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ABSTRACT

Despite significant advancements in automatic speech recognition (ASR) technology,
the performance of ASR systems on dysarthric speech is still inadequate for widespread
use. A reason for this is the lack of sufficiently rich and diverse dysarthric speech datasets
to train machine learning models that could handle all types and varieties of such speech.
Motivated by the data scarcity problem, this thesis investigates whether developers of
Dutch ASR systems can take advantage of particular characteristics of dysarthric speech
and increase their models’ performance by selecting their training data in a strategic way.
More specifically, the thesis hypothesizes a) that fine-tuning an ASR model with differ-
ently elicited speech data would lead to improved performance for the respective elici-
tation method, and b) that fine-tuning an ASR model with speech data affected from a
specific disease would enhance model’s performance on speech affected by that disease.
Both hypotheses are experimentally tested by fine-tuning and evaluating a state-of-the-
art self-supervised dysarthric ASR system on a new Dutch dysarthric speech dataset. The
results of the experiments do not provide adequate evidence that either the elicitation
method or the underlying disease of the dysarthric speakers plays a significant role in
the performance of a dysarthric ASR system.

v





1
INTRODUCTION

Dysarthria refers to a group of divergent motor speech disorders that make a speaker lose
their ability to articulate words normally1. It’s a condition that can be caused by Parkin-
son’s disease (PD), Multiple Sclerosis (MS), and other conditions, and affects the control
of speech-related organs. Speech produced by individuals with dysarthria is character-
ized by poor articulation, monotonous intonation, breathy voice, and other phenomena
that make its automatic recognition a challenging task (Duffy, 2013).

Indeed, despite significant advancements in automatic speech recognition (ASR) tech-
nology, the performance of ASR systems on disordered and impaired speech is still not
adequate for widespread use (Gupta et al., 2016, Moore et al., 2018). This happens par-
tially because there are no sufficiently rich and diverse dysarthric speech datasets to train
machine learning models that could handle all types and varieties of such speech. As
speakers with dysarthria exhibit highly variable speech patterns, both within and across
individuals, it is difficult to characterize these patterns and ensure that they are suffi-
ciently and proportionally represented in ASR corpora and datasets (Rowe et al., 2022).

Addressing the dysarthric data scarcity problem is important because dysarthric ASR
is a crucial component of a broader effort to develop inclusive ASR systems. In recent
years, there has been a growing interest in addressing the challenges faced by individ-
uals with speech impairments and disorders, as demonstrated by high profile projects
such as Google’s Euphonia2 and the Speech Accessibility Project3. These projects try to
provide these individuals with improved accessibility to speech recognition technologies
and, thus, to equal opportunities for participation and engagement in various aspects of
life.

In general, there are three main approaches that have been followed by the dysarthric
ASR community to address the data scarcity problem: transfer learning, self-supervised
learning, and data augmentation. Transfer Learning (Torrey and Shavlik, 2009) is a ma-

1https://www.msdmanuals.com/home/brain,-spinal-cord,-and-nerve-disorders/brain-
dysfunction/dysarthria

2https://sites.research.google/euphonia/about/
3https://speechaccessibilityproject.beckman.illinois.edu/
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chine learning method where a model that has been pre-trained in one task is reused
as the starting point for the training of a model on a new task. The assumption is that
the pre-trained model has already learned knowledge that is useful for the new task.
The main benefit of this method is that it can be applied to tasks with little labeled data
available and produce significantly better models than the ones that would have been
produced from training with only the available data. In the case of dysarthric ASR mod-
els, transfer learning is applied by pre-training models with a large amount of healthy
labeled speech data and then "fine-tuning" these models with a much smaller set of la-
beled dysarthric speech data.

Self-supervised learning (SSL)(Liu et al., 2022) works similarly to transfer learning but
the pre-trained model is derived from unlabeled data instead of labeled one. As such,
this approach can be applied in tasks where there is a substantial amount of unlabeled
data and little to none labeled data. In the case of dysarthric speech, self-supervised
learning is applied by pre-training models with large amounts of healthy speech audio
and then fine-tuning these models with dysarthric labeled data. Finally, data augmenta-
tion involves creating synthetic data by modifying existing healthy speech in a way that
simulates as much as possible realistic dysarthric speech. This is done, for example, by
introducing temporal and speed modifications.

