for synthesising non-standard voices, I developed
agingTTS, by modifying the multi-speaker implementation of FastSpeech2 (Ren et al., 2022) with
learnable speaker embeddings by Chien et al. (2021)2.

The target language for this pilot study is English, but the model has been developed having
LRLs in mind, hence it is implemented considering the needs of this type of system.

All the relevant documents and code through which I fulfilled my research are available at
https://github.com/AliceVanni/agingTTS.

2https://github.com/ming024/FastSpeech2

https://github.com/AliceVanni/agingTTS
https://github.com/ming024/FastSpeech2
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2 Literature review
The current chapter aims to provide an overview of the state-of-the-art in fields relevant to this work.
What follows does not aim to be a fully comprehensive review of the current developments in these
fields, but rather to give the reader the necessary elements to understand the process through which
I arrived at the development of the Research Question stated in the previous Section.

The Chapter is structured as follows: first, in Section 2.1 I introduce some concepts about the
influence of the aging process on our voice. This will equip the reader with the necessary knowledge
to understand why it is possible to achieve age control over an artificially generated voice. I will
then move on to describe current speech technology that relates in various ways to the age of the
speaker, touching upon both Automatic Speech Recognition (ASR) systems and TTS models. This
is the content of Section 2.2.

Before moving on to the proper literature review, let me describe the methods with which it was
conducted.

Methods
For this literature review, I selected papers, articles and book chapters found via the Google Scholar
search engine filtering the results with a time limit of 10 years (i.e., from 2014 on). Research done
over 10 years ago was considered only if historically relevant for the field (e.g., landmark studies)
and when relevant to provide theoretical background (e.g., illustrating a linguistic concept). Other
selection criteria were:

• the language of the resource had to be English;

• the resource had to be freely accessible (no paywall);

The search was done using different keywords for the different components of this work. Only the
titles relating to speech features were selected, even though the keywords used were sometimes more
generic, to capture a wider range of titles. Finally, articles concerning pathological speech were not
taken into consideration.

For the first topic (2.1), which investigates the age features in speech, the keywords used were
mainly “age speech features”, “voice and age correlates” and “age effects on voice”. For the litera-
ture review on speech technology systems based on age (2.2), the keywords used were: “speaker age
recognition”, “age-related ASR” and “voice age classification” for ASR systems and “age-related
TTS”, “synthetic speech with age” and “age-parametric TTS” for TTS models. For the former
search, the results mainly concerned both age and gender recognition systems for speaker identifica-
tion and feature extraction, while very few relevant results were found for the latter. For this reason,
the research was expanded by selecting papers and sources referenced in the previously selected
resources, even though they did not contain the aforementioned keywords. In doing so, approaches
involving Deep Neural Networks (DNN) were prioritised.

Table 1 below provides a summary of the literature discussed in the following paragraphs.
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Table 1: List of references

Reference Title Research area

Linville, 1996 The sound of senescence

Age and Voice

Moyse, 2014 Age Estimation from Faces and Voices: A Review
Huckvale and
Webb, 2015

A Comparison of Human and Machine Estimation
of Speaker Age

Skoog Waller et al.,
2015

Can you hear my age? Influences of speech rate
and speech spontaneity on estimation of speaker
age

Skoog Waller and
Eriksson, 2016

Vocal Age Disguise: The Role of Fundamental
Frequency and Speech Rate and Its Perceived Ef-
fects

Eichhorn et al.,
2018

Effects of Aging on Vocal Fundamental Frequency
and Vowel Formants in Men and Women

Huff et al., 2020 Can Computer-Generated Speech Have an Age?

Cho et al., 2021
Lexical and Acoustic Characteristics of Young and
Older Healthy Adults

Barkana and Zhou,
2015

A new pitch-range based feature set for a
speaker’s age and gender classification

Age and Gender
ASR and

Classification
Qawaqneh et al.,
2017

Deep neural network framework and transformed
MFCCs for speaker’s age and gender classifica-
tion

Mei and Min, 2018
Automatic Age Estimation Based on Vocal Cues
and Deep Neural Network

Kuppusamy and
Eswaran, 2022

Convolutional and Deep Neural Networks based
techniques for extracting the age-relevant features
of the speaker

Yücesoy, 2023
Speaker age and gender recognition using 1D and
2D convolutional neural networks

Luong et al., 2017
Adapting and controlling DNN-based speech syn-
thesis using input codes

Age-related TTS

Davatz et al., 2021
Source and Filter Acoustic Measures of Young,
Middle-Aged and Elderly Adults for Application
in Vowel Synthesis

Jain et al., 2022
A Text-to-Speech Pipeline, Evaluation Method-
ology, and Initial Fine-Tuning Results for Child
Speech Synthesis
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2.1 Age and Voice
As already briefly mentioned in the previous Chapter, age is both a physical and a social matter
(Johfre and Saperstein, 2023).

As a physical process, it involves the vocal tract as well as other elements influencing speech pro-
duction (e.g. the respiratory system and muscle flexibility). Consequently, the acoustic features of a
person’s voice change with time, especially in terms of Fundamental frequency (F0) and Speaking
Rate. This is confirmed by both acoustic and perception studies.

Speaking rate, together with F0, is pointed out as the main voice correlate of age by Skoog Waller
and colleagues (2015). They showed that a speech rate manipulation of 10% already influences
listeners’ perception of the speaker’s age. This is especially true when estimating older speakers’
voices. The above study in fact showed that a slower speaking rate is more strongly associated with
higher age. When the speaker is younger, and in a spontaneous speech context, the listener primarily
relies on other cues, such as the lexicon, while speech rate is only a secondary cue. This conclusion
is also confirmed by a further study by the same authors (Skoog Waller and Eriksson, 2016) which
showed that only the speaking rate is used as a cue in age estimation by listeners, and the accuracy
of estimating the real age of a speaker disguising their age by changing F0 and SR is pretty high.

Fundamental frequency also changes significantly with aging, but unlike the case of speaking
rate, its direction of change depends strongly on gender. According to Linville (1996) and Eichhorn
et al. (2018), the pattern of F0 in men goes from high in childhood, then lowers going into young
adulthood to middle age and rises again into old age, due to physiological changes brought by aging
(e.g. stiffness of vocal folds, changes in the larynx). Men’s F0 peak in adult life is estimated at the
age of 85. In women, the F0 remains quite constant until menopause, in which a lowering occurs,
due to hormonal changes that have an impact on the vocal folds (Linville, 1996; Eichhorn et al.,
2018).

In support of the conclusions outlined above, Moyse (2014) provided a review of studies inves-
tigating the ability of humans to recognize the age of the speaker. This review highlighted that age
estimation from voices is more accurate for female voices than for male voices and that there is an
influence on the length of the stimulus. It also highlighted that longer stimulus presentations yielded
a better performance in age estimation. Nonetheless, according to Moyse (2014), it is not possible
to estimate the exact age of a person only based on their voice.

Similarly to Moyse (2014), Huckvale and Webb (2015) compared the accuracy in age estimation
between humans and machines by measuring the mean absolute error (MAE) of estimation. Based
on their experiment, the highest performance of a machine was only 1.15 years more precise than
the best human performance.

Given the different patterns of male and female voices over age and the difference in the es-
timation performance by both humans and computers, studies illustrate feature extraction and age
classification ASR systems for both age and gender (see 2.2).

In this work, I will only consider the effect of the aging process on a phonetic level, but it is
important to stress that, being age a social fact too, it also impacts other linguistic and sociolinguistic
aspects.
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First and foremost, the lexicon changes greatly across the lifespan. Children have a reduced
lexicon since they are still acquiring language proficiency, while for young adults, adults and the
elderly the lexicon varies due to social factors, i.e. cultural references, jargon, etc., but also in terms
of diversity. Based on the results of Cho et al. (2021) on narrative speech in English3, the elderly
have a less diverse lexicon compared to younger people (more repetitions), while younger speakers
tend to use more ambiguous words. Additionally, this study highlights differences in the use of
morphological and syntactic structures: older speakers use shorter clauses and more inflected verbs
compared to younger speakers (Cho et al., 2021). These aspects, despite being features of speech
from different age groups, will not be considered in the present thesis.

