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ABSTRACT

Existing speech enhancement models struggle to generalize to diverse acoustic envi-
ronments with unfamiliar noise types. The acoustic environment of a climbing gym
presents a particularly interesting challenge to speech enhancement models due to high
levels of complex ambient noise. Therefore, this study investigates the effectiveness
of a self-supervised speech enhancement model in removing climbing gym noise from
speech signals. In order to achieve this goal, a range of different experiments are con-
ducted which consider various factors that could have an influence on the model’s effec-
tiveness, such as variations in training data and the inclusion of the audio signal’s phase
information during model training. Despite the inconclusive results obtained, this study
provides valuable insights into the complexities of speech enhancement tasks. Further-
more, it identifies potential areas for future research that can contribute to developing
more effective speech enhancement algorithms for challenging noisy environments.
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1
INTRODUCTION

In recent years, speech enhancement has emerged as an important research area within
the field of audio signal processing. The main goal of this discipline is to enhance the in-
telligibility and perceptual quality of speech signals that have been corrupted by various
forms of noise. While many speech enhancement models have shown remarkable re-
sults in removing noise from speech signals, it is impossible to account for all variations
of noise. As a result, these models do not tend to generalize well to unseen acoustic en-
vironments, as they struggle to cope with the mixture of unfamiliar noises encountered
in such settings.

The acoustic environment of a climbing gym presents a particularly interesting chal-
lenge to speech enhancement models. As a facility designed for indoor rock climbing,
the climbing gym is often filled with high levels of ambient noise. Moreover, this type
of climbing gym noise is highly complex: it is composed of a mixture of both transient
and continuous sounds that occur at irregular intervals, such as the clamor of climbing
equipment, footsteps, shouting, and drilling noises during climbing route installation.
Another defining characteristic of climbing gym noise is its variability. For example, a
climber might make a small jump onto a safety mat at the bottom of the wall, which can
cause a sudden burst of loud noise. Such sounds are not at all consistent and can vary
in their intensity, which can make it difficult for speech enhancement architectures to
adapt to the noise characteristics.

Despite the fact that climbing gym environment noise is highly variable and com-
plex, no research has thus far been dedicated to exploring how well speech enhance-
ment models respond to this type of noise. Some popular examples of noise data sets
that have been widely used in past speech enhancement studies are AURORA [1], CHiME
[2], DEMAND [3], and NOIZEUS [4]. These data sets include noise from suburban trains
and train stations, airports, car traffic, restaurants and cafes as well as dinner parties
at home, and several diverse indoor and outdoor settings such as offices, kitchens, and
parks. When it comes to the indoor settings, the noise tends to be recorded in smaller
confined spaces like cafes and meeting rooms. The climbing gym, however, is a far larger
and emptier area than these kinds of settings, which influences the way sound travels
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around the space. This can lead to sound reflections such as echos or prolonged rever-
beration, but this also more generally causes the distribution of noise sources (such as
conversations or equipment clatter) to be much more spread out across the space. Con-
sidering this difference, investigating how enhancement architectures react to this spe-
cific type of noise would be a valuable contribution to the field of speech enhancement.
This leads us to our research question and hypothesis, stated in the next section.

1.1. RESEARCH QUESTION AND HYPOTHESIS
In order to address the observed gap in the literature, this thesis aims to investigate
the effectiveness of speech enhancement architectures in removing climbing gym noise
from speech signals. For this purpose, we use a novel data set of real-world climbing gym
noise that was recently compiled by Elja Leijenhorst [5]. As the amount of gym noise
recordings that was collected is limited, this thesis will employ a self-supervised learn-
ing approach to make most efficient use of the data. Self-supervised learning, in this
context, simply means that a machine learning model learns to extract useful represen-
tations from data without relying on explicit labels or parallel data pairs. It is therefore
particularly suitable for cases where data collection is rather costly.

For this reason, this thesis utilizes a self-supervised speech enhancement model. As
studies on self-supervised learning for speech enhancement are still relatively limited,
this thesis will specifically adopt a model developed by Wang et al. [6], whose research
stands out as one of the few studies that have explored a self-supervised approach in this
domain. Hence, the main research question which this thesis aims to answer is:

How effective is Wang et al.’s self-supervised speech enhancement model in
removing climbing gym noise from speech signals?

To answer this research question, we will first test their model on mixture signals com-
posed of speech and climbing gym noise, and observe how well the model can recover
clean (i.e. noise-free) speech signals from these mixtures.

This thesis hypothesizes that Wang et al.’s model may not perform optimally on these
mixtures for two reasons. First, the complex and dynamic character of climbing gym
noise will likely be challenging to a speech enhancement model unfamiliar with this
noise type. Second, Wang et al.’s model only processes the magnitude of the mixture sig-
nals (i.e. the strength of the frequency components of the waveform), while completely
ignoring the phase information (i.e. information on how the waveform is progressing
in its cycle). However, this kind of approach goes against the findings of recent stud-
ies [7–10] which have pointed out that ignoring phase information can lead to a limited
performance of speech enhancement models. Motivated by this possibility for further
improvement, this thesis explores the potential benefits of incorporating information
about the phase of the audio signal during the training of Wang et al.’s model, which
is an often overlooked component in more traditional speech enhancement algorithms
that mainly focus on the magnitude. We hypothesize that doing so will improve the ef-
fectiveness of Wang et al.’s model in removing climbing gym noise from speech signals.

Overall, the impact and relevance of this research would lie in its potential to contribute
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to a better understanding of speech enhancement in noisy environments and to the de-
velopment of more effective algorithms for improving speech communication in various
contexts, including climbing gyms.

1.2. THESIS STRUCTURE
To establish a foundation for addressing the research question, Chapter 2 will begin by
introducing the field of speech enhancement and expanding on relevant literature. Af-
ter this, Chapter 3 will provide an overview of the data and data pre-processing steps.
Chapter 4 discusses the methods used to train and adapt Wang et al.’s model. The re-
sults of these experiments will be provided in Chapter 5. Following this, Chapter 6 will
summarize the outcomes of this thesis and reflect on these results. Additionally, it will
discuss any issues and limitations encountered during this study and propose possible
directions for future research.



2
LITERATURE REVIEW

This chapter provides an overview of relevant literature on speech enhancement.1 Section
2.1 starts out with a general introduction to the topic. This is followed by a more detailed
description of enhancement methods in Section 2.2, which outlines differences between
methods that operate in the time-frequency domain versus the time domain. Finally, as
this thesis is concerned with self-supervised learning, Section 2.3 is dedicated to compar-
ing supervised, unsupervised, and self-supervised learning for speech enhancement.

2.1. INTRODUCTION TO SPEECH ENHANCEMENT
Speech enhancement (SE) is the task of recovering a clean speech signal from a noise-
corrupted speech signal, also known as the noisy mixture signal [6, 10, 11]. A common
way of explaining it is like an additive sum x(n) = y(n)+ z(n), where x(n) is the overall
mixture signal with n representing the frame index, y(n) the clean target signal, z(n) the
noise or distortion, and the task is to estimate the enhanced ŷ(n) from x(n) [7–9, 12, 13].
See Figure 2.1 for a visualization.

Figure 2.1: Single-channel speech enhancement

1Please refer to Appendix A for information on how the resources for this literature review were obtained.
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The main motivation for SE is to improve the intelligibility and perceptual quality of
speech signals [11, 13–17]. This has multiple practical applications, which include im-
proving the general performance of hearing aids in noisy environments, and optimizing
automatic speech recognition (ASR) systems by improving the quality of the audio input
[7, 8, 11].

It should be noted that enhancement tasks may include echo removal and derever-
beration [14, 18], but this thesis is primarily concerned with background noise suppres-
sion, also known as speech denoising. The terms “speech enhancement” and “speech
denoising” are therefore used interchangeably throughout this thesis. Generally speak-
ing, there are two main categories of speech denoising methods: so-called conventional
methods and deep learning-based methods [11, 19]. Moreover, there are hybrid methods
which combine the two aforementioned categories [19]:

1. Conventional methods are knowledge-based, meaning that they rely on experts’
a priori “assumptions regarding the statistical characteristics of the signals" [11,
p. 1]. Popular conventional methods include techniques like spectral subtraction,
Wiener filtering, and Minimum Mean Square Error (MMSE) methods [9, 16, 19].
These methods try to reconstruct the noise and clean speech signals by analyz-
ing their statistical properties. For spectral subtraction, for example, the average
of the noise spectrum is estimated at speech pauses, and this is then subtracted
from the estimate of the noisy mixture spectrum to obtain the clean target [11, 13].
However, this method makes the assumption that noise is additive and relatively
stationary, which is not always the case [13].

2. As different from conventional methods, deep learning-based methods do not rely
on knowledge-based assumptions. Rather, they are data-driven, meaning that
they try to establish nonlinear relationships between the input data – the mixture
signals – and the output data – the clean speech signals [11, 19]. These methods
utilize neural models such as convolutional and recurrent neural networks to learn
a function that maps input to output.

3. Hybrid methods, as the name suggests, combine conventional approaches and
deep learning. An example of such a hybrid approach can be found in [20], where
the authors use a neural network for only those parts of the noise reduction (e.g.
complex noise patterns or variations across frequency bands) that are difficult to
predict with conventional methods, thereby lowering the number of parameters
and complexity of the computations.

This literature review will mainly focus on studies that implement deep learning-based
methods, as they are best suited to non-stationary noise [19]. An example of station-
ary noise is a constant hum or buzz, whereas non-stationary noise changes over time.
Climbing gym noise can be considered non-stationary, as typical sounds heard in this
environment (such as footsteps or rope movements) tend to be fairly sporadic. Clearly,
it is very challenging to develop conventional, knowledge-based methods for this kind
of variability within the noise signal – deep learning-based methods, which can learn
highly complex nonlinear functions, are better equipped to deal with this kind of spo-
radicity.
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Within the context of speech enhancement or speech denoising, these deep learning-
based methods can be further categorized in terms of their operation domain. While
sources may slightly differ in exactly how they categorize these methods, this thesis dis-
tinguishes between those enhancement methods that operate in the time-frequency (TF)
domain and those that operate solely in the time domain, a categorization that is also
followed in [10, 16, 19, 21, 22]. The next section will cover these two categories in more
detail.