In all the above approaches, which I discuss in more detail in chapter 2, a question
that naturally arises is the following: when developing a dysarthric ASR system should we
strive to use as much dysarthric speech data as we can, no matter their characteristics
and provenance, or should we be more careful and strategic in selecting what data to
use? In this thesis I aim to answer this question by investigating research questions for
two dysarthric speech characteristics: a) the method used for the speech’s elicitation
(read vs spontaneous speech), and b) the underlying diseases that cause the speakers’
dysarthria.

Regarding the speech elicitation method, several studies have found that read speech
(where speakers read one or more given texts) and spontaneous speech (where speakers
speak in free form given some prompt) can differ significantly in their prosody (Bun-
ton et al., 2000, Blaauw, 1994, Laan, 1997). Spontaneous speech is more sensitive to
prosodic abnormalities (Bunton et al., 2000) while read speech has lower articulation
rate, more F0 variation, more F0 declination, less shimmer, and less vowel reduction
(Laan, 1997). These differences can contribute significantly to the perceptual differ-
ences between spontaneous and read speech and make dysarthric symptoms more in-
tense and distinctive in spontaneous speech. As such, the performance of an ASR sys-
tem trained and evaluated on read speech might not be fully representative of its perfor-
mance in a more naturalistic task such as a conversation (Leuschel and Docherty, 1996).
In this thesis I am looking to establish whether this is indeed the case.

Apart from the elicitation method, dysarthric speech can have different phonemic
patterns that depend on the exact subtype of the speaker’s dysarthria (Rowe et al., 2022)
and which might impact ASR performance. Spastic dysarthria4, for example, is charac-
terized by muscle stiffness and rigidity, and impairs oral constriction (Platt et al., 1980).

4Spastic dysarthria can be caused by Amyotrophic Lateral Sclerosis, Cerebral Palsy, Multiple Sclerosis„ Multi-
ple Systems Atrophy, and Progressive Supranuclear Palsy.
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Ataxic dysarthria5, on the other hand, is characterized by muscle weakness and incoordi-
nation, and results into voicing contrast errors (Blaney and Hewlett, 2007). And hypoki-
netic dysarthria6 is characterized by reduced range and speed of movement, leading to
spirantization (Canter, 1965), articulatory undershoot, and vowel centralization (Y. Kim
et al., 2009).

More than different phonemic patterns, speech intelligibility can vary greatly also
due to different articulatory subsystem impairments (Lee et al., 2014, Rong et al., 2015).
In a 2020 study (Rowe et al., 2020) the authors identified 24 different articulatory impair-
ment features, grouped them into five dimensions of articulatory motor control (Coor-
dination, Consistency, Speed, Precision, and Rate) and measured their manifestation in
patients suffering from various diseases. Their results indicated a considerable variety
of articulatory impairments across different diseases. For example speakers with ataxia
exhibited greater impairments related to the Rate dimension than speakers with PD.

The above findings indicate that the performance of an ASR system trained and eval-
uated on speech from speakers with a particular disease might not be fully representa-
tive of the same ASR system performance on speech affected by different diseases. Vice
versa, an ASR system that is trained on speech affected by different diseases but used on
speech affected by a particular disease might not be as optimal as it could be if it had
been trained on speech affected by that particular disease. That’s the second thing I am
looking to assess in this thesis.

1.1. RESEARCH QUESTIONS AND HYPOTHESES
In this thesis I followed a self-supervised approach for ASR model development and I
investigated two research questions and hypotheses:

Research Question 1: Does fine-tuning an ASR model with differently elicited speech
data (read vs spontaneous) improve the ASR performance for the respective elicitation
method?