As a final remark, given the topic of the present work, it is relevant to mention that age is not
only perceived in human voices but in AI-generated voices too. Huff et al. (2020) showed that
people perceive the (intended) age of a voice in artificially generated speech. Based on Skoog
Waller and Eriksson (2016) findings, they also tested the possibility of manipulating such perception
by changing the speed and the pitch of the speech. Their experiments used gTTS and WaveNet to
generate the voices, and their outcome confirmed that age is perceived in AI-generated voices as
well as in human ones.

2.2 Age-related Speech Technologies
In this section, I will provide an overview of the latest ASR and TTS systems that aim to classify
and generate speech based on age, and consequently gender.

2.2.1 Age and Gender ASR and Classification

Age and gender speaker recognition is not a novel task (see e.g. Minematsu et al., 2002) and var-
ious approaches have been taken over the years, both in terms of Machine Learning architectures
employed and in terms of the set of features used, which robustness has been considered a key issue.

In 2015, Barkana and Zhou (2015) presented a set of features based on pitch range (PR) for text-
independent systems for age and gender classification. PR is selected as it is assumed to represent
better than F0 the pitch variations of speech, and additionally, the authors argue that age correlates
better with how rapidly the pitch changes over time. Such a set was tested on a Support Vector
Machine (SVM) and K-Nearest Neighbors (kNN) classifier, and the performance was compared to
different sets of features. The authors tested their hypothesis on the aGender corpus (Burkhardt et
al., 2010) and showed that PR features yielded the highest accuracy. Especially in the case of age
classification using kNN, the PR system achieved between 50% and 70% for the various classes,
while the same architecture using MFFCs and Energy features led to around 25-40% accuracy.

In 2016, an age and gender classification framework using DNN and i-vectors was developed by
Qawaqneh, Mallouh and Barkana (2017). Despite the findings of Barkana and Zhou (2015), the fea-
tures used by Qawaqneh and colleagues (2017) are MFCCs transformed using a Bottleneck feature
(BNF) extractor. The proposed work also used the aGender corpus for training and achieved higher

3The results are based on the Cookie Theft picture description task
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overall accuracies by both BNF-I-vector and BNF-DNN classifiers (56.13%, 58.98%) compared to
previous works on the same database. Nonetheless, the paper shows that the higher accuracy is
again brought by the choice of the input features, not by the choice of the architecture. Transforming
MFCCs with BNF gets rid of redundancies and additionally enables the caption of features in short-
time utterances. Moreover, they retain the speaker’s information and are language-independent.

Mei and Min (2018) work confirms the benefits of using a DNN-based approach for age esti-
mation, as already shown in Qawaqneh et al. (2017). According to Mei and Min (2018), previous
models did not perform well enough on age estimation mainly because of the lack of data available.
The authors collected data from 128 Chinese and English speakers of ages ranging from 5 to 70 years
old, dividing them into seven age groups for the training. The main contributions of this paper are
the definition of relevant acoustic features for age estimation and the extension of the DNN-based
approach for the task. The proposed algorithm follows these three stages:

“Step One: Build an age group probability distribution at segment level from DNN.
Step Two: Extract static features at utterance level. Step Three: Age estimation using
Support Vector Regression (SVR).” (Mei and Min, 2018: 211)

Their results showed once again how the use of DNNs enhances the accuracy significantly compared
to a GMM-based approach. Age estimation using Support Vector Machines (SVMs) yielded a 5.9
averaged error, while the averaged error for the GMM system using the Expectation Maximisation
(EM) algorithm was 9.0.

The work done by Kuppusamy and Eswaran (2022) goes in the same direction illustrated above.
Their work demonstrates again that the use of DNNs, especially with Convolutional layers (CNNs)
yields the best performance in age classification tasks. In line with the work of Qawaqneh et al.
(2017), they propose a feature extraction methodology that employs a CNN-DNN-based system
with enhanced bottleneck features, which are considered noise-robust, and localized convolution
filters, which have the function of normalizing the spectral variation brought by differences in vocal
tract length of the speakers of different ages. The proposed approach was tested using four age
categories and yielded the best results in combination with a GMM-SVM classifier, which had an
82% accuracy, while the same classifier with MFFCs and PLPs and with simple CNN features (i.e.,
without the addition of the bottleneck) had an accuracy of 59% and 77% respectively.

It has to be noted that while the first two works mentioned considered both age and gender, the
succeeding two do not consider gender when extracting age features. This might be problematic,
since gender- and age-related features are often overlapping, but it also simplifies the classification
task, in that the distinctions to be made are less. Nonetheless, considering both the age and gender
of the speaker might improve the accuracy of the recognition. An additional issue raised by Mei and
Min (2018) and not accounted for in the following works is the cultural and language differences
that might introduce additional variation.

Both the aforementioned shortcomings are considered in Yücesoy (2023) which tests two age and
gender classifiers composed of 1D and 2D CNNs respectively. The input feature vectors used are
made of 39 MFCC features and the delta and delta-delta of the first 13 MFCCs. The experiments use
the Common Voice Turkish dataset, and the highest validation accuracy is obtained by the 2D model,
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which scored 94.40% accuracy. Surprisingly, the results reported in this paper are the opposite of
what was shown by previous works. The above literature argues that the main improvement in age
and gender recognition is brought by the choice of the input features, while the work of Yücesoy
(2023) highlights the importance of the choice of the model for the classifier.

Contrary to previous literature, and in line with what Mei and Min (2018) concludes, Yücesoy
(2023) also claims that even if age and gender features are not language-dependent, the developed
system has to be considered language-dependent.

2.2.2 Age-related TTS

Unlike age and gender speaker recognition, TTS systems that aim to replicate voices of different
ages are not widespread yet. There has been an effort towards children’s speech synthesis, but to my
knowledge, currently very few TTS models have been developed with the specific aim to synthesise
speech that can be adjusted in relation to a target age.

One system that includes some degree of age control was developed by Luong and colleagues
(2017). The aforementioned work aimed to develop a DNN-based speech synthesis system that is
multispeaker, and is able to perform speaker adaptation with minimal effort and speaker morphing,
that is: change the synthetic speech features with input codes. The latter is what interests us for the
purpose of this work since the speech features to be modified include age and gender.

The TTS model was developed on Japanese, using native speakers and studio-quality data. The
data were labelled per age of the speaker, which ranged from 10 to 89 years old. The authors chose
to use age bands instead of the exact, raw number and divided the speakers into ten age bands,
obtaining roughly eight speakers per group.

The findings concerning age manipulation are ambivalent. As reported by the authors, the differ-
ences between the synthesised voices with different age codes are present and audible. Nonetheless,
this is true only for distant age groups. Additionally, the degree of perceived differences between the
different age groups was not specifically tested.

Additional work related to the synthesis of speech from different age groups was done by Davatz
et al. (2021) on Brazilian Portuguese. Specifically, this prospective study focused on the realisation
and further analysis of vowel synthesis, how speech characteristics change from young to elderly
adults, and how this information can be used for synthesising speech in the target age. The authors
investigated the application of source and filter acoustic measurements to vowel synthesis for three
adult age groups, defined as ‘young’ (18 to 45 years old), ‘middle-aged’ (46 to 60 years old) and
‘elderly’ (61 to 80 years old).

The data were obtained by recording 162 adult native speakers of Brazilian Portuguese, with
no known speech impairments. The collected speech consisted of a sustained production of vowel
/a/, recorded in a sound-proofed studio. These audio recordings were then analysed using LPC and
they extracted the values of the fundamental frequency, the first four formants and four bandwidths.
The extracted values were then employed to perform vowel synthesis, which was in turn analysed to
highlight the most significant features of each age group speech.