2.2. SPEECH ENHANCEMENT METHODS: TIME-FREQUENCY VS

TIME DOMAIN
Deep learning-based speech enhancement methods can be broadly categorized into
two operation domains: the time-frequency (TF) domain and time domain. The time-
domain methods take in the waveform input directly, which is what we refer to as the raw
waveform. TF methods, on the other hand, transform the raw waveform into a TF-based
representation for processing, before eventually re-synthesizing this representation back
into a waveform. Both these approaches will be discussed in the next subsections.

2.2.1. TIME-FREQUENCY DOMAIN
TF-based enhancement methods typically apply a Short-Time Fourier Transform (STFT)
to the raw waveform: the time-domain signal is first divided into overlapping segments
(i.e. frames) via a window function, and a Discrete Fourier Transform (DFT) is applied to
each frame in order to obtain its constituent frequencies [17]. These frequencies make
up a complex-valued spectrum, where the frequency components of the spectrum carry
both magnitude and phase information [7, p. 1]. In simple terms, magnitude can be
seen as the strength or size of the frequency components at specific time points, whereas
phase can be seen as the relative positioning of those frequency components on the raw
waveform – i.e. how the waveform is progressing in its cycle. The phase is therefore often
represented as an angle within this cycle, providing a standardized reference for under-
standing and comparing phase relationships between frequency components. In Figure
2.2, we can see how the phase angle encodes the relationship between the frequency
components at two different points on the waveform.

Figure 2.2: Phase angle of points on a sine wave [23]

As the phase is more difficult to process due to its cyclical nature, the phase infor-
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mation is often excluded during training [7, 24]. The final TF representation used for
training is usually a magnitude spectrogram, which can be seen as a 2D matrix that
is obtained by squaring the magnitude information of the STFT. Another example of a
TF representation, although less commonly used in speech enhancement, is the mel-
frequency spectrogram [25]. Here, the linear frequency scale of the STFT is mapped onto
the logarithmic mel scale, which more closely corresponds to the way humans perceive
frequency.

The idea behind using such TF-based representations, as opposed to raw waveforms,
is that they provide a more detailed overview of auditory patterns, such as “proximity in
frequency and time, harmonicity and common amplitude and frequency modulation”
[10, p. 3816], which can make it easier for the deep-learning model to learn meaningful
features that help filter out the noise components. In other words, the TF representation
makes the speech and noise patterns in the signal more easily distinguishable [22]. For a
visual aid, see Figure 2.3, which clearly showcases the richness of information contained
in a TF representation as compared to the original time-domain waveform.

Figure 2.3: Waveform (top) and magnitude spectrogram (bottom) of the same audio signal [26, p. 7]

So how do these TF models work? As discussed previously, deep-learning models
that operate in the TF domain first take the noisy waveform as input, and transform this
input into a TF-based representation such as the noisy magnitude spectrogram [16, 22].
They then start learning the underlying patterns of this input to be able to identify and
separate the noise components from the desired speech components, thereby estimat-
ing the clean TF representation. This clean representation is then synthesized into a
clean waveform using an inverse Short-Time Fourier Transform (STFT), which merges
and transforms the frames back into a time-domain representation [7, 16]. For a visual
depiction of a standard TF-domain enhancement framework, please refer to Figure 2.4.

It is important to note that the final clean waveform cannot be synthesized based on
the magnitude spectrogram input alone, as waveform reconstruction also requires infor-
mation about the phase of the waveform. However, as mentioned previously, phase esti-
mation can be quite difficult — instead of estimating the phase, a common workaround
is therefore to simply combine the estimated clean magnitude with the phase informa-
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Figure 2.4: A typical TF-based speech enhancement framework [10]

tion from the noisy input [7].
Indeed, many TF-based speech enhancement approaches choose to re-use the phase

from the noisy input rather than predicting it. While older research [27] claimed that
phase estimation does not improve the predicted signal, more recent research [7–10]
has shown that it can be beneficial to also estimate the phase information of the speech
signal, and simply re-using the noisy phase from the input can in fact “create a perfor-
mance upper bound” [10, p. 3816]. Predicting the speech signal’s phase can particularly
contribute to enhancing the intelligibility of the signal (Ibid.). However, phase estima-
tion in the TF domain is a rather difficult task, due to the fact that the phase spectrogram
(which is obtained by computing the angle of each element in the STFT matrix) is highly
unstructured as compared to its magnitude counterpart [24, 28], as seen in Figure 2.5.
Although the phase is inherently cyclical and its values are continuous, the phase angles
tend to be wrapped within the range of −180◦ and 180◦ so that they are easier to process,
and this wrapping is often seen as the reason for the unstructured character of the phase
spectrogram [24].

Figure 2.5: Examples of magnitude and phase spectrograms [24, p. 484]

Because phase estimation is difficult, there is still a large amount of projects which focus
on magnitude estimation only [7]. We can therefore distinguish between so-called TF-
magnitude and TF-complex approaches, where TF-complex approaches leverage mag-
nitude as well as phase information [21].

There are multiple ways in which a TF-complex approach can incorporate phase in-
formation. One approach involves predicting the magnitude and phase information of
the clean target separately, as is done in Microsoft’s model PHASEN [22]. To deal with the
lack of structure in the phase spectrogram, PHASEN incorporates information exchange
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between the two different streams, meaning that the model can leverage the structural
information of the magnitude spectrogram when predicting the phase (Ibid.).

Another way a TF-complex model can incorporate phase information is by directly
estimating a complex-valued spectrogram where magnitude and phase are no longer de-
coupled, thereby avoiding having to estimate the phase separately. To better understand
this technique, it is first necessary to briefly explain how we can represent the Short-Time
Fourier Transform (STFT) of a noisy mixture signal using different coordinate systems.
When representing the STFT of each time-frequency bin in the noisy input spectrogram,
past studies have commonly employed polar coordinates (i.e. the magnitude and phase
angle) [24]. As an alternative, more recent work has investigated how we can express the
STFT of each TF unit by using a Cartesian coordinate system with a complex exponential
(Ibid.). Please refer to Figure 2.6 for a side-by-side comparison of these two coordinate
systems.

Figure 2.6: Cartesian coordinate system with complex exponential (left) vs polar coordinate system (right) [29]

On the left side, we have the Cartesian coordinate system with the complex exponential,
where the x-axis represents the real part and the y-axis represents the imaginary part of
the complex number. In this system, a complex-valued TF unit is expressed by its co-
ordinates on these axes. On the right side, we have the polar coordinate system, where
a complex-valued TF unit is represented through means of a reference point (the origin
at 0,0), where the distance of this TF unit from the reference point indicates the magni-
tude component, and the angle it makes with the positive x-axis represents the phase
component of this TF unit.

In the Cartesian representation, each TF unit is represented by its real and imaginary
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components.2 By adopting the Cartesian coordinate system with the complex exponen-
tial instead of the commonly used polar coordinate system, we can represent the TF
units in a more structured and clearer manner. The benefit of this, according to [24], is
that we no longer have to deal with the unstructured character of the phase spectrogram,
meaning that the phase information does not need to be discarded. Instead, as the TF
unit is now represented by its real and imaginary components, we can compute a real
and imaginary spectrogram which both exhibit a clear structure, as seen in Figure 2.7.

Figure 2.7: Examples of real and imaginary spectrograms [24, p. 484]

Examples of models that estimate the complex-valued spectrogram in this way are
the well-known Deep Complex U-Net (DCU-Net) [7] architecture and some of its more
recent adaptations like DCRNN [30]. However, it should be noted that DCU-Net is a
masking model rather than a mapping model like most of the models that have been
discussed thus far. While mapping models directly map noisy input to clean targets,
for masking-based architectures, the training target is not the clean spectrogram itself
but rather an “intermediate mask” [19] that indicates the presence or absence of noise
at each TF unit of the spectrogram (i.e. a weighted matrix). Applying this intermediate
mask to a noisy spectrogram representation is then supposed to yield a clean estimate
[21]. TF-magnitude approaches commonly apply the Ideal Binary Mask (IBM), which as-
signs 0 or 1 to each TF unit to indicate the presence or absence of noise, or the Ideal Ratio
Mask (IRM), which works with probability scores instead of binary values and has proven
to be more effective [19, 21]. TF-complex approaches, like DCU-Net and DCRNN, com-
monly apply the so-called complex Ideal Ratio Mask (cIRM) instead, which estimates the
ideal speech-to-noise ratio at each TF unit along a complex Cartesian coordinate system
[21].

It is important to note, however, that the discussed TF-complex approaches are not
the only way of addressing the phase estimation problem. Time-domain approaches
also offer a viable option. In fact, the main advantage of using time-domain approaches
over TF approaches is that the phase and magnitude are not separated to begin with, as

2This thesis will not go too far into the mathematical theory behind this concept. The most important
thing to understand is that these real and imaginary parts retain both magnitude and phase information
by using a different spatial representation. Specifically, the magnitude can be determined by taking the
square root of the sum of the squares of both components, i.e. (sqrt(real2+imaginary2). The phase
can be determined by taking the inverse tangent (arctan) of the imaginary part divided by the real part, i.e.
arctan(imaginary/real), which produces an angle representing phase information [24].
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will be discussed in the next subsection.

2.2.2. TIME DOMAIN
As mentioned previously, time-domain approaches to speech enhancement work with
raw waveform input. Similar to TF-based approaches, they first divide the signal into
frames using a window function. However, unlike TF-based approaches, time-domain
methods do not apply any kind of Fourier transform to these frames. This means that
they do not separate the magnitude and phase components of the signal, nor do they
require complex phase estimation. A great advantage of this is that time-domain ap-
proaches are typically less computationally expensive [17].

The big downside to time-domain methods, on the other hand, is that they generally
perform better with larger frame sizes [31, 32], which leads to a higher number of param-
eters and a larger model size [17]. While TF-based approaches are confined to capturing
only those features that are explicitly present in the TF representations, time-domain
approaches have access to the original waveform from which they can derive features
autonomously [17]. This means that, if the window size is too small, the input might
not contain enough important information for the time-domain architectures to learn
meaningful features [31].

Despite these disadvantages, there are examples of time-domain architectures that
achieve high performance. According to [10, 22], two of the most influential time-domain
models that have been developed in recent years are SEGAN and Conv-TasNet. SEGAN
[33] is an end-to-end model that was one of the first to use generative adversarial net-
works (GAN) for speech enhancement. This GAN is composed of a generator, which
produces an enhanced or denoised version of noisy input speech, and a discriminator,
which determines whether this enhanced version can be classified as clean speech or
not. In this way, the generator and discriminator are able to mutually optimize each
other.