Hypothesis 1: An ASR model that is fine-tuned with differently elicited speech data (read
vs spontaneous) will have better performance for the respective elicitation method.

Research Question 2: Does fine-tuning an ASR model with speech data from different
diseases improve the ASR performance for the respective disease?

Hypothesis 2: Fine-tuning an ASR model with speech data from different diseases will
result into better performance for the respective disease.

In order to answer these two questions I built a new dysarthric speech dataset based
on a recent Dutch dysarthric speech corpus (Verkhodanova, 2021) that contains both
read and spontaneous speech from speakers with various diseases. Along with this dataset,

5Ataxic dysarthria can be caused by Ataxia, Multiple Sclerosis (MS), and Multiple Systems Atrophy.
6Hypokinetic dysarthria can be cause my Multiple Systems Atrophy, Parkinson’s disease and Progressive

Supranuclear Palsy.
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I considered a recent Dutch dysarthric SSL ASR model as a baseline (Matsushima, 2022),
and I performed three experiments:

• Experiment 1:

– I fine-tuned the baseline model on read dysarthric speech data from speak-
ers with PD.

– I evaluated the fine-tuned model on read and spontaneous speech affected
by different diseases.

– Expectations:

⋄ If the fine-tuned model has significantly better performance on read speech
than on spontaneous speech then that’s evidence that hypothesis 1 holds.

⋄ If the fine-tuned model has significantly better performance on PD speech
than on speech affected by other diseases then that’s evidence that hy-
pothesis 2 holds, at least for PD.

• Experiment 2:

– I fine-tuned the baseline model on spontaneous dysarthric speech data from
speakers with PD.

– I evaluated the fine-tuned model on read and spontaneous speech affected
by different diseases.

– Expectations:

⋄ If the fine-tuned model has significantly better performance on sponta-
neous speech than on read speech, then that’s evidence that hypothesis
1 holds.

⋄ If the fine-tuned model has significantly better performance in PD speech
than on speech affected by other diseases then that’s evidence that hy-
pothesis 2 holds, at least for PD.

• Experiment 3:

– I fine-tuned the baseline model on spontaneous dysarthric speech data from
speakers with MS. The reason for selecting MS is that the dysarthria that ac-
companies it has different acoustic manifestations than hypokinetic dysarthria
that PD typically causes.

– I evaluated the fine-tuned model on speech data from speakers with MS and
other diseases.

– Expectations:

⋄ If the fine-tuned model has significantly better performance on MS speech
than on speech affected by PD and other diseases then that’s further ev-
idence that hypothesis 2 holds.
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1.2. RESEARCH CONTRIBUTION
The main outcomes of this thesis are the following:

• Empirical evidence as to whether and how the elicitation method of dysarthric
speech data that are used for training SSL ASR models affects the effectiveness of
such models. While previous research has suggested that the elicitation method
does affect ASR effectiveness, this hasn’t been done by actually training and com-
paring different ASR models.

• Empirical evidence as to whether and how the underlying disease that causes the
dysarthria affects the effectiveness of SSL ASR models. Again, previous research
has suggested that the underlying disease does affect ASR effectiveness, but this
suggestion hasn’t been verified in actual ASR models.

• A new labeled speech dataset of both read and spontaneous speech, and of several
different diseases that can be used for further research.

These outcomes contribute towards a better understanding of dysarthria diversity
from an ASR perspective and help ASR developers optimize their data collection strategy
based on the particular characteristics of the dysarthric speech they need to process.

1.3. THESIS OUTLINE
The thesis is structured as follows. Chapter 2 briefly surveys the most notable resources
and approaches for dysarthric speech recognition that are related to this work. Chap-
ter 3, in turn, describes in detail the methodology that I followed in order to answer the
research questions and verify or reject my hypotheses. Chapter 4 presents the results
of the three experiments, while chapter 5 discusses these results with respect to the re-
search questions and hypotheses of the thesis and outlines future research directions.
Finally, chapter 6 summarizes the key points and findings of the thesis.