The findings from Davatz and colleagues (2021) align with previous studies, highlighting a
higher F0 for young and middle-aged women compared to elderly women. Nonetheless, no rele-
vant acoustic measurement was found to discern the three age groups across male participants.
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However, this study does not systematically evaluate the perception of the generated voices by
subjective evaluation. The conclusions were only drawn by the acoustic analysis of the synthesised
audio samples. Furthermore, even though this study provides insights into the differences in speech
through the lifespan, it only attempted to synthesise static vowels, with no linguistic content.

As already mentioned, a significant work for the present project is the one described in Jain et al.
(2022). Even though this work solely focuses on the synthesis of children’s speech, I believe the
pipeline outlined can be effectively applied for synthesising various types of age-related speech and
other under-resourced voice types, given that the system was developed to perform good with a low
amount of data. The paper describes the implementation of ChildTTS4, a multispeaker TTS system
for children’s speech. Such a system has three modules:

• A speaker verification phase, which employs a generalised end-to-end model;

• An acoustic model based on a modified version of Tacotron 1 (Jia et al., 2019);

• A vocoder waveform generator.

The first step generates the speaker embeddings, which represent each speaker; the second step is
the core of this TTS system and it is trained using the speaker embeddings generated in the previous
stage. Finally, there is the waveform generator, a WaveRNN with Gated Recurrent Units (GRU),
that generates the output speech.

The training of ChildTTS is done using first adult speech samples and then fine-tuning the whole
model using children’s speech. The data for fine-tuning was drawn by selecting a subset of the My
Science Tutor (MyST) corpus (Ward et al., 2021; Pradhan et al., 2023), called TinyMyST.

The goodness of this system was measured by developing a specific set of evaluation criteria for
children’s speech, which cannot be measured with the same criteria that apply to adult speech. The
results showed a close MOS score for the synthetic child speech generated with ChildTTS and the
ground truth, highlighting the good performance of the model.

All the approaches described above, however, have failed to address the larger question of
whether and how it is possible to develop a TTS system that can take age as an input parameter
to synthesise speech. Filling this gap in current research is the aim of this thesis.

2.3 Conclusions
In this chapter, I have explored a range of studies focusing on age-related vocal features and their use
in voice technology systems, with an emphasis on advancements in speech synthesis technologies.
Notably, while there is progress in recognising speech with age-specific attributes, a gap persists
in the synthesis technologies. Furthermore, the literature underscores the need for TTS systems
that can dynamically adjust to represent various age-related vocal characteristics without extensive
retraining or fine-tuning for each age group.

The synthesis of age features in voice remains under-explored. Existing research focuses on a
narrow age range, such as children’s speech, often neglecting the nuanced spectrum of vocal changes
throughout the entire lifespan.

4https://github.com/C3Imaging/ChildTTS

https://github.com/C3Imaging/ChildTTS
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This backdrop of technological advancement juxtaposed with unmet needs in TTS with age
control directs us to the research question anticipated in the previous chapter. In the next chapter,
I will present agingTTS, the system I developed to address the gaps highlighted above and find an
answer to my research question.
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3 Methodology
To answer my research question on how to parametrise age-related acoustic features of the human
voice to use them in a TTS system, I started from the pipeline used for the implementation of
ChildTTS (Jain et al., 2022) illustrated in Section 2.2. As previously mentioned, I employed a multi-
speaker implementation of FastSpeech2 with learnable speaker embeddings (Chien et al., 2021) to
train agingTTS on English.

The implementation described in this chapter was realised using multiple datasets of English
speech, given that the availability of the necessary data was scarce. The choice of working on
English was driven by the high availability of data in this language, which compensates for the low
amount of data with age information. For the training of the English model, I employed Common
Voice English in its latest version (17.0; Ardila et al., 2020) to gather adult and senior speech data. To
these, I added a subset of data from the My Science Tutor corpus (Pradhan et al., 2023), a collection
of children’s speech interacting with a virtual assistant (see Section 3.2).

To investigate the performance of the model and compare it with the literature on age and voice,
I analysed the acoustic features of synthesised output.

In this chapter, I will detail the procedures outlined above in the following order:

• Section 3.1 outlines the details of my implementation of the TTS model;

• Section 3.2 describes the features of the dataset I built to achieve my goal;

• Section 3.3 displays the experimental setup discussed in the following chapters;

• Section 3.4 illustrates the evaluation methods adopted to verify the hypothesis;

3.1 Model description
My work originates from the system developed by Jain et al. (2022). As described previously, the
authors successfully developed a TTS model to synthesise children’s speech, and they achieved this
result by using a speaker encoder, which was first trained with data from adult speakers and then fine-
tuned with children’s speech data from a reduced version of the corpus I also adopted, the MyST
corpus (see Section 3.2.2). Their pipeline further entailed the use of Tacotron2, an autoregressive
model for TTS, and WaveRNN as a vocoder to synthesise the waveform.

In developing agingTTS, I adopted the same pipeline outlined above, but I made some changes to
the architecture by integrating it with elements based on the conclusions drawn by Do et al. (2023b)
for the choice of the acoustic model and the vocoder.

Similar to ChildTTS (Jain et al., 2022), agingTTS includes three main elements:

• An encoder module;

• An acoustic model;

• A waveform generator.

Even though studies showed that Tacotron2 can achieve better performance in low-resource envi-
ronments compared to FastSpeech2 and also Deep Voice 3 (Gopalakrishnan et al., 2022), as already
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anticipated in the introductory section (1), the model I adopted for the realisation of the present
system is FastSpeech2 (Ren et al., 2022). This choice was driven by multiple factors.

First of all, the higher training speed of FastSpeech2 made it a more suitable candidate for
the time given to complete the present work, as well as the reduced inference time compared to
Tacotron2 (Ren et al., 2022). An additional reason can be found in the overall higher performances
achieved by this model compared to Tacotron2, thanks to the variance adaptor module (Ren et al.,
2022). Being FastSpeech2 a more advanced, faster and better performing model compared to the
one used in Jain et al. (2022), I chose to work with it.

FastSpeech2 was also judged particularly suited for the realisation of a TTS system with age
control since it is already shown empirically to work well with a trainable speaker encoder (Chien
et al., 2021), together with the variance adaptor. These two elements were exploited to implement
the age encoder, which will be described in Section 3.1.2, and the age control during inference.
Nonetheless, as it will be discussed in Section 3.1.1, the original implementation of the speaker
embedding layer was substituted by a GE2E voice encoder trained separately (see Section 3.1.1).
This separate speaker encoder and the age embedding layer are the main innovation elements of my
implementation.

Moreover, the choice of this architecture follows the conclusion of Wells and Richmond (2021)
and the subsequent implementation described in Do et al. (2023b). In both these works FastSpeech2
has been shown to perform better in combination with articulatory features, which have been high-
lighted as the best input features for LRLs TTS. Even though the implementation of such features
was not possible in the present study, it is the next step to take to enhance this system (see also 6.1)
and the use of FastSpeech2 paves the way for this.

Finally, by using FastSpeech2, the waveform generator is not only integrated into the system but
also the RNN vocoder used in ChildTTS is replaced by a GAN-based vocoder, namely HiFi-GAN.
This takes up the recommendation made by Jain et al. (2022) in their final remarks and follows the
methodology applied by Do et al. (2023b), which is relevant for the same reasons laid out above. For
these reasons, agingTTS uses the pretrained HiFi-GAN vocoder available in Chien et al. (2021)’s
repository.