Conv-TasNet [34] was originally designed for speech separation (e.g. to separate
speakers in multi-speaker scenarios) but later adapted to speech enhancement [22]. This
network is composed of an encoder, a separation network, and a decoder. The encoder
applies 1D convolutions to the raw waveform to obtain a feature representation of the
entire signal. The separation network uses this representation to estimate a multiplica-
tive function (mask) for each individual speech signal at each time step, and these indi-
vidual speech signals are reconstructed by the decoder. According to [34], Conv-TasNet
outperforms several earlier speech separation models that operate in the TF domain.

Although Conv-TasNet works well for speech separation, the authors in [22] state
that when this model is implemented for speech enhancement, “the 2ms frame length
appears to be too short” for achieving a similar performance (p. 3). While there are adap-
tations of Conv-TasNet which make use of longer frame lengths (like TCNN [35]), [22]
claims that time-domain methods are simply not as well suited to the speech enhance-
ment problem as TF methods. While operating in the time domain avoids the issues
associated with phase estimation, it still seems to be more beneficial to transform the
audio signal to a TF representation, as this representation makes the speech and noise
patterns within the signal more easily distinguishable to the model [22].

Having discussed some of the differences between speech enhancement methods in
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the TF domain and time domain, it is essential to now consider the learning paradigms
employed to tackle the enhancement task effectively. Given that this thesis utilizes a self-
supervised model developed by Wang et al. [6], as mentioned in the introduction and
further explained in Chapter 4, the following section is dedicated to comparing super-
vised, unsupervised and self-supervised learning for speech enhancement. Moreover, it
explains the rationale behind adopting a self-supervised framework.

2.3. COMPARING SUPERVISED, UNSUPERVISED AND

SELF-SUPERVISED LEARNING FOR SPEECH ENHANCEMENT
Supervised learning is by far the most common in speech enhancement [11]. In super-
vised approaches, the deep-learning models are trained to estimate the clean targets by
learning from parallel pairs of noise and clean speech data. Parallel, in this case, means
that the noise and speech have been recorded in the same acoustic environment. These
models learn by comparing the predicted clean speech signal (also known as the en-
hanced signal) with the actual clean speech signal from the data pair. By computing
the loss based on this difference, the model can be optimized for better performance.
Some of the more popular models discussed in this chapter, like Deep Complex U-Net
[7], Conv-TasNet [34] and SEGAN [33], are trained in a supervised manner. While these
models have achieved good results, there are some clear disadvantages to supervised
learning, as discussed in [6, 36]:

1. Obtaining the parallel noisy-clean data pairs for supervised learning can be rather
expensive. Moreover, it is difficult to ensure that the collected clean targets are
truly ‘clean’ and not at all contaminated by noise.

2. Supervised models may not respond well to noise in a real-world, uncontrolled
environment because it is variable and unpredictable. Even if the model is de-
ployed in a similar environment to the one it was trained in, the model might still
encounter unseen noises to which it cannot adapt itself very effectively.

3. Related to the previous point, supervised models have limited generalizability to
new or different acoustic environments. If the model is deployed in a different
environment, a significant drop in performance is likely to occur.

Seeing as there are disadvantages to supervised learning in terms of data collection and
generalizibility, in recent years some research has been dedicated to unsupervised and
self-supervised learning for speech enhancement.

Unsupervised learning relaxes the constraints on the data collection by training mod-
els using either non-parallel pairs of clean and noisy data, clean data alone, or noisy
data alone [37]. Unsupervised noise-dependent methods learn the noise characteristics
of the noisy samples during training, while noise-agnostic methods solely rely on clean
speech signals during training and estimate the noise characteristics at testing time [36]
[37]. A recent example of an unsupervised model which utilizes a noise-dependent or
“noise2noise” method is found in [38]. Rather than mapping the noisy input samples
to their corresponding clean target samples, as is done in supervised learning, the au-
thors train their model to map noisy input samples to uncorrelated noisy target samples
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(Ibid.). As the input and output have different noise characteristics, the model effectively
learns to “denoise” the input samples. This lack of correlation between input and out-
put equally ensures that the model learns to denoise data samples in a more generalized
manner, rather than learning a mapping from one specific noise type to another (Ibid).

An example of an unsupervised noise-agnostic method can be found in [39]. The
researchers first train a variational autoencoder (VAE) on only clean speech signals in
order to learn their underlying patterns and characteristics. At testing time, the VAE uses
this knowledge to approximate clean speech from the noisy input. During this step, the
VAE is assisted by a more traditional parametric noise model, which estimates the char-
acteristics of the noise present in the input. The parameters of this model are computed
using an expectation-maximization algorithm, but the iterative nature of this algorithm
(i.e. it continuously updates the parameters) makes such an unsupervised approach
rather slow and computationally expensive during the testing stage (Ibid.). Although the
authors improve on this issue by developing a more efficient data sampling method, this
kind of unsupervised approach is likely not ideal for this thesis.

An alternative learning paradigm is self-supervised learning. Unsupervised and self-
supervised learning are similar in that they do not require parallel pairs of noisy and
clean data. However, there is a difference in how each approach learns from the available
data. Unsupervised learning seeks to uncover the patterns of the noise and/or speech
data, while self-supervised learning makes use of this observed structure within the data
to generate its own training targets – essentially learning from one part of the input to
predict another part of the input.

Unfortunately, studies on self-supervised learning for speech enhancement are still
relatively scarce [11, 15]. One example of a self-supervised approach can be found in
[40]: in this research, the authors make use of a two-step speech enhancement approach
to improve a speech recognition system for Arabic. Since Arabic is an under-resourced
language from a speech technology perspective, it can be difficult to obtain clean speech
samples, which is why only noisy data samples are used for this experiment. As a first
step, the authors train an auto-encoder on pairs of noisy speech in an unsupervised way,
which helps it learn patterns and features that it is able to utilize for denoising. As a sec-
ond step, another auto-encoder uses this denoised output as its training targets to learn
how to further enhance and remove any remaining noise from the noisy input speech. By
employing such a self-supervised approach, the overall model is able to refine its ability
to generate clean speech samples.

The approach described in [40] shows why self-supervised learning is an attractive
option for this thesis. By training the model on noisy speech and continuously refining
its denoising capabilities, the overall model becomes better at handling different types
of noise across diverse acoustic environments. As climbing gym noise is highly variable
and the available data for this thesis is limited, it is sensible to adopt a self-supervised
approach rather than opting for supervised learning. Although the code for this par-
ticular project is not publicly accessible, research by Wang et al. [6] uses a similar self-
supervised approach to speech enhancement with open-source code.3

This thesis will therefore adopt the self-supervised model developed by Wang et al.
[6]. However, one downside to this model is that it only operates on the noisy magni-

3The code for this model is available here.

https://github.com/jeffreyjeffreywang/SSE
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tude spectrogram, and re-uses the phase information from the input noisy speech. As
discussed in Section 2.2, phase estimation can improve the intelligibility of the predicted
clean speech. Therefore, next to testing the performance of this model on climbing gym
noise, this thesis aims to see whether incorporating phase information could help im-
prove the results. The exact architecture of this model and the intended modifications
will be described in the methodology, Chapter 4. Before this, Chapter 3 will discuss the
data sets used for training the model.



3
DATA

This chapter provides an overview of the data used for this thesis. It is divided into three
parts. Section 3.1 will give a description of each of the individual data sets. Section 3.2
will discuss the pre-processing steps that were taken to make the data sets suitable for this
research. Finally, Section 3.3 will briefly expand on the ethical considerations surrounding
the collection and usage of the data.

3.1. DATA DESCRIPTION
This thesis utilizes three different data sets: one data set containing clean speech au-
dio, and two different data sets containing noise. The clean data set that is used is the
train-clean-100 subset from LibriSpeech [41]. LibriSpeech is an open-source English
speech data set and its clean subsets are widely used for speech enhancement tasks. As
for the noise, two different data sets are employed: an open-source data set called Ur-
banSound8K [42] and, most importantly, a newly compiled data set of climbing gym
noise recordings. These recordings were made by Elja Leijenhorst [5], who was kind
enough to share the data with us for this research.

While this thesis is mostly concerned with how well Wang et al.’s speech enhance-
ment model is able to remove the collected climbing gym noise from noise-corrupted
speech signals, the UrbanSound8K data is necessary as we first want to train a baseline
version of their model with similar types of noises from a different source. This baseline
model will be trained with mixtures composed of clean LibriSpeech samples and Ur-
banSound8K noise, and tested on mixtures composed of clean LibriSpeech samples and
climbing gym noise. The reason for establishing such a baseline model is that it allows
us to evaluate how effective the model already is at removing climbing gym noise from
speech signals, even when it has not been explicitly trained on this specific noise type.
It also allows us to evaluate the performance of any additional experiments through a
comparative analysis. A detailed description of the baseline and other experiments will
be provided in the next chapter, Chapter 4. The next sections are dedicated to describing
the three data sets in more detail.

15
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3.1.1. LIBRISPEECH
LibriSpeech is a widely known audio data set consisting of “read speech” data, mean-
ing speech that is read aloud from text instead of being derived from natural conver-
sation. This set was compiled by having speakers read out excerpts from LibriVox au-
dio books [41]. While the overall data set comprises ca. 1000 hours, LibriSpeech has
a few smaller subsets of “clean” speech data. The recordings in these subsets have a
cleaner audio (i.e. less background noise) and all speakers within these sets have a sim-
ilar US English accent (Ibid.). The specific subset which is used for this thesis project is
called train-clean-100, which contains 100 hours of clean audio data from 251 dif-
ferent speakers. Among these speakers, 125 are female and 126 are male, with ca. 25
minutes of audio data for each speaker (Ibid.). Each file in this set is a .flac type and has
a 16000 Hz sampling rate. The duration of each file varies, but the files tend to be less
than 30 seconds long.

3.1.2. CLIMBING GYM NOISE
The data set containing the gym environment noise was compiled by Elja Leijenhorst [5]
and is currently not publicly available. The data recording took place at a climbing gym
in Leeuwarden called Klimcentrum Noardwand [43] between January and April of 2023,
at various times and various locations within the gym. Each of the files varies in length,
ranging from ca. 6 minutes to as long as ca. 2,5 hours, and has a sampling rate of 44100
Hz.