2
RELATED WORK

This chapter provides a survey of the most notable resources and approaches that have
been developed in the past years by the scientific community in relation to dysarthric
speech recognition. This survey helps the reader a) understand the availability, diversity,
and characteristics of dysarthric speech data, b) gain insights into the various techniques
and methodologies used by researchers in collecting and analyzing such data, and c)
establish the context for the research conducted in this thesis. In particular, section 2.1
describes the methodology I followed for this survey, while section 2.2 describes the most
relevant dysarthric speech datasets and corpora. Section 2.3, in turn, outlines a number
of systems and models that perform dysarthric speech recognition.

2.1. SURVEY METHODOLOGY
For the resources part of the survey, I have considered datasets and corpora that contain
dysarthric speech, in any language, and for any task (i.e., not only for ASR). For each re-
source I identify, where available, information about its size, the languages it covers, the
characteristics of the speakers, the types and underlying causes of the dysarthria, and
the tasks or applications the dataset has been designed for. For the approaches part of
the survey, I have considered relatively recent models and systems (from 2016 onwards)
that primarily use machine learning techniques. For each approach I identify the lan-
guages it supports, the types of dysarthria it covers, the dysarthric and non-dysarthric
data it uses for training and evaluation, the machine learning techniques it implements
(e.g., self-supervised learning or transfer learning), and the results it achieves.

To find these models and datasets I searched in Google Scholar for papers with key-
words like "dysarthric ASR", "dysarthric speech models", "dysarthric speech recogni-
tion" and "dysarthric speech data and corpora". I also narrowed down these searches by
further specifying the language of the data or the models (e.g., Dutch, English, etc), the
diseases that affect the data (e.g., Parkinson’s disease, Multiple Sclerosis, etc), or the ma-
chine learning approaches and architectures of the models (e.g., Self-Supervised Learn-
ing, end-2-end, DNN-HMM, etc).

7



2

8 2. RELATED WORK

2.2. DATASETS FOR DYSARTHRIC SPEECH

2.2.1. DUTCH CORPUS OF PATHOLOGICAL AND NORMAL SPEECH (COPAS)

The COPAS corpus1 (Martens et al., 2011) has been developed as a means for training
speech language pathology students on the various perceptual features of pathological
speech, as well as for developing or enhancing speech technology tools for assessing and
treating pathological speech. It is available via a BSD 2-Clause License2 from the Univer-
sity of Southern California and consists of pathological and non-pathological speech in
the Dutch language, recorded from 319 speakers.

The speakers belong to 8 distinct pathological categories: normal (122 speakers),
dysarthria (75 speakers), hearing impairment (29 speakers), laryngectomy (30 speak-
ers), cleft (38 speakers), articulation disorders (17 speakers), voice disorders (7 speak-
ers) and glossectomy (1 speaker). The speakers with dysarthria are not further differ-
entiated based on the disease that causes their dysarthria. Moreover, all speakers have
performed a number of different tasks, including passage reading (at a difficulty level 7
or 8 in the Aging Voice Index), picture naming for articulation assessment, sound rep-
etition for measuring diadochokinetic rate, formant transition, and spontaneous and
semi-spontaneous storytelling. All audio samples are stored in wav format with a sam-
pling rate of 16kHz and 16 bit linear PCM encoding.

2.2.2. EASYCALL CORPUS

The EasyCall corpus3 (Turrisi et al., 2021) is a publicly available speech corpus that has
been developed as part of a voice-controlled smartphone application that improves the
ability of patients with dysarthria to communicate with their family and caregivers. It
contains 21,386 audio recordings in the Italian language, coming from 24 healthy speak-
ers (10 females, 14 males, 10,077 recordings) and 31 speakers with dysarthria (11 females,
20 males, 11,309 recordings).

All speakers were adults and their dysarthria was related to Parkinson’s disease, Huntin-
gon’s Disease, Amyotrophic Lateral Sclerosis, Peripheral Neuropathy, and myopathic or
myasthenic lesions. Moreover, the degree of speakers’ speech impairment was assessed
by neurologists through the Therapy Outcome