While the reasons to choose FastSpeech2 were many, there was one major disadvantage in its
original implementation. The original structure as outlined by Ren et al. (2022) in fact did not
support multi-speaker training, which was necessary to achieve my goal. To train a single-speaker
TTS model, I would have needed speech from the same person in different phases of their life, and
even though this is not completely impossible, this kind of dataset is definitely harder to obtain rather
than a multi-speaker dataset with various speakers. This had two consequences. The first relates to
the choice of the multi-speaker implementation of FastSpeech2, which fell on the one presented in
Chien et al. (2021)5. Secondly, the need for multi-speaker data had an impact on the choice of the
training data, together with other factors that will be further investigated in Section 3.2.

In conclusion, the implementation of agingTTS presented in this thesis includes only two sub-
stantial changes in the architecture of the multi-speaker FastSpeech2 model by Chien et al. (2021).
The first and foremost addition to the model is the age embedding layer, which will be detailed in
Section 3.1.2. The second addition to the original model is the GE2E model in place of the embed-
ding layer to model speakers. This will be the focus of the upcoming section.

5The code is available at https://github.com/ming024/FastSpeech2 under MIT License

https://github.com/ming024/FastSpeech2
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Figure 1: Overview of the system by Wan et al. (2020). The different colours signal different speakers.

The full implementation of agingTTS, together with the details about its use for both training
and inference is available on GitHub under MIT License at the following URL:
https://github.com/AliceVanni/agingTTS.

3.1.1 Speaker encoder

As mentioned earlier, the multi-speaker FastSpeech2 implementation that I adopted as a basis for
my model included a speaker encoder. The native speaker encoder was made of an embedding layer
with 256-dimensional speaker embeddings and it was jointly trained with the rest of the architecture.
To improve the quality of the speakers’ representation, I replaced the native speaker embedding layer
with a Generalized End-to-End (GE2E) model.

Such GE2E model was originally developed by Wan et al. (2020) for speaker verification. The
system is composed of a Long-Short Term Memory (LSTM) network with a final linear layer (see
Figure 1). The LTSM takes in input a batch of vectors of speech features x ji extracted from each ut-
terance i of speaker j. The batch is input at once and it is composed of N speakers with M utterances.
The embedding vector e ji is then calculated as the L2 normalisation of the network output f (x ji;w),
where w are the weights learnt by the LSTM network.

ei j =
f (x ji,w)

|| f (x ji,w)||2

Finally, for each speaker, the similarity matrix S ji;k is computed, which gives the degree of
similarity between the input speakers. The similarity matrix S ji;k is calculated as the cosine similarity
between each speaker embedding e ji and all the centroids ck.

For the present thesis, I adopted the implementation of Wan et al. (2020)’s work developed by
resemble.ai, called resemblyzer6. The code is openly available for use under the Apache License.

3.1.2 Age encoder

My final goal is to enable the users to specify how old the voice they generate should sound. This
is achieved by adding age information to the synthesised speech, in order to change the speech
features towards the target age. There are two possible implementation approaches, the first involves
the explicit indication of the target age, and the second implies the creation of age groups. The latter

6GitHub repository: https://github.com/resemble-ai/Resemblyzer; Python package documentation:
https://pypi.org/project/Resemblyzer/

https://github.com/AliceVanni/agingTTS
https://github.com/resemble-ai/Resemblyzer
https://pypi.org/project/Resemblyzer/
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entails the a priori selection of age groups, which is to some degree an arbitrary decision, given that,
as it will be argued in more detail below, there is no fixed and unanimous way to divide age into
categories. However, as already mentioned in Section 2.1 humans do not have the ability to estimate
the exact age of a speaker (Moyse, 2014). For this reason, I decided to work with a categorical
representation of age. This a priori decision might have had consequences on the performance of
the systems, nonetheless, it is also driven by the need to identify categories that could easily be
modelled by the age encoder.

The selected age groups are:

• ‘child’ from 7 to 11 years old,

• ‘adult’ from 20 to 49 years old

• ‘senior’, which includes over-70 speakers.

The exclusion of the teens is based on the fact that in the 12-19 age range too many changes
happen in a person’s voice, due to the hormonal and physical changes that adolescence brings.
The 60-69 age range was excluded for two reasons. Firstly, a practical reason: to ensure a higher
detachment between the ‘adult’ and the ‘senior’ categories, this age band was discarded. Moreover,
there is no agreement on the starting age of seniority. According to the World Health Organisation
(WHO, 2022), a person can be considered elderly from 60 years old onwards, nonetheless, unlike in
the definition of adolescence (WHO, 2019), no biological or physiological event marks the beginning
of this life phase. Elderly age is in fact sometimes considered to start at 60, but sometimes at 75 years
old (e.g., Ouchi et al., 2017). Hence, excluding the 60-69 age range addressed both a practical and
theoretical need.

With the data described above, I trained two different age encoders to extract age embeddings for
‘child’, ‘adult’ and ‘senior’ categories. The two age encoders are both based on the speaker encoder
as found in Chien et al. (2021)’s implementation, but they differ in the dimension of the hidden layer.

To test what is the best configuration to extract age features using an embedding layer, I trained
two models. First I used 256-dimensional speaker embeddings for the age embeddings, then I tested
the efficacy of introducing a bottleneck in the age encoder by reducing the embedding dimension to
128 units. The bottleneck output is then input into a sequential projection layer that expands it to a
higher dimensionality to a 256-dimensional vector. This layer comprises two fully connected linear
layers separated by a Rectified Linear Unit (ReLU) activation function that introduces non-linearity.

In both models, the embedding layer is a simple lookup table that outputs 256- and 128-dimensional
continuous vectors representing the discrete age categories in the latent space. The output is the age
embeddings for the input categories. The age embeddings are initialized from scratch and trained
together with the rest of the architecture.

The result of this age encoder is finally added to the encoder’s hidden sequence, as for the original
speaker embeddings.

Even though I worked with three age groups, as explained at the beginning of this section this is
a design choice, not a hard requirement for the development of the system. For this reason, the age
encoder is already predisposed to generate age representations for more and different age groups.
The flexibility of the age encoder will facilitate the development of a system that can model age
with a higher accuracy through the use of more fine-grained age groups, or even the exact age of the
speakers.
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3.2 Datasets: description and preparation
The training and testing of the model described in the previous paragraph was done using parts of
two datasets of English speech.Before diving into the description of each one of them, I want to
specify that the corpora used for the development of my model were not originally collected with a
TTS task in mind. Both English speech datasets were collected for ASR purposes and all of them
are crowd-sourced, hence the quality of the data is not as high as it usually is for TTS systems. The
consequences of this will be discussed further in Section 6.1. The meta-data requirements of the
present system left no other choice than the use of the datasets I am about to present in the following
sections.

All of the selected corpora went through a preparation procedure that involved mainly the meta-
data files that came with them. Since the different datasets had different metadata formats, the
first step was to make them coherent and homogeneous, to facilitate the further processing of the
data. The template used and applied to every corpus’s metadata document is an edited version of
the metadata provided together with the Common Voice 17.0 English data, the ’validates.tsv’ file
to be precise. Starting from this file, only the columns with information relevant to my purpose
were maintained, namely the speaker identification code, the name of the corresponding audio file,
its transcription, gender and age of the speaker. The ’accents’ column was also kept in case the
presence of multiple English varieties turned out to be problematic. In addition, I included duration
information for each file, which was retrieved either from a separate file, when available or directly
from the audio clips.

Figure 2: Directory struc-
ture of agingTTS dataset

The sampling rate of the audio files was also adjusted to make it ho-
mogeneous. The lowest sampling rate was found in the MyST data, and
it was 16000 Hz, while the highest was found in the CV17 data, and it
was 48000 Hz. All the audio files were resampled at 22050 Hz to match
the sampling rate of the pretrained HiFi-GAN vocoder.

Finally, I restructured all the datasets in directories following the
structure used by Prosodylab-aligner, which is also the style adopted by
my reference implementation of FastSpeech2 (see Fig. 2). The resulting
sub-directories were then merged into one in order to have all the data in
the same place.