Next to providing information about the files and recording process, this section will
also very briefly discuss the acoustic diversity within the climbing gym, as the aim with
the recordings was to collect as much and as many types of environment noise within the
same gym environment as possible. Figure 3.3 provides a floor map that illustrates the
different microphone locations used for recording. As this map shows, there are several
separate areas or zones to be distinguished within the gym in terms of their acoustics,
such as the lead climbing area, the clip ’n climb, and the top roping area. Figure 3.4
includes pictures of the different areas.

Although situated in the same climbing hall, each of these areas exhibits distinct
acoustic characteristics. For instance, the clip ’n climb area is meant for short climb-
ing challenges that are accessible to children – sounds heard in this area can therefore
include children shouting or laughing, the clipping and unclipping of carabiners, or chil-
dren walking on the rubber mats at the bottom of the climbing walls. In the top roping
area, common sounds can include the sliding of ropes through belay devices, and the
shouting of commands between the climber and the belayer – i.e. the person in charge
of the safety rope (see Figure 3.1).
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Figure 3.1: Belay device (left) and belaying demonstration (right) [44]

In the lead climbing gym area, the climber is also assisted by a belayer who ensures the
climber is safely secured. However, the difference between lead climbing and top roping
routes is that the rope is not attached to the top of the climbing route, but the climbers
themselves are responsible for pushing the rope through “quickdraws”, which are kind of
like metal carabiners attached to the wall. As mentioned by [5], these quickdraws make
a “sharp clipping sound” which is not heard in the top roping area. See Figure 3.2 for the
difference between top roping and lead climbing.

Figure 3.2: Top roping (left) versus lead climbing (right) [44]

Although all recordings were made within the same gym environment, it has been demon-
strated that specific areas within this environment can feature certain sounds more or
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Figure 3.3: Floor map of the climbing gym, created by Elja Leijenhorst [5]

Figure 3.4: In consecutive order: lead climbing area, clip ’n climb, top roping area [43]
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less prominently than others. This is why the recordings were made in various different
areas of the climbing gym.

However, there is also a separate bouldering gym (see Figure 3.3) which was not con-
sidered for this data set, as there is a risk that these sounds are too distinct from the
environment noise within the main climbing gym. For example, as bouldering is a type
of free climbing, there will be a lack of climbing equipment sounds that are present in all
of the other recordings. The shapes of the two halls are also different. While the sounds
of the bouldering hall were not included in the data for this thesis, future projects could
potentially research how the acoustics of the bouldering gym compare to the climbing
gym.

3.1.3. URBANSOUND8K
The third data set utilized in this thesis is UrbanSound8K. UrbanSound8K is an open-
source data set consisting of 8732 audio excerpts with a duration of max. 4 seconds each
[42]. Each of these files contains urban noise from one of the ten different urban noise
classes in the data set, which are described in Table 3.1. As the audio in these files is
derived from the FreeSound project [45] (which is an online collaborative project where
any user is free to upload audio snippets),the sampling rate per file can vary.

class urban noise type
0 air conditioner
1 car horn
2 children playing
3 dog barking
4 drilling
5 engine idling
6 gun shot
7 jackhammer
8 siren
9 street music

Table 3.1: UrbanSound8K: 10 different urban noise classes [42]

As mentioned previously, the UrbanSound8K data will be utilized to train a baseline
model. This model will be trained with mixtures of clean speech and UrbanSound8K
noise, and tested on mixtures of clean speech and climbing gym noise. We have there-
fore selected data from only those urban noise classes that share some resemblance to
sounds commonly heard in a climbing gym. The selected noise classes for the baseline
model are class 0, 2, 4 and 9.

• Class 0 was chosen as there are air conditioners in the climbing gym, and this
sound is likely to be heard in the recordings.

• As mentioned in the data description, part of the audio was recorded in the clip ’n
climb area of the climbing gym. This is an area with shorter climbing challenges
that are meant for children. Class 2 was selected as the sounds of children playing
is very similar to some of the noise heard in these recordings.
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• Class 4 consists of drilling noises, which might at first glance not be very relevant
to a climbing gym area. However, in a climbing gym, drilling noises are actually
heard very frequently as a result of route setting. Route setting means that the
handholds and footholds on the climbing gym walls are constantly moved around
in order to create new routes for the climbers, as can be seen in Figure 3.5.

• Class 9 was selected as there is often music playing within the climbing gym. It
is important to note, however, that street music will likely have slightly different
acoustics than music that is played in an indoor gym.

Figure 3.5: Route setting in a climbing gym [46]

Now that we have discussed the data sets selected for this project, the next section will
be dedicated to explaining the data pre-processing steps.

3.2. DATA PRE-PROCESSING
Different pre-processing steps were carried out for each of the three data sets.

➯ LibriSpeech. For the LibriSpeech data, the .flac files were first converted into .wav
files. As this research does not require all 100 hours of data spoken by 251 speak-
ers, since this would take up more memory and computational power, a smaller
selection was made. In the end, 15 female speakers and 15 male speakers were
randomly selected, which totals to 30 speakers with around 12.5 hours of clean
speech data. Data from 24 of those speakers (12 female and 12 male) were re-
served for training, and data from 6 speakers (3 female and 3 male) were reserved
for testing purposes.

➯ Climbing gym noise. The recorded climbing gym noise data has a sampling rate
of 44100 Hz. This data, in accordance with the clean LibriSpeech data, was first
resampled to 16000 Hz via FFmpeg, an audio processing tool that can be run from
the Linux commandline. As the recorded noise files were rather large and unequal
in size, FFmpeg was also used to divide each file into ca. 1.5 minute-long clips for
more efficient processing. Before doing so, 5 seconds was trimmed from the be-
ginning and end of each file to ensure that the audio did not include any instances
of the microphone being activated or deactivated. Finally, Python’s split-folders
library was used to randomly divide these clips into a training and test set, using

https://ffmpeg.org/download.html
https://pypi.org/project/split-folders/
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an 80/20% split with a random seed of 1337 (the random seed is added for repro-
ducibility – it ensures the same random selection is made every time).

➯ UrbanSound8K. As explained previously, for UrbanSound8K only the data from
class 0, 2, 4 and 9 was utilized, as these noise types share some characteristics
with the climbing gym noise. The files from these classes were converted into .wav
files and resampled to 16000 Hz in accordance with the other data sets. As before,
Python’s split-folders library was used to randomly divide the files into a training
and test set with an 80/20% split and a random seed of 1337.

3.3. ETHICAL CONSIDERATIONS
Next to the description of the data and data pre-processing steps, is important to con-
sider any potential ethical issues with the data collection and usage. While widely known
open-source resources like LibriSpeech and UrbanSound8K may not pose significant
ethical concerns, it is important to consider any potential ethical risks associated with
the collection and usage of the climbing gym noise data. These recordings are meant to
capture ambient noise only, but will very occasionally capture small bits of discernible
speech when the climbers are in too close proximity to the microphone. In the large ma-
jority of recordings, no discernible conversations can be detected, as it is mostly shout-
ing and background noises. However, there are occasional instances where members of
the climbing gym can be heard speaking a few words or small phrases clearly.

As voice recordings are considered biometric data and can potentially be used to
identify individuals, it is important to handle these cases with utmost care. In light of
this, several measures have been taken to ensure the responsible management and pro-
tection of the recorded data. First, the members of the climbing gym were informed
of the recordings in multiple ways. During the recording process, notice boards were
placed next to the microphone as a way of informing individuals about the purpose of
the recordings, when the recordings would be taking place, as well as explanation on
how to object to being recorded [5]. Next to that, notifications about the recordings were
also circulated in the WhatsApp group of the climbing gym, ensuring that members were
informed about the ongoing recording activities (Ibid.).

On top of that, Leijenhorst [5] eventually decided not to make the climbing gym data
set open-source, in order to ensure responsible protection of data. While any poten-
tial speech could be filtered out of the noise recordings using a Voice Activity Detection
(VAD) algorithm, some experimentation showed that these algorithms might not always
work perfectly on the noisy data. As the data set is too large to manually anonymize
within the limited time span, it was decided to keep the data private for now.

Now that the individual data sets and the pre-processing steps have been discussed and
any ethical concerns have been addressed, the next chapter will expand on how exactly
the data will be utilized for model training. Specifically, the next chapter discusses the
methodology of this research: it will first elaborate on the architecture of Wang et al’s
self-supervised model, and then go into the experiments which train different versions
of this model using the previously discussed data.

https://pypi.org/project/split-folders/
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This chapter provides an overview of the methodology and is divided into three main
parts. Section 4.1 will first provide background to the methodology: it explains the ar-
chitecture and experimental set-up of Wang et al.’s model, which serves as the foundation
for this research. Section 4.2 will then expand on three different experiments that are con-
ducted using this model. This section also explains the reasoning behind these model ex-
periments and highlights how each one contributes to answering the main research ques-
tion of this thesis. Finally, Section 4.3 will discuss the evaluation metrics used to assess the
performance of each model.

4.1. METHODOLOGICAL BACKGROUND
Before discussing any of the model experiments, this section will first expand on the
architecture of Wang et al.’s [6] model and their experimental set-up for model training.
Unlike traditional supervised learning approaches, which rely on parallel pairs of clean
speech and noise data, this model employs a self-supervised method that relaxes the
constraints on the data collection by working with uncorrelated speech-noise pairs. This
simply means that the speech and noise data have been recorded in different acoustic
environments. To make most efficient use of the available data, Wang et al. divide their
architecture into two parts: they train one autoencoder for clean speech signals, and one
for noisy mixture signals.

1. As a first step, they train a clean autoencoder (CAE) to learn useful representa-
tions from the clean speech data in an unsupervised manner. Such an autoen-
coder consists of two parts: an encoder, which compresses the input to a lower-
dimensional representation that captures only its most essential features, and a
decoder, which takes this latent representation and attempts to reconstruct the
original input from it. In this way, the autoencoder is able to learn and identify the
underlying patterns of the clean speech signals. The CAE specifically autoencodes
on the time-frequency representation of the clean speech signals, but considers

22
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only the magnitude spectrogram and discards all phase information during train-
ing.1 The spectrogram that was reconstructed by the decoder (referred to as Ĉ)
is compared against the input spectrogram (referred to as C). The cost function
calculates the loss between the original and reconstructed version, and the perfor-
mance of the CAE is optimized by attempting to minimize this loss during training.

2. As a second step, the clean speech and noise data are combined in order to ob-
tain noisy mixture signals. The magnitude spectrogram representations of these
mixture signals (referred to as M) are used as input to train a mixture autoen-
coder (MAE). Similar to the CAE, the encoder of the MAE compresses these mixture
spectrograms to a lower-dimensional representation, and the decoder attempts to
reconstruct the original input from this latent representation (the reconstructed
mixture spectrograms are referred to as M̂).