The following sections describe the CommonVoice English 17.0
dataset and the MyST corpus respectively, and the subset selected for the
training of the present model. From now on, I will refer to the resulting
dataset as the agingTTS dataset.

Every section has the same structure:

• Overview of the corpus;

• Reason of choice;

• Specific preprocessing needs;

• Final dimensions of the dataset in analysis.
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3.2.1 Common Voice English 17.0

Common Voice Ardila et al., 2020 is a project by the Mozilla Foundation that collects open-access
datasets in various languages. The collection of all the datasets is community-driven and the data
are crowd-sourced. The whole process of collection is bottom-up and easily accessible to everyone,
from the recording of speech to the validation of the data.

The corpus is not unproblematic, since the validation is not further checked by any expert and
the process is done by many individuals, the outcome might not be as clean as when done by a
single person with expertise. Additionally, the validation is done by people who self-declare native
speakers, but there is no way to verify it.

Despite this, Common Voice currently represents one of the biggest speech collections freely
available, and this represents a non-negligible advantage over other high-quality corpus. Addition-
ally, the recordings come from a wide range of people, not only in terms of languages and accents
but also in terms of demographic distribution.

This variety of demographics, together with the ease of accessibility to the data, was the main
reason for which this corpus was chosen. The speaker’s metadata collected prior to the audio record-
ing includes age and gender information, which are core pieces of information for the present study.
Unfortunately, the collection of such speaker’s demographic data is not mandatory, as a consequence,
not all the speakers provide such data.

To obtain the higher amount of data with age and gender information, the latest and biggest
release of Common Voice English was chosen, version 17.0, released on March 20th, 20247.

Common Voice English 17.0, hereafter referred to as CV 17, comprehends 3508 hours of recorded
speech, of which 2615 hours have been validated, from over 90000 speakers. Of the total recordings,
less than 40% have no information about the age and gender of the speaker. For this reason, these
data were discarded, together with the unvalidated ones. As already mentioned in 3.1.2, CV 17 was
used only for the collection of data from ‘adult’ and ‘senior’ age bands, which means data from
speakers under the age of 20, which represents 6% of the total data, were not included.

This selection was further pruned by the selection of a balanced of samples, based on the duration
of utterances from age and gender subgroups of the corpus. The lowest amount of data was found
in the ‘senior’ ‘female’ group, and it counted around 6 hours of speech. This data slice sets the
default dimension of each other subgroup. This balancing resulted in a dataset of roughly 24 hours
of speech by 15332 speakers (12 hours per age group).

I will be referred to the resulting, filtered CV 17 subset as FilteredCV17.

3.2.2 MyST - Children’s speech corpus

My Science Tutor Children’s Conversational Speech corpus (Ward et al., 2021; Pradhan et al., 2023),
referred to as MyST corpus, is a collection of spoken data from children from the U.S.A., attending
the 3rd, 4th and 5th grade (elementary school), ranging from 7 to 11 years-old. The corpus was
collected as part of the My Science Tutor project (Ward et al., 2011) which aimed to improve science
learning in elementary school children through short and conversational lessons with a virtual tutor,
Marni. As reported in Ward et al. (2011), the dialogues are about 15-20 minutes long and their focus
in on the student’s ability to express themself. This is achieved through open-ended questions by the
virtual tutor, to which the child is encouraged to think and explain their thoughts autonomously.

7Downloaded on 15/04/2024, link to the data: https://commonvoice.mozilla.org/en/datasets

https://commonvoice.mozilla.org/en/datasets
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The data gathered from these interactions consist of over 470 hours of conversational speech from
1 371 elementary school students, recorded from 2008 to 2017. The data collection involved two
phases. The first stage had the goal of collecting data from the widest variety of students possible,
while the second phase aimed for complete coverage of the material from single students. The data
obtained from the first phase cover four topics, which correspond to four teaching module from all
three grades. The topics are “Magnetism and Electricity”, “Mixtures and Solutions”, “Variable” and
“Water”, for a total amount of 421 students who produced 109 hours of speech, all transcribed. In
the second phase, only children attending the last two years of elementary school were included, for
a total of 950 students. The total number of hours recorded in this stage was 364, of which only 115
were transcribed. The teaching modules covered were “Energy and Electromagnetism”, “Mixtures”,
“Sun, Moon and Planets, “Soil, Rocks and Landforms”, and “Living Systems”.

As clearly stated in Pradhan et al. (2023) the corpus was created to improve ASR for children,
and also to improve AI-driven education approaches. This implies that, even though data cleanup
and preprocessing procedures have been applied to the raw data, the audio quality is not as high as
usually desired for TTS applications.

Another critical point of the corpus is the lack of variety in the topics of the utterances. The fact
that there is a restricted set of subjects of conversation entails a restricted kind of lexicon, and being
the subjects of scientific nature, the lexicon is also quite unusual for an 8-year-old, e.g., “the citric
acid goes in that 50 epsom salt and the other 15”. Nonetheless, since the data are conversational,
there are also a number of occurrences of everyday phrases, such as “how are you”, “I am tired”,
“we talked about. . . ” or “we’ve been learning about . . . ”.

Despite the above, the MyST corpus has been proven effective in the training of ChildTTS (Jain
et al., 2022). Additionally, as for the Common Voice dataset, this corpus is freely accessible and
open source for academic purposes. These two are the reasons why I selected it for the training of
my systems.

As pointed out above, not all the audio samples have the corresponding transcription. Since
the transcription of children’s speech with automatic tools is not reliable, and the data missing the
transcription are more than 50% of the full dataset, I discarded all the data without a transcription
available. Audio samples with inaudible or unclear speech were also excluded from the training
data. Such data were identified based on their transcription, which had annotation for non-verbal
sounds too (e.g. noise, side speech from adults or the virtual assistant).

To use the corpus, I restructured the directory as described at the beginning of this Section and
created the metadata files based on CV 17’s.

The resulting dataset was further cut to extract a subprotion with a duration comparable with that
of the FilteredCV17 corpus. To do so, I extracted a maximum of 20 utterances for each speaker until
it reached the duration of 12 hours. This subset of the MyST corpus, which I will call FilteredMyST,
comprehends 5390 utterances from 281 speakers.

I will refer to the resulting dataset, composed of the combination of FilteredCV17 and Filtered-
MyST, ag agingTTS dataset and it comprises 36 hours of speech uttered by 3768 speakers of different
varieties of English. The audio files have various durations, ranging from 2 to 10 seconds.
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3.3 Experiments
As anticipated in 3.1.2, I trained two agingTTS models that differ only in the structure of the age
encoder. The baseline model, which from now on I will simply refer to as agingTTS, entails an age
encoder with 256 hidden units. The second model comprises a bottleneck in the age encoder. From
now on, I will refer to this second model as agingTTS-BN. The training of both models was achieved
using the agingTTS dataset.

The data were aligned with their transcription using the Montreal Forced Aligner (MFA; McAuliffe
et al., 2017) with the pretrained language, acoustic and G2P models8. Through MFA, I also obtained
the ground-truth durations of each training sample required by the Variance Adaptor, while pitch
and energy values were extracted at the phoneme level, employing the code provided by the source
multi-speaker FastSpeech2 implementation, with some slight adjustments.

While the data were undergoing the preprocessing I just described, I used the pretrained Resem-
blyzer to extract the speaker embeddings from those very same data, using the audio files only.

Both models were trained with the Adam optimiser (betas: 0.9, 0.98, epsilon: 0.000000001)
with a batch size of 10 and a learning rate adjusted to a combination of warm-up and annealing
steps, which had values of 4000 and 300000, 400000, 500000 respectively, with an annealing rate of
0.3. No weight decay was applied, while the gradient clip threshold was set to 1.0. The models were
trained for a total of 100000 steps.

The training was not brought further due to time constraints, nonetheless, FastSpeech2 models
can already be successfully used after the first 10000 training steps. This is clearly shown by the
TensorBoards of the present and other models (e.g. Chien et al., 2021), from which it can be observed
that the main improvements in the loss curves happen in the first 10000 steps.

The final models’ checkpoints, together with more details about the implementation and training
of agingTTS, can be found on the already mentioned GitHub repository9.

The checkpoint was used to synthesise 18 sentences from 8 speakers, selected from the agingTTS
dataset. This allowed me to make precise comparisons between the synthesised speech and the
Ground Truth (GT). The list of the selected sentences with their corresponding speaker can be found
in Table 2.

Table 2: List of sample sentences with the corresponding speaker’s age group

Filename Sentence transcription Age group

12225c 01 gt Uhm I’m not really sure Child
12225c 02 gt It rises from the east and sets in the west Child
13027c 03 gt It’s about giving light to our earth and room Child
13027c 04 gt Maybe it means that it’s the pathway of the light bulb Child
13057c 05 gt They make the energy flow Child
13057c 06 gt That it’s connected in the right places Child
3835a 07 gt We are rolling without keys right now. Adult
3835a 08 gt Despite his lack of free time, he was able to continue writing. Adult

8Available here: https://mfa-models.readthedocs.io/
9https://github.com/AliceVanni/agingTTS

https://mfa-models.readthedocs.io/en/latest/
https://github.com/AliceVanni/agingTTS
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Filename Sentence transcription Age group

6211a 09 gt You can lead a horse to water, but you can’t make him drink. Adult
6211a 10 gt What do you say? Adult
6345a 11 gt This turned into pleurisy complicated by pericarditis. Adult
6345a 12 gt Fares is married to Hala Fares. Adult
16135s 13 gt That’s some hat you got on there. Senior
16135s 14 gt Traveling alone is good for meeting new people. Senior
16135s 15 gt Her manipulation failed Senior
17615s 16 gt He was buried in the Pantheon. Senior
17615s 17 gt The connection, she claims, is purely coincidental. Senior
17615s 18 gt He has also been a member of many other short-lived bands. Senior

Each of these sentences was synthesised with agingTTS (the baseline model) and agingTTS-BN
(the model with the bottleneck), applying all three age control groups. This led to a total of 108
samples.

The speech samples generated with agingTTS and agingTTS-BN have been evaluated and anal-
ysed according to the procedure outlined in the following section.

3.4 Performance analysis
The output audio of the two architectures was analysed by two means. I conducted an acoustic
analysis of the synthesised speech to verify whether the output with different age controls differed on
the features reported by the literature as relevant for different age groups, namely F0 and speech rate.
Additionally, I calculated the Mel-Cepstral Distortion coefficient to measure the degree of difference
between the synthetic and natural speech. This aimed to measure how close the synthesised speech
of the two models is to the natural one. This comparison will also allow me to define which of the
two models performs better.

The acoustic features of the output speech were analysed using Praat (Boersma and Weenink,
2023) and their statistical significance was tested by applying a one-way ANOVA test in R (R Core
Team, 2021).

Given the results reported in the literature (2.1), I compared the mean F0 of child, adult and
senior synthetic speech and their differences in speech rate.

The pitch listing from which the mean and range of F0 were extracted was generated using a
Praat script derived from Lennes (2003) repository. The specific script can be found in my GitHub
repository. The speech rate was calculated by considering the number of syllables per second. Sim-
ilar to the pitch listing, the speech rate values were extracted using the Praat script by Nivja H. de
Jong and Heeren (2021)10.

Such analysis aims to validate the modelling of these features by the age encoder of the two
experiments.

In the upcoming chapters, I will report and discuss the results of this evaluation.

10Both Praat scripts can be found here: https://github.com/AliceVanni/agingTTS/acousticanalysis

https://github.com/AliceVanni/agingTTS/tree/main/acoustic_analysis
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4 Results and Discussion
The present Chapter illustrates the outcome of my work. The work included two experiments that
tested whether age controllability in a TTS system could be achieved with a non-auto-regressive
architecture, and which is the better-performing architecture. Both models employed an age encoder
in their structure that allowed the modelling of age features of speech through embeddings. As
previously explained, the difference between the two models tested lay in how these age embeddings
were extracted. In the baseline model agingTTS, the age encoder extracted 256-dimensional vectors,
having the same size as the speaker embeddings. The model with bottleneck, agingTTS-BN, instead
entails an age encoder that modelled the age features first as a vector of 128 dimensions, then these
vectors are projected into a higher-dimensional space.

Moreover, to evaluate in more detail the output audio and check for the ability of the architectures
to model the age-related characteristics of the voice, an acoustic analysis was conducted, together
with Mel-Cepstral Distortion analysis. The acoustic analysis aimed to verify if the features high-
lighted by the literature as the core elements of distinction of speech of different age groups were
effectively caught and modelled by the base and bottleneck models. The details and outcome of such
inspection are reported in Section 4.1.

4.1 Acoustic analysis
The acoustic analysis of the synthesised samples and GT speech was achieved through Praat, while
the statistical analysis of the outcome was done using R.

This analysis compared the GT features with the features of the audio synthesised using ag-
ingTTS and agingTTS-BN. The acoustic features considered were the pitch and the speaking rate, as
these two are pointed out by the literature as the main correlates of age in the voice.

4.1.1 Pitch

As already discussed in Section 2, the fundamental frequency, or pitch, of speech is one of the most
easily perceivable dimensions of variation between speakers from different age groups. According
to previous studies (see 2) children have the highest mean pitch among all the age groups, while
adult speakers generally have the lowest since there is an increase of F0 in the latest phase of life.

To verify whether the models had caught these age-related features of the human voice, I used
a Praat script based on Mietta Lennes’ script for getting the pitch maximum11 to extract the pitch
listing from GT and synthesised audio. To better visualise the differences across the scenarios, I
plotted the pitch listing using Python to obtain the pitch contour of each sentence. The pitch and
time stamps were normalised per speaker and then plotted following the same criterion.

The pitch contour highlights that there is indeed a difference in the pitch with which the different
age-controlled sentences were synthesised. Looking at the plots, the children’s synthesised sentences
(symbolised by pink lines) are realised with a higher pitch compared to both adult and senior’s
speech (orange and blue lines respectively) for all speakers. This can also be very clearly perceived
by simply listening to the synthesised audio samples12. Unlike the findings reported in 2, the senior
and adult synthesised speech do not present an evident difference in pitch contour, even though these

11Github repository: https://github.com/lennes/spect
12The reader can listen to these samples at https://alicevanni.github.io/agingTTS/

https://alicevanni.github.io/agingTTS/
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sentences are not synthesised with exactly the same contour. It is also quite self-evident that the GT
pitch contours (i.e., the black lines) do not correspond to the synthesised speech from the same age
group for children’s speech. As it can be observed in the upper plot in Figure 3, the GT children’s
speech is realised with a lower pitch compared to the synthesised speech from the same speaker.

Figure 3: Aggregated pitch contour of sentences synthesised with the baseline (agingTTS), bottleneck model
(agingTTS-BN) and ground truth per one child, adult and senior speaker. Plots for all speakers can be found
in Appendix 7.1

The significance of the differences between all age groups’ pitch has been investigated through a
one-way ANOVA statistical test in R. The ANOVA test was conducted by comparing the mean pitch
of each type of synthesised sentence within the same age group. The p-values obtained were then
adjusted using the Holm-Bonferroni method to counteract any effect of multiple hypotheses.

The outcome of the statistical analysis, as with every other conclusion drawn in this work, is only
provisional. In the case of statistical evaluations, the size of the sample cannot be overlooked, and
being my sample quite small, my findings have to be verified and studied in more depth.

The ANOVA test with the Holm-Bonferroni correction highlighted that the mean pitch of the
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Figure 5: Mean pitch boxplot of Ground Truth audio samples

three age groups in all three scenarios is highly significant, with p-values ¡ 0.001 for the synthetic
speech generated with both models (see Figure 4). On the other hand, the mean pitch is only signif-
icant with a p-value of 0.03 for the ground truth sentences (see Figure 5).