However, the primary goal of speech enhancement models is to learn how to reconstruct
a clean representation from a noisy mixture, rather than reconstructing the noisy mix-
ture itself. In order to achieve this, Wang et al. design their architecture in such a way
that the MAE shares its latent space with the CAE. Please refer to Figure 4.1 for a visu-
alization of this architectural design. Essentially, this means that the cost function used
to train the MAE not only considers the reconstruction loss between the input mixture
and the predicted mixture, it also compares the MAE’s latent representation to the CAE’s
latent representations (i.e. compressed representations which capture the most impor-
tant parts of the input spectrograms). As the cost function’s primary objective is to min-
imize the difference between these representations, the MAE is encouraged to learn a
mapping between the mixtures and clean representations. In Figure 4.1, this mapping
is represented by the path that starts at Em (the MAE encoder) and ends at Dc (the CAE
decoder).

Figure 4.1: Architecture of SSE model by Wang et al. [6]

This sharing of the latent space between the CAE and MAE enables the overall model to
perform speech enhancement without the need for parallel or labeled training examples

1Please refer back to Section 2.2 for a discussion of magnitude and phase in the time-frequency domain.
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of clean and noisy speech. This is a major benefit of self-supervised learning, as parallel
pairs of data can be difficult to obtain in practice. On top of that, this design makes the
training process more efficient, as the two autoencoders have some design overlap and
do not have to be trained completely separately.

Now that the architecture of Wang et al.’s model has been broadly discussed, it is
important to elaborate on some of the finer details and parameters. First, it should be
noted that both the CAE and MAE consist of a sequence of convolutional layers. In sim-
ple terms, a convolutional layer slides a small vector or matrix, also known as the kernel,
over the input spectrogram to analyze it one small segment at a time. By taking the dot
product of the kernel and a segment of the spectrogram, we are able to extract only the
most significant features of this segment. In the encoder, this process allows us to com-
press or downsample the input, reducing the size of the input while retaining crucial
information. In the decoder, we apply transposed convolutions instead, which reverse
this process: they upsample the compressed latent representation back into the original
input.

This original input spectrogram is 2-dimensional, with both a time and frequency
axis. However, the convolutions which Wang et al. apply to this spectrogram are 1-
dimensional. Essentially, the convolutional operation treats each frequency bin in the
spectrogram as a separate “channel” and the kernel slides across the temporal dimen-
sion of such a channel, making it a 1-dimensional convolution. In the encoder of the
CAE, the parameters are set such that the convolutions sequentially decrease the num-
ber of channels from 513→512→256→128→64, and this is reversed in the decoder. In
the MAE, the number of channels decrease from 513→512→400→300→200→ 100→ 64
and this is once again reversed. As for the other parameters in their experimental set-up,
Wang et al. set the size of the kernel to 7 and the stride to 1, meaning that the kernel
contains 7 weights that determine which features within the channel are the most im-
portant, and the stride indicates the step size at which the kernel moves along the chan-
nel. The number of epochs (i.e., the number of times the model iterates through all data
samples during training) was not explicitly stated in the paper. However, based on the
code, the CAE appears to be trained for 700 epochs, and the MAE for 1500 epochs.

To train the CAE and MAE, Wang et al. specifically use the DAPS (Device And Pro-
duced Speech) data set [47] and the BBC noise data set [48]. However, unfortunately the
BBC noise data set is not available anymore, and the speech in the DAPS data is not of
the best quality. Therefore, for the baseline experiment, this research will substitute the
original datasets with the LibriSpeech and UrbanSound8K sets, which will be elaborated
on further in the following section.

4.2. METHODOLOGY: MODEL EXPERIMENTS
The following section will elaborate on the experiments that are conducted using Wang
et al.’s model. Each of these experiments contributes to answering the main research
question as stated in the introduction to this thesis, namely:

How effective is Wang et al.’s self-supervised speech enhancement model in
removing climbing gym noise from speech signals?

In order to address this question, it is first necessary to establish a baseline model. This
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baseline serves as a benchmark for evaluating the performance of the other models that
will be discussed.

MODEL 1: THE BASELINE
The primary focus of our research is to evaluate the effectiveness of Wang et al.’s self-
supervised speech enhancement model in eliminating climbing gym noise from speech
signals. In order to research this, it is first necessary to establish a baseline, which we
call M1. M1 uses the same experimental set-up as Wang et al. and uses the same values
for all described parameters. The CAE of the baseline model is trained with clean speech
data derived from the LibriSpeech train-clean-100 subset. The MAE is trained with
mixtures that were created by combining clean LibriSpeech data with noise from the Ur-
banSound8K data set. As discussed in the previous chapter, the selected UrbanSound8K
set only includes data from 4 out of 10 noise classes, as the sounds from these specific
classes bear some resemblance to climbing gym noise. By doing so, we explore whether
training Wang et al.’s model with noise that shares similarities to the climbing gym noise
would already be adequate for effectively extracting this noise type, or whether this re-
quires compiling a completely new training set of gym noise.

In line with Wang et al.’s approach, we train the CAE for 700 epochs and the MAE
for 1500 epochs. During a single epoch, the autoencoders each process 2-second audio
samples a total of 18,000 times, which is equivalent to 10 hours of training data. The CAE
is trained with 10 hours of clean speech, and the MAE is trained with 10 hours of noisy
mixture signals. For the training of the MAE, we ensure that all of the 4 UrbanSound8K
classes are equally represented in the mixtures.

In Wang et al.’s research, these mixtures were created using two different signal-to-
noise ratio (SNR) settings: 5dB and 10dB. In speech enhancement, this ratio measures
the amount of clean speech as relative to the amount of background noise within a mix-
ture, where higher values indicate less background noise. The experiments in this thesis
differ slightly from Wang et al.’s research, as we decided to incorporate three different
SNR settings: -5, 0 and 5. An SNR of -5 indicates that there is less speech than noise in
the signal, an SNR of 0 indicates equal amounts of speech and noise, and an SNR of 5
indicates that there is more speech than noise (or, to be specific: the speech signal level
is 5 decibels higher than the noise level). Training the model with mixtures created at
these three different SNR settings should improve the model’s ability to generalize and
perform accurately in diverse and noisy audio environments.

After training M1, we test the performance of this model on two types of mixtures:
the type it was trained with, i.e., LibriSpeech-UrbanSound8K mixtures, and a different
set of mixtures consisting of clean LibriSpeech data combined with climbing gym noise.
By conducting this comparative analysis, we can observe how efficient the model already
is at extracting climbing gym noise from speech signals without having encountered this
exact noise during training.

MODEL 2: ADDITIONAL TRAINING DATA
In the next experiment, we add some of the collected gym noise to the UrbanSound8K
training data set. This model is referred to as M2. Once again, each of the UrbanSound8K
noise classes, now with the added climbing gym noise class, are equally represented in
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the overall training set of mixtures. To ensure a fair comparison with the baseline model,
we maintain the same experimental set-up, keeping the number of epochs and other
relevant parameters consistent.

After training, M2 is tested on mixtures of LibriSpeech data and climbing gym noise,
in order to gauge whether adding this noise type to the training samples will improve the
effectiveness of Wang et al.’s model in removing climbing gym noise from speech signals.
Given that the baseline results have already been established in the previous experiment,
there is no need to retest on the LibriSpeech-UrbanSound8K mixtures. Please refer to
Figure 4.2 for an overview of the M1 and M2 experiments.
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Figure 4.2: Overview of M1 and M2 experiments
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MODEL 3: MODIFIED ARCHITECTURE
In the third model experiment, called M3, we make several modifications to the archi-
tecture of Wang et al.’s model. As mentioned before, their model only processes the
magnitude spectrogram of the input signal, which is obtained by squaring the magni-
tude information of the Short-Time Fourier Transform (STFT). The phase spectrogram,
which is crucial for understanding the phase relationships between different frequency
components of the speech signal, can be obtained by computing the angle of each ele-
ment in the STFT matrix. Despite the importance of this information, the phase spec-
trogram is discarded during training due to its highly unstructured character. However,
as mentioned in Chapter 2, neglecting this information can impose an upper bound on
the performance of the speech enhancement model [10].

This is why, for M3, we propose an alternative architectural design. As previously ex-
plained in Section 2.2 of Chapter 2, the complex-valued STFT of a signal can be expressed
in multiple ways: the complex values can be represented in terms of their polar coordi-
nates (the magnitude and phase angle), or using Cartesian coordinates with a complex
exponential, where the complex values are expressed in terms of their real and imagi-
nary parts. In M3, we opt for this latter approach, and compute the real and imaginary
spectrograms from these values, which both exhibit a clear structure. Since both the real
and imaginary spectrograms contain magnitude and phase information, this approach
ensures that the phase information is retained.

Whereas Wang et al.’s model simply processed the magnitude spectrogram, M3 has
to process both the real and imaginary spectrograms. The original 2-dimensional input
now becomes 3-dimensional instead: we stack these two spectrograms together to form
a 3D “image” to feed as input to the network. The reason for stacking the spectrograms
together is that it enables the model to capture more complex patterns and effectively
utilize both magnitude and phase information. Please refer to Figure 4.3 for a visualiza-
tion of this change.

Figure 4.3: From 2D to 3D input

Due to the additional dimension in the input, M3 also employs 2D rather than 1D convo-
lutions. The original 1D convolutions only considered the length of each channel in the
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magnitude spectrogram. In contrast, the 2D convolutions take into account the chan-
nels in both the real and imaginary spectrogram. This enables the model to capture
spatial relationships in the data more effectively.

In an ideal scenario, we would like all layers in both the CAE and MAE to process
3D data. However, doing so would significantly increase the model size and processing
latency. Therefore, it is necessary to strike a balance between preserving as much in-
formation about the input signal as possible, and ensuring the model remains compact
and fast. To achieve this balance, we adopt a specific approach for both the CAE and
MAE. For each autoencoder, we design the encoder so that only its first layer handles 3D
input, and the decoder’s last layer generates 3D output. In all the intermediary layers,
the 3D data is collapsed into a 2D representation. See Figure 4.4 for a visualization of the
described adjustment.

Figure 4.4: Autoencoder with 3D input and output

Incorporating these modifications in M3 allows us to explore the impact of retaining
phase information on the effectiveness of Wang et al.’s model. After training the model
with this modified approach, we evaluate its performance on mixture signals consisting
of clean LibriSpeech data and climbing gym noise. By comparing the performance of the
modified M3 to that of M2, we establish whether retaining phase information in this way
significantly increases the model’s effectiveness at extracting climbing gym noise from
speech signals.

4.2.1. DEMONSTRATOR
Wang et al.’s [6] code for the original model, which was used to run M1 and M2, can be
found here. 2. For M3, we have adapted this code and published it as a separate GitHub
project. The demonstrator of the M3 experiment can be found at this GitHub project.3

2https://github.com/jeffreyjeffreywang/SSE
3https://github.com/ehwgal/SSE-modified

https://github.com/jeffreyjeffreywang/SSE/tree/master
https://github.com/ehwgal/SSE-modified
https://github.com/jeffreyjeffreywang/SSE
https://github.com/ehwgal/SSE-modified
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Most of the adjustments implemented can be found in the model.py file. Instructions
on how to run the demonstrator can be found in the README.md file of this project.

4.3. EVALUATION METRICS
Now that the model experiments have been broadly discussed, it is important to elabo-
rate on how these models will be evaluated. We use five different evaluation metrics for
this purpose, which can be observed in Table 4.1.

evaluation
metric

explanation of
abbreviation

intrusive vs.
non-intrusive

evaluation target:
quality vs. intelligibility

scoring range
(bad - good)

CBAK
predictor of background
intrusiveness

intrusive perceptual quality 1 to 5 4

NISQA
speech quality and
naturalness assessment

non-intrusive perceptual quality 1 to 5

PESQ
perceptual evaluation of
speech quality

intrusive perceptual quality 1 to 5

SSNR
segmental signal-to-noise
ratio

intrusive intelligibility -10 to 35

STOI
short-time objective
intelligibility

intrusive intelligibility 0 to 1

Table 4.1: Evaluation metrics for assessing model performance

These five metrics were chosen as they evaluate different aspects of the predicted speech
signal (also known as the enhanced signal). CBAK [49], NISQA [50], and PESQ [51] are all
objective algorithms that were developed through extensive statistical analysis of MOS
(Mean Opinion Score) tests. MOS tests are subjective listening tests in which human
annotators rate the quality of an audio signal from 1 (bad) to 5 (good). By employing
different statistical techniques to uncover patterns in this data, the algorithms are de-
veloped to have their scores correlate with the subjective scores gathered in these tests.
These algorithms are often used in speech enhancement tasks and are meant to forego
the need for human evaluators.

SSNR [52] and STOI [53], on the other hand, are employed to evaluate the intelligi-
bility of the enhanced speech signal. SSNR is an objective evaluation metric that first
divides the audio signal into shorter segments or frames. Only when speech is identified
in a frame, it estimates the ratio of the speech signal power as compared to the noise
power. It does this for both the original clean speech signal as well as the enhanced
speech signal that was predicted from the mixture. By assessing how well the enhanced
signal resembles the original clean speech signal, the SSNR is able to measure how ef-
fective the speech enhancement model is at denoising the mixture signal. In theory, the
SSNR can range from negative infinity to infinity. However, for practical purposes, this
metric is usually kept within a certain range – which, in our case, is -10 to 35dB.

STOI is another metric used for evaluating intelligibility. This score also divides the
signal into shorter overlapping frames and compares the clean speech signal to the en-

4Although CBAK, NISQA and PESQ technically maintain a scale from 1 to 5, it is important to note that some
versions of these algorithms use a scale from -0.5 to 4.5 for mathematical convenience.
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hanced or predicted speech signal. Its score ranges from 0 (no intelligibility) to 1 (perfect
intelligibility). One important difference is that STOI normalizes and “clips” the (time-
frequency representation of) the audio signals before comparison. Clipping means that
STOI sets an upper bound to how severely the audio can be degraded, which ensures the
metric is less sensitive to extreme outliers and leads to a more robust evaluation.

It is important to note that out of the five metrics, NISQA is the only non-intrusive
evaluation metric. The difference is that the intrusive metrics require comparison ma-
terial: they evaluate the enhanced signal in comparison to the original clean speech sig-
nal provided to them. NISQA, on the other hand, is able to evaluate the enhanced sig-
nal without this reference: the neural network is trained on expert MOS scores, and its
trained model weights can be used to predict the quality of a speech signal. It should be
noted that since NISQA makes this prediction without access to a clean reference, there
is a potential risk that the data sets used for training NISQA are too dissimilar from the
data used in our own model experiments. This shows why it is necessary to employ mul-
tiple evaluation metrics.

Now that the methodology for evaluation and the model experiments have been thor-
oughly discussed, the next chapter will provide a detailed overview of the results ob-
tained from the experiments.



5
RESULTS

This chapter first briefly discusses how to read and interpret the results tables, before pro-
viding an objective analysis of the results per model experiment. An interpretation of these
outcomes will be provided in the next chapter.

5.1. PRESENTATION OF RESULTS
In this section, we will shortly discuss how to read the results presented in each table.
Table 5.1 presents the results of the M1 model tested on the LibriSpeech-UrbanSound8K
mixtures. During testing, we assess the model performance individually for each of the
UrbanSound8K noise classes at different SNR settings (-5, 0, 5) to ensure a more compre-
hensive evaluation. Specifically, for each combination of noise class and SNR setting, we
create 20 mixture signals in total that each contain one full sentence by a single speaker.
The table’s vertical axis displays the individual noise classes and SNR settings, while the
horizontal axis shows the evaluation metrics together with their scoring ranges. Each
metric includes results for both the original mixture and the enhanced speech signal
that was predicted by the model.

Table 5.2 is structured in the same way and shows the results of the M1 model on
mixtures composed of LibriSpeech and climbing gym noise. For a more thorough eval-
uation, we have separated the climbing gym noise into distinct classes that are meant
to parallel the UrbanSound8K classes. However, as none of the recordings appeared to
feature the sounds of an air conditioner very prominently (which is class 0 in the Ur-
banSound8K data), the first class is a more general class that includes a diverse range
of climbing gym environment noises. The rest of the classes are meant to resemble the
UrbanSound8K data: the second class comprises only noise from children’s group ac-
tivities in the climbing hall, encompassing sounds like children’s voices and climbing
activities in the clip ’n climb area. The third class contains noises from route setting
activities, which involves the installation of new climbing routes on the walls and may
include drilling noises. Finally, the fourth class only contains noise from music being
played loudly in the gym. By aligning the noise classes in the two data sets in this way,
we can directly compare M1’s results and its adaptability to different types of noise.

32
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CBAK (1 to 5) PESQ (1 to 5) SSNR (-10 to 35) STOI (0 to 1) NISQA (1 to 5)
Noise class SNR (dB)

mixture enhanced mixture enhanced mixture enhanced mixture enhanced mixture enhanced
-5 1.39 1.45 1.05 1.10 - 4.52 - 2.63 0.51 0.52 2.24 2.32
0 1.56 1.63 1.06 1.14 - 3.07 - 1.03 0.60 0.63 2.22 2.16

class 0
air conditioner

5 1.87 1.82 1.15 1.26 - 0.31 0.33 0.70 0.70 2.14 2.18
-5 1.38 1.36 1.10 1.07 - 3.85 - 2.35 0.48 0.47 1.94 2.14
0 1.66 1.54 1.18 1.12 - 2.21 - 1.47 0.57 0.57 2.12 2.14

class 2
children playing

5 1.83 1.78 1.14 1.21 - 0.16 0.35 0.66 0.67 2.21 2.19
-5 1.49 1.52 1.08 1.07 - 4.53 - 2.41 0.47 0.48 1.95 1.91
0 1.62 1.64 1.06 1.10 - 2.73 - 0.94 0.56 0.59 2.07 1.77

class 4
drilling noises

5 1.91 1.87 1.11 1.18 - 0.19 0.89 0.69 0.70 2.19 2.06
-5 1.32 1.35 1.12 1.10 - 4.33 - 2.82 0.46 0.47 2.11 2.25
0 1.61 1.58 1.12 1.15 - 2.45 - 1.45 0.58 0.60 2.09 2.14

class 9
street music

5 1.75 1.72 1.15 1.23 - 0.11 0.03 0.70 0.70 2.10 2.31

Table 5.1: M1 results on UrbanSound8K test set

CBAK (1 to 5) PESQ (1 to 5) SSNR (-10 to 35) STOI (0 to 1) NISQA (1 to 5)
Noise class SNR (dB)

mixture enhanced mixture enhanced mixture enhanced mixture enhanced mixture enhanced
-5 1.53 1.61 1.07 1.13 - 3.15 - 0.96 0.64 0.63 2.12 2.30
0 1.75 1.79 1.12 1.23 - 1.18 0.30 0.74 0.71 2.27 2.26all gym noise
5 2.07 1.97 1.24 1.36 1.67 1.48 0.82 0.76 2.40 2.21
-5 1.46 1.60 1.11 1.12 - 3.74 - 1.11 0.61 0.61 2.21 2.30
0 1.66 1.81 1.11 1.23 - 1.94 0.38 0.71 0.70 2.48 2.27children climbing
5 1.95 2.01 1.19 1.37 0.75 1.81 0.80 0.77 2.52 2.25
-5 1.54 1.58 1.08 1.10 - 3.81 - 1.86 0.56 0.53 2.21 2.19
0 1.73 1.74 1.12 1.17 - 2.19 - 0.55 0.65 0.62 2.32 2.15route setting
5 2.00 1.91 1.22 1.26 0.29 0.83 0.73 0.70 2.32 2.13
-5 1.41 1.46 1.06 1.10 - 3.42 - 1.85 0.57 0.57 2.34 2.29
0 1.64 1.67 1.10 1.17 - 1.50 - 0.42 0.68 0.68 2.32 2.27music
5 1.95 1.89 1.19 1.30 1.24 1.08 0.78 0.75 2.27 2.20

Table 5.2: M1 results on climbing gym noise test set
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Following the same format as Table 5.2, Table 5.3 showcases the outcomes of the M2
model on the climbing gym noise mixtures, and Table 5.4 displays the results of the M3
model on these same mixtures.

Having covered the presentation of the results tables, the next sections will provide a
brief analysis of the model outcomes.