This might indicate that the two architectures accentuated differences that are not so strongly
present in the ground truth in order to model the age of the speaker better. This statement has to be
verified with further investigations.

Figure 4: Mean pitch boxplot of synthetic speech from agingTTS and from agingTTS-BN

Following Barkana and Zhou (2015), I also tested the pitch range across the three age groups
(see Figures 6 and 7). Even though the authors found pitch range to be a distinctive age-related
feature, my analysis did not highlight statistical significance in pitch range differences in any model,
as well as in the GT. In all cases, the p-value was higher than 0.1 (p-value=0.712 for agingTTS;
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p.value=0.189 for agingTTS-BN; p-value=0.374 for GT). Similar to what I reported for the mean
pitch, the significance of the pitch range should be further investigated with a larger sample.

Figure 6: Pitch range boxplot of synthetic speech from agingTTS and from agingTTS-BN

4.1.2 Speaking Rate

Figure 7: Pitch range boxplot of Ground Truth audio
samples

The speaking rate was extracted using the Sylla-
ble Nuclei Praat script by Nivja H. de Jong and
Heeren (2021). The script detected the nucleus
of each syllable and computed the speech rate
as syllable per second.

As already mentioned, given the literature
on age-related voice features, the expected out-
come of such analysis, for both the GT and the
synthesised speech, was:

• Highest speech rate for children’s speech;

• Lowest speech rate for senior’s speech

The results for the selected sentences are shown
in the bar plots in Figure 8, which represents
the speaking rate of sentences synthesised using
the base model, the model with bottleneck and
finally the ground truth speaking rate.
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Figure 8: Speaking rate of Ground Truth sentences, sentences synthesised with agingTTS and agingTTS-BN

In the bottleneck model (Figure 8, lower
plot) there is a general increase in the speech
rate of sentences synthesised with ’senior’ age
control, but again there is no clear pattern to be found.

Figure 10 provides a clearer picture of the speech rate distribution across conditions. From the
box plot, we can observe how the ground truth consistently presents a lower speech rate compared
to the synthesised counterpart. This might be due to hesitations, short pauses and other prosodic
phenomena that the model was not able to reproduce.

However, the GT speech rate analysis reported in Figure 8 does not provide evidence of any
pattern correlating with age.

Figure 10 provides a clearer picture of the speech rate distribution across conditions. From the
box plot, we can observe how the ground truth consistently presents a lower speech rate compared to
the synthesised counterpart. This might be due to hesitations, short pauses and other prosodic phe-
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Figure 10: Boxplot for speaking rate across conditions. base = agingTTS; bn = agingTTS-BN; gt = Ground
Truth

nomena that the model was not able to reproduce. An example of this can be seen in the two wave-
forms and spectrograms below (Figure 9), which represent sentence common voice en 17263012
uttered by adult speaker 6211a.

Figure 9: Waveform and spectrogram of sen-
tence common voice en 17263012 uttered by adult
speaker 6211a (upper image) and as synthesised with
agingTTS-BN with age-control = ’adult’ (lower im-
age). Images extracted with Praat.

The waveform sections highlighted in light
pink are pauses in the sentence, but they do not
have the same length in the ground truth audio
(upper plot) and the synthesised sample (lower
plot). In the former, the pause is longer, around
0.5 seconds, while in the latter the same pause
lasts a tenth of the original duration (0.05 sec-
ond ca.).

Despite what is reported above, the GT
speech rate analysis reported in Figure 8 does
not provide evidence of any pattern correlating
with age. The ground truth does not present
any downward trend going from child to se-
nior. This contradicts some previous findings
described in Section 2.1, according to which a
slower speaking rate is a primary cue in elderly
speech recognition (Skoog Waller et al., 2015).
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5 Ethics
The present research does not imply any specific ethical issue, since neither the research question
nor the data used have self-evident and urgent ethical implications.

Even though this research does not require addressing ethical issues that are tied to its nature
or data collection, some more general issues should be addressed. I believe any research that aims
to improve the quality of synthesised speech to make it more similar to human production should
take into consideration deepfake generation, voice cloning and their consequences. This will be
addressed in Section 5.1.

Furthermore, the environmental consequences of training and using TTS and any other AI system
should not be overlooked. I will consider the environmental responsibility we have as AI users and
ML practitioners in Section 5.2.

5.1 Deepfakes and related issues
Even though the production of a voice closer to one’s personal representation is one of the aims of
this research, this may also represent a risk for this very same personal representation. In the past
few years, we have had a non-negligible number of fraud cases and misuse of AI-generated voices,
which on some occasions led to the ban of AI-generated voices (e.g. the banning of robocalls from
the Federal Communications Commission of the USA at the beginning of 2024). One such case is
the recent concerns about the use of President Biden’s cloned voice for promotion purposes of the
forthcoming US elections (see e.g., Seitz-Wald, 2024 and Seitz-Wald and Memoli, 2024).

Even though the TTS system outlined here is not a voice cloning system, it still goes in the
direction of closing the gap between humans and AI-generated voices. As a consequence, in my
opinion, together with everyone who works for this same aim, I should be mindful of this, and
consider the related risks.

On the other hand, I believe the threat of misuse of AI-generated voices should not be a reason
for us to stop working towards their improvement. Every tool is dangerous if used in the wrong way.

5.2 Environmental responsibility
The ethical implication of AI has recently gained attention, not only in terms of transparency and
explainability of its algorithms (e.g., Floridi et al., 2018) but also in terms of its environmental
impact. In the last three years, the concept of Sustainable AI (van Wynsberghe, 2021) has become
more and more present in the AI discussion, since the environmental implications of training AI
models cannot be ignored anymore. According to Strubell and colleagues (2019), the impact of
training a deep learning NLP model has about the same carbon dioxide emissions produced by five
cars over their lifetime. Since 2019, the models have grown bigger and bigger, and their impact has
increased both in terms of training data and model size and the resources required to store the data
and run the model have grown consequently (Wu et al., 2022).

The training of text-to-speech systems makes no exception, and working towards TTS systems
with a lower ecological footprint by reducing the amount of processed data is a responsibility that
every AI researcher should take.

Even though this work did not engage in the training of a TTS system with a large amount of data,
it still entailed the full training of the model, which means that it still has an impact. Moreover, the
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system outlined here goes in the direction of working with less data, demanding less computational
power to respect the environment without hindering scientific and academic advancement.

A more thorough review of methods to reduce the carbon footprint of AI and NLP systems is
provided by Lacoste et al. (2019) and McDonald et al. (2022).
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6 Conclusion
In this thesis, I have presented agingTTS, a model for age-controllable TTS, based on FastSpeech2
and integrated with an age embedding layer. The efficacy of the aforementioned model was tested by
experimenting with two different setups of the age embedding layer: the baseline model, agingTTS,
that extracts 256-dimensional age embeddings, and a model with a bottleneck in the age embedding
layer, agingTTS-BN. Due to time constraints, no subjective evaluation was conducted on these ex-
periments, instead, I conducted an acoustic analysis to compare the age-controlled output of the two
models and the corresponding natural speech. This analysis on the one hand confirmed that the age
embedding layer was able to capture some of the age-related features of the voice (e.g. differences
in mean pitch), on the other hand, it is falling short of the expectations. This might be due to vari-
ous limitations that the current work has. In the upcoming section (6.1), I discuss the improvement
points that might lead my model to the efficacy I was aiming for.

To conclude this work, the final section will briefly reflect on the impact and potential relevance
of this model in today’s technological landscape.

6.1 Limitations and Future Work
As already highlighted in Chapter 4, the TTS model developed for the present thesis still has much
room for improvement.

A major limitation of the present work relies upon the data used to build the training corpus.
As already mentioned in 3.2, the datasets used to build the agingTTS corpus on which the model
was trained are not as high-quality as a TTS system usually requires. Due to time constraints, no
data enhancement method was applied to improve the data quality. This led to the output speech
sounding much less natural than the usual output of FastSpeech2. Unfortunately, the limited amount
of time in which this implementation was realised did not allow for a more articulated development
of the system, nor for a more thorough experimentation of diverse solutions in terms of architecture.

These are the main improvement points I foresee: training data and architecture. I will discuss
them in more detail throughout the current Chapter.

6.1.1 Data enhancement

A change in the training data as a whole would certainly be beneficial, since, as mentioned earlier,
the datasets used were not suited for a TTS task.

The best option would be to collect data for this specific purpose, but since data collection is
costly in terms of time, energy and often money, there are other solutions to the issue.

One of them is the adoption of data enhancement techniques. Particularly, I believe noise reduc-
tion techniques could successfully be applied to all the datasets employed. Being all crowdsourced
and not studio-quality recordings, all the data contained background noise and other sources of dis-
ruption in the speech signal. By taking out such noisy signals, the output speech would be improved
and reach a result that can be as good as the one obtained with clean data (Valentini-Botinhao and
Yamagishi, 2018).

In the development of speech technologies for LRLs, to obviate the problem of the lack of data,
data augmentation techniques are often employed. Given the purpose of the TTS model, it is un-
fortunately not possible to adopt many of these techniques. Those data augmentation methods that
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feature modifications in F0 and duration have in fact to be discarded. As explained in Section 2.1,
pitch and speech rate are two fundamental cues for age detection in human speech.

This said, some approaches aim to increase the number of data available without changing such
acoustic features. One viable option is voice cloning, which has been shown to be possible even
with low-quality data (Arik et al., 2018). Nonetheless, this approach has a huge downside in the
light of the present work. Voice cloning, as of now, cannot be effectively applied to a low amount
of data, which means that in the present case, it might not be possible to effectively adopt this
strategy. However, there has been an effort in the direction of enabling voice cloning for LRLs, such
as Radhakrishnan et al., 2024 which shows promising results in this direction.

6.1.2 Improvements in the model

Testing the model outlined in this thesis with cleaner and improved data would shed light on its
weaknesses at the architecture level. Nonetheless, some adjustments could be made regardless of
the data used.

First of all, using different input features might be useful. As shown by Staib et al. (2020) and
Do et al. (2023b), the use of input features different than phoneme labels has a non-negligible effect
on the performance of a TTS model. Especially the use of articulatory features is of great impact in
the case of low-resource languages, and more widely, for models working with little data (Do et al.,
2023b). Since this is the case for the current model, given the fact that, as mentioned above, suitable
data were scarce, the use of articulatory features instead of phoneme labels is expected to improve
the performance.

Given the high individual variance and the inter-age group variance, the performance of the
system might be improved by relabelling the data based on the perceived age group, and not on the
actual age group. This could be achieved by training a classifier on a selected and validated subset of
data. The selection of the best possible data would be done manually, while the validation could be
either done manually by the developer or, for a less biased result, by a crowdsourced evaluation. The
critical point of this approach might lie in the assumption that either the developer or the participants
in the bottom-up evaluation are perfectly able to distinguish and classify voices based on their age.
Unfortunately, this is not always the case, as discussed in 2.1, hence, the bottom-up evaluation needs
to be done on a pre-selected subset of data, which raises the methodological question of how to
establish who has the skills to conduct such a pre-selection. We have no other option that relies on
our intuition as language users, but if we take up the suggestion made by Mei and Min, 2018 on
cultural and language differences in the externalisation of age-related cues, we have to take a step
further and involve native speakers in the process13.

6.1.3 Evaluation method

The evaluation method is also quite weak and can be improved. For the subjective evaluation, the
approach I foresee involves a listening test with a survey. The survey would aim to collect informa-
tion about the participants in terms of their sociolinguistic background and demographic data, while
the second consists of listening to audio clips of synthesised speech, 3 to 5 seconds long. Given
the limitations of Mean Opinion Score (MOS) and similar evaluation methods highlighted recently

13This, in turn, could raise additional questions, but I won’t dwell on such a complex theoretical and methodological
discussion
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(Wagner et al., 2019; Le Maguer et al., 2024), I would opt for a more descriptive method, following
the user-centered approach proposed in Wagner et al. (2019). The overall aim of the listening test
would be to evaluate whether the perceived age of the synthetic speech aligned with the input age pa-
rameter. To achieve this, accompanying each sound sample with a short description of the situation
in which the listeners would have heard the voice would be instrumental to managing participants’
expectations towards the use of the voice they are evaluating, and also to avoid unforeseen biases.
To further avoid biases, questions asking a judgement about the speakers’ age explicitly should be
avoided, in favour of questions that refer to age as a way to identify the speaker.

The context provided with the audio should involve the inability to see the person speaking. This
artifice should help participants relate to a situation in which the judgement would be done using
only hearing cues.

The system’s performance resulting from this subjective evaluation would be measured in terms
of the match rate between the intended and perceived age, similarly to what has been done for the
objective evaluation (see ??).

While I hope to be able to develop and implement the above improvement points, it is also my
hope that these suggestions will be taken up by future research, since I believe the potential impact
of a high-performing TTS system with age-control could be important. How this system can be
relevant is the focus of the following section.

6.2 Impact and relevance
Even though the outcome of my system did not satisfy my expectations and has much room for
improvement, I believe it is still a step towards the creation of something that will have an impact on
many people’s lives.

By implementing the suggested solutions and consequently enhancing the performances, I be-
lieve a system such as the one I aimed to develop can have an impact on every kind of TTS applica-
tion for which a degree of customisation is required.

First of all, a TTS with age control has the potential to enhance the usability of speech-generating
technologies by allowing people to have a voice that is more personal and representative of who they
are. As discussed in the introduction, our voice is part of our identity, and so is our age. Losing
partially or completely the ability to speak is tough, and being able to restore one’s own voice as
closely as possible to its original sound, I believe, can help in the process of accepting with more
ease the use of such technologies. The development of the system outlined in this work, in my
opinion, can contribute to making a difference in this direction.

Additionally, the voice technology industry can also benefit from such a system. It is my be-
lief that this represents an advancement towards the creation of user-friendly TTS systems that can
be customised with minimal computational effort and no technical knowledge. This might have a
fruitful application in the development of vocal personas for businesses, as well as Voice Assistants.
By improving this age-controllable system, speech tech companies might be able to offer a highly
flexible and easily tailored tool for third parties to create their voice bot or any other application that
involves synthetic speech.

Finally, the results of this research can have an impact on academic research and the wider speech
research field; I think the outcome of this work is relevant in two ways. Firstly, it highlights areas
of improvement in the extraction of acoustic features related to the ageing process. Moreover, this
work contributes to existing knowledge about technological solutions for under-resourced voices.
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By addressing the issues raised by this work, the scientific community can advance in this field and
provide better solutions to a long-standing problem such as TTS for under-resourced speech types,
that can in turn be beneficial for TTS for LRLs. As stressed on multiple occasions in this thesis, the
development of tools and technological resources for types of speech with low data availability and
under-resourced types of voices has an increasing relevance not only within academia but also in the
bigger industrial landscape.
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7 Appendix

7.1 Pitch contour plots
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Figure 11: Aggregated pitch contour of sentences synthesised with the baseline (agingTTS), bottleneck model
(agingTTS-BN) and ground truth per child speaker
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Figure 12: Aggregated pitch contour of sentences synthesised with the baseline (agingTTS), bottleneck model
(agingTTS-BN) and ground truth per adult speaker
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Figure 13: Aggregated pitch contour of sentences synthesised with the baseline (agingTTS), bottleneck model
(agingTTS-BN) and ground truth per senior speaker
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