5.2. M1 RESULTS
Table 5.1 presents the results of M1 on the LibriSpeech-UrbanSound8K mixtures (the
baseline), and Table 5.2 shows the results of this model on the LibriSpeech-climbing
gym noise mixtures. One interesting observation to make is that the mixtures created
with the climbing gym noise set generally appear to score higher than mixtures created
with UrbanSound8K noise. However, for both tables, it can be seen that there is gener-
ally very little to no improvement between the scores for the original mixtures and the
enhanced speech signals that were denoised by the model. Occasionally, the enhanced
signal scores even fall below the original mixture scores.

Notably, in Table 5.1, SSNR and STOI (which measure intelligibility) seem to be the
only metrics where the enhanced signal consistently matches or surpasses the mixture’s
scores. In contrast, in Table 5.2, metrics like CBAK, PESQ, and SSNR tend to improve,
except in some cases where the SNR is set to 5 – meaning that the background noise
level in the mixture is already 5dB lower than the clean speech level – whereas STOI
and NISQA tend to decrease more often. However, it should be noted that the score
differences in both tables are so small as to be almost negligible. It is therefore difficult
to observe clear trends within the results.

5.3. M2 RESULTS
Please refer to Table 5.3 for the results of the M2 experiment on the gym noise mixtures.
In M2, we introduced an additional class of climbing gym noise into the training data
and evaluated its performance on mixtures containing climbing gym noise. We then
compare these findings with the results of M1 tested on climbing gym noise (Table 5.2),
in order to gauge whether the inclusion of gym noise in the training data improves the
model’s ability to remove climbing gym noise from speech signals.

When we compare the results of M2 with those of M1, a noticeable pattern emerges:
the enhanced signal scores for nearly all metrics show a fairly slight increase, or at least
remain consistent, when compared to the first model experiment. The scores have min-
imally decreased only in the case of the music noise class for the CBAK metric. However,
the major exception is the NISQA metric, for which the majority of scores for the en-
hanced signals have decreased as compared to the first model experiment. A potential
explanation of why this might be will be provided in the next chapter.
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CBAK (1 to 5) PESQ (1 to 5) SSNR (-10 to 35) STOI (0 to 1) NISQA (1 to 5)
Noise class SNR (dB)

mixture enhanced mixture enhanced mixture enhanced mixture enhanced mixture enhanced
-5 1.53 1.61 1.07 1.14 - 3.15 - 0.83 0.64 0.64 2.12 2.17
0 1.75 1.80 1.12 1.25 - 1.18 0.46 0.74 0.72 2.27 2.17all gym noise
5 2.07 1.98 1.24 1.38 1.67 1.64 0.82 0.77 2.40 2.14
-5 1.46 1.61 1.11 1.14 - 3.74 - 0.86 0.61 0.62 2.21 2.16
0 1.66 1.82 1.11 1.25 - 1.94 0.71 0.71 0.71 2.48 2.13children climbing
5 1.95 2.03 1.19 1.39 0.75 2.15 0.80 0.77 2.52 2.17
-5 1.54 1.58 1.08 1.10 - 3.81 - 1.57 0.56 0.55 2.21 2.21
0 1.73 1.75 1.12 1.18 - 2.19 - 0.20 0.65 0.64 2.32 2.20route setting
5 2.00 1.92 1.22 1.28 0.29 1.17 0.73 0.73 2.32 2.17
-5 1.41 1.45 1.06 1.10 - 3.42 - 1.85 0.57 0.58 2.34 2.17
0 1.64 1.66 1.10 1.18 - 1.50 - 0.40 0.68 0.68 2.32 2.17music
5 1.95 1.88 1.19 1.30 1.24 1.10 0.78 0.75 2.27 2.17

Table 5.3: M2 results on climbing gym noise test set

CBAK (1 to 5) PESQ (1 to 5) SSNR (-10 to 35) STOI (0 to 1) NISQA (1 to 5)
Noise class SNR (dB)

mixture enhanced mixture enhanced mixture enhanced mixture enhanced mixture enhanced
-5 1.53 1.08 1.07 1.19 - 3.15 -10.0 0.64 0.29 2.12 1.28
0 1.75 1.06 1.12 1.11 - 1.18 -10.0 0.74 0.29 2.27 1.39all gym noise
5 2.07 1.03 1.24 1.06 1.67 -10.0 0.82 0.29 2.40 1.31
-5 1.46 1.04 1.11 1.13 - 3.74 -10.0 0.61 0.29 2.21 1.32
0 1.66 1.03 1.11 1.08 - 1.94 -10.0 0.71 0.29 2.48 1.37children climbing
5 1.95 1.02 1.19 1.05 0.75 -10.0 0.80 0.29 2.52 1.31
-5 1.54 1.11 1.08 1.08 - 3.81 -10.0 0.56 0.29 2.21 1.29
0 1.73 1.06 1.12 1.12 - 2.19 -10.0 0.65 0.29 2.32 1.30route setting
5 2.00 1.07 1.22 1.22 0.29 -10.0 0.73 0.29 2.32 1.24
-5 1.41 1.03 1.06 1.07 - 3.42 -10.0 0.57 0.29 2.34 1.27
0 1.64 1.02 1.10 1.06 - 1.50 -10.0 0.68 0.29 2.32 1.24music
5 1.95 1.03 1.19 1.08 1.24 -10.0 0.78 0.29 2.27 1.37

Table 5.4: M3 results on climbing gym noise test set
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5.4. M3 RESULTS
Please refer to Table 5.4 for the results of the M3 experiment on the gym noise mixtures.
For this model, we experimented with incorporating phase information during the train-
ing of the model, in order to gauge whether the inclusion of this information could en-
hance the model’s effectiveness in eliminating gym noise from speech signals. As can
be seen in this table, M3 scores significantly worse than any of the previous model ex-
periments. This is especially apparent for the SSNR and STOI metrics, which are the
two metrics measuring intelligibility. Both these metrics seem to get stuck at very low
scores and show no improvement across different noise classes or SNR settings. In the
upcoming chapter, we will discuss potential factors that could have contributed to this
outcome.

Now that the results have been presented and briefly analyzed, the next chapter will pro-
vide an interpretation of the obtained results and discuss their relevance in the context
of the primary research question of this thesis.
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DISCUSSION AND CONCLUSION

This chapter will provide an interpretation of the results and discuss them in light of the
research question and hypothesis of this thesis. It will also suggest potential directions for
future research and discuss any challenges encountered during this study.

6.1. DISCUSSION
The main aim of this thesis was to investigate the effectiveness of Wang et al.’s self-
supervised speech enhancement model in removing climbing noise from speech sig-
nals. As stated in Section 1.1, we hypothesized that the unique noise characteristics of
climbing gym noise, as well as the exclusion of phase information during model training,
could potentially limit the model’s performance. We additionally hypothesized that in-
corporating the phase during training could improve the model’s denoising capabilities.

To investigate these hypotheses, we conducted three separate model experiments.
The first model experiment, M1, was trained on a slightly different noise dataset (Ur-
banSound8K), and evaluated on mixtures created with this noise to establish a base-
line. Subsequently, this model was evaluated on mixtures composed of clean speech
and climbing gym noise. This was done in order to evaluate how efficient the model is
at extracting climbing gym noise from speech signals without having encountered this
exact noise type during training. In the second experiment, M2, we added climbing gym
noise to the training data in order to see whether this would make the model more ef-
fective. Finally, in M3, we adapted the architecture of the original model to incorporate
phase information, with the expectation that this would improve model performance.

After analyzing the results for the M1 and M2 experiments, it became evident that the
difference between the scores for the original mixtures and the enhanced speech signals
was remarkably small, meaning that the models are underperforming. Even when M1
was evaluated on mixtures containing UrbanSound8K noise, i.e. the same data set it
was trained on, the model scored significantly low. This showcases that the model’s ef-
fectiveness was limited in both experiments. However, this outcome might have been
partly due to our experimental set-up. Although the different UrbanSound8K classes
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were combined into one data set to reflect the diversity of the climbing gym noise, these
individual noise classes could potentially be too distinct from each other, and the train-
ing data for each noise class might have been too limited. This potential disparity among
the noise classes could have prevented the model from learning clear noise patterns dur-
ing the training phase.

Although we observed that M2 performed slightly better on the climbing gym noise
test set than M1, the increase was minimal (usually only one or two decimals) and the
improvement seems modest given the amount of gym noise training data that was added.
Once again, the potential disparity between the UrbanSound8K classes could have hin-
dered the model in identifying clear noise patterns. Had there been more time, it would
be worth experimenting with other data and larger portions of climbing gym noise. Dur-
ing the M2 experiment, we also observed that the mixtures created with climbing gym
noise generally scored higher than those created with UrbanSound8K noise. One po-
tential reason for this trend could be the uncurated character of the climbing gym noise
data set. Some of the noise recordings in this set were relatively quiet due to the distance
between the microphone and noise sources. Although this variation in noise levels accu-
rately reflects the fluctuating volume levels of different noise sources within a real climb-
ing gym environment, it would have perhaps been better to categorize and evaluate the
gym noise recordings based on their volume levels.

Another notable finding from the M2 experiment is that the scores for all metrics
improved except for NISQA. The most probable explanation for this pattern is the non-
intrusive character of the NISQA metric. Unlike the other metrics, NISQA does not rely
on a clean reference signal for comparison – instead, it utilizes trained model weights
to predict a score for the enhanced signal independently. Since NISQA was trained with
audio from different acoustic environments, there is a chance that this metric might not
be well suited to our specific use case. This hypothesis was confirmed through further
experimentation, which revealed that NISQA did not even award the clean samples very
high scores – in fact, none of the clean recordings surpassed a score of 2.50. As a direct
consequence, this means that the enhanced signals would also never be able to obtain
a score higher than 2.50 for the NISQA metric, so it is no wonder these scores remained
low.

Finally, the M3 experiment was conducted to gauge whether retaining phase infor-
mation during model training would improve results. Although the model runs without
errors, the poor results show that further refinement of the model architecture is nec-
essary. While the perceptual quality metrics (CBAK, PESQ, NISQA) generated different
scores for each scenario, the intelligibility metrics (SSNR and STOI) seemed to get stuck
at the same low scores across all test runs. Since the inclusion of phase information is
specifically intended to improve the intelligibility of the predicted signal, this observa-
tion strongly implies that the model still struggles to capture phase relationships effec-
tively. One reason for this could be that the collapse from the 3D representations into
the 2D representations is too rigorous, and the model is unable to capture the spatial
relationships well.

Based on the discussed findings, it is difficult to provide a clear answer to the research
question, and definitively validate or reject the hypothesis of this research. Although the
model seems to underperform in all cases and not remove climbing gym noise effec-
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tively, this could have been influenced by our experimental set-up and choice of data.
Furthermore, the M3 model’s inability to effectively capture phase relationships shows
that further research needs to be conducted. The following section provides possible di-
rections for future research that would allow us to provide a more definitive answer to
the research question.

6.2. RECOMMENDATIONS FOR FUTURE RESEARCH
There are several approaches that can be taken to improve on the current research. First
of all, it is clear that the model is not able to identify the noise patterns effectively, which
could have been influenced by our choice of data. Experimenting with more focused
training on the individual noise classes, as well as creating larger and more diverse train-
ing sets for each of these classes, could provide valuable insights into how the model
responds to the different noise characteristics. This should address whether the poor re-
sults are a consequence of the dissimilarity between noise classes and the limited size of
these classes.

Furthermore, although not implemented in this study, Wang et al. [6] conducted
some additional experiments where they trained their model with different amounts
of “pure noise” samples. This means that the model was exposed to a certain portion
of training samples that contained only background noise, in order to have it learn the
noise patterns more effectively. However, although the performance of the model slightly
increased, the improvement in results did not seem significant enough to warrant fol-
lowing these experiments in this thesis.

Second of all, it is clear that the NISQA metric is not well suited to our use case. It
would therefore be a good idea to either choose data which is more compatible with
NISQA, or to incorporate other non-intrusive metrics that might perform more effec-
tively for our use case. An example that could be explored is STOI-Net [54], which is
the non-intrusive version of the STOI metric already employed. Since STOI and STOI-
Net essentially evaluate the same aspects of the enhanced signal, this would also allow
for a rather interesting comparison between the scores for these metrics. Of course, it
should be mentioned that gathering feedback from human evaluators next to the em-
ployed algorithmic metrics would be a very valuable contribution to the evaluation part
of this research. However, as expert human evaluation can be expensive to collect and
can take up a significant amount of time, most speech enhancement studies tend to
confine themselves to algorithm-based metrics only.

Finally, the observed findings showcased that the modified model, M3, appears not
to be able to capture the phase relationships within the input very effectively. As dis-
cussed, one potential reason for this could be that the collapse from the 3D representa-
tions into the 2D representations is too rigorous, and the model is unable to capture the
spatial relationships well. There are several approaches that could be taken to have the
model process the dimensionality of the data more efficiently. The most obvious sug-
gestion would be to not collapse the 3D input into a 2D representation at all, but to have
all layers of the model process 3D data. Unfortunately, this would significantly increase
the model size and processing latency. Another option, however, could be to experiment
with residual blocks, which have the potential to improve the spatial information flow
through the network.
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Residual blocks were first introduced in a 2016 paper by He et al. [55]. This approach
can be used to tackle the problem of vanishing gradients, which can hinder the train-
ing of deep neural networks. In traditional neural networks, the input information is
processed and transformed through the layers in a sequential order to obtain the corre-
sponding output. The difference between this predicted output and the desired output
is calculated by a loss function. In order to improve the predictions of the model, gra-
dient values are computed through backward propragation across the network’s layers.
These gradients indicate how much each weight in the network should be adjusted in
order to minimize the calculated loss. However, if the network contains a lot of layers
and becomes very complex, meaning that the input and output are far removed from
each other, we might encounter the problem of vanishing gradients. This means that the
gradients values become so small that the network is not able to effectively update its
weights, and often stops learning from the data altogether.

Residual blocks can be used to counter this problem. Essentially, this approach en-
tails that the layers of the neural network are divided into smaller blocks of layers, and
within these blocks information flows both through and around the layers, by means of
so-called skip connections. These skip connections allow the input information to bypass
certain layers and directly flow from the input to the output of such a block. This kind of
approach ensures that less information is lost along the way, and the gradient values are
more likely to be preserved during backpropagation, leading to improved learning of the
model.

Given that our network seems to not capture the spatial relationships in the 3D input
data very effectively, it would be sensible to experiment with residual blocks to deter-
mine whether they contribute to the preservation of this information. If residual blocks
are not an option, another idea would be to experiment with different activation func-
tions, which have a significant influence on the learning process of the network. Whereas
the current network works utilizes a softplus activation in all its convolutional layers, it
might be interesting to try out other variants like ReLu or LeakyReLu.

6.3. CHALLENGES
Having discussed the outcomes of this study and proposed possible directions for future
investigation, some of the challenges which were encountered during this research will
now be discussed. First of all, the code implementation was made difficult by the lack
of a proper requirements.txt file and by the fact that several of the functions were
quite poorly documented. This meant that numerous dependency conflicts had to be
resolved before the code was able to run. Furthermore, as the code was written for a
specific data set which is currently not available anymore (the BBC.16k [48] data), it was
at first difficult to ascertain how the noise files were loaded for model training.

Once we had established a requirements.txt file and resolved all dependency con-
flicts, it turned out that the PyTorch and CUDA versions were not compatible with the
HPC cluster of the University of Groningen. Unfortunately, it was not clear at first that
this was the issue as the model returned no error messages. It therefore took quite a long
time to fix this problem. The HPC cluster also experienced GPU issues several times,
which meant we were temporarily not able to train the model.

When the cluster was working, it often took some time for the GPU node to become
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available. Although this is to be expected as we requested very long jobs for model train-
ing, the combined waiting and training time of each experiment took 2 days minimum.
This meant that we had to wait ca. 2 days each time we adjusted an architectural com-
ponent to see if training had been successful. In future experiments, the training time
can be significantly reduced by decreasing the number of epochs (see Appendix B) and
getting rid of the metric calculations in between epochs in the training phase.

Lastly, it turned out that the code we used lacked a proper evaluation script. While
the model processes 2-second audio samples, the evaluation phase required testing on
complete sentences of audio. As a result, we spent a considerable amount of time devel-
oping a testing script which was able to accurately assess model performance.

6.4. CONCLUSION
This study set out to investigate how effective Wang et al.’s [6] self-supervised speech
enhancement model is at removing climbing gym noise from speech signals. This was
investigated through means of several different model experiments, which all examined
different factors that could potentially have an effect on the model’s denoising capabil-
ities. Specifically, these experiments directly tested our hypotheses, in which we specu-
lated that the unique characteristics of climbing gym noise and the exclusion of phase
information during training could significantly hinder the performance of the model.

While the experiments did not provide a definitive answer to the primary research
question and we were not able to reject or validate the hypotheses, they did provide
valuable insights for potential future research. None of the experiments yielded satis-
factory results, but this could have been partly due to dissimilarity among noise classes
and limitations of the training data set. Further training of the M1 model with more tar-
geted noise data could shed light on the way the model is able to learn noise patterns,
and could potentially improve its denoising capabilities.

Similarly, for M2, the experiment showed that adding climbing gym noise to the
training data lead to only a slight improvement, which suggests that a more refined cura-
tion of the gym noise data set might be beneficial. The experiments also highlighted the
complexity of evaluating speech enhancement tasks, as the NISQA metric proved not to
be well-suited to our use case, which underscores the need for human evaluation beside
algorithmic metrics to gain a better insight into model performance.

While previous research has dicussed the importance of phase information for speech
enhancement performance, the M3 model evidently struggled to capture the phase re-
lationships in the input signals effectively, showcasing that the architecture needs to
be refined further. Having all layers of the model process 3D data, or experimenting
with residual blocks and alternative activation functions could potentially enhance the
model’s ability to preserve spatial information.

Although it is difficult to provide a clear answer to the research question with the
discussed model outcomes, this thesis can serve as a foundation to build on for future
research. By addressing the limitations of this study, researchers will be able to gain more
insight into complex noise removal in real-world environments such as climbing gyms,
and will be able to develop more effective models for improving speech communication
in challenging noisy conditions.
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A
APPENDIX I:

REPLICABLE LITERATURE REVIEW

Table A.1 shows how a large portion of the resources were found. Any sources not men-
tioned were either recommended by my external supervisor, or mentioned within one
of the sources listed (or concern relevant non-academic sources, such as informal blogs
about climbing). It should also be noted that search engines other than SmartCat and
Google Scholar were used (such as ArXiv) but the results on Google Scholar generally
proved to be the most relevant for my topic. Disclaimer: sources found on Google Scholar
and Google are often not peer-reviewed and might not be particularly trustworthy. How-
ever, every source mentioned below has been checked on this for academic validity.

Search Engine Keywords Source Name Ranking
SmartCat "speech enhancement" [18] Top 2
SmartCat "speech enhancement" [12] Top 2
Google Scholar "speech enhancement" (2018 onwards) [14] Top 2
Google Scholar "speech enhancement" (2018 onwards) [11] Top 2
Google Scholar "self-supervised learning speech enhancement" [6] Top 2
Google Scholar "self-supervised learning speech enhancement" [15] Top 2
Google Scholar "survey speech denoising" [16] Top 1
Google Scholar "speech enhancement time domain time-frequency domain" [21] Top 4
Google Scholar "speech enhancement time frequency" [10] Top 1
Google Scholar "speech denoising overview" [19] Top 1
Google Scholar "unsupervised speech enhancement survey" [13] Top 1
Google Scholar "speech enhancement phase" [9] Top 3
Google Scholar "speech enhancement phase" [27] Top 3
Google Scholar "speech enhancement time-domain survey" [17] Top 3
Google Scholar "speech enhancement phase ambiguity" [8] Top 1
Google Scholar "speech enhancement tf complex mapping" [22] Top 5
Google Scholar "speech enhancement tf complex mapping" [30] Top 5
Google "why is phase estimation difficult speech enhancement" [56] Top 1

Table A.1: Replicable Literature Search
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B
APPENDIX II: TRAINING LOSS

This Appendix displays the training loss for the baseline model (M1). Throughout the
training phase of each model experiment, the training loss over all epochs was moni-
tored. The training loss provides an important indication of how well the model is learn-
ing from the training data, with a lower loss indicating improved learning proficiency.
The results for M1 can be seen in Figure B.1, with the training loss for the Clean Autoen-
coder (CAE) on the left, and the loss for the Mixture Autoencoder (MAE) on the right.

Even though the initial configuration of Wang et al.’s model [6] specifies 700 epochs
for the CAE and 1500 epochs for the MAE, it is evident from the monitored training loss
that this number is excessive. The loss for both autoencoders stabilizes before reaching
250 epochs and shows no further improvement. As the number of epochs can signifi-
cantly increase the training time of the model, we find it important to briefly highlight
these findings here.

Figure B.1: Training loss CAE and MAE of M1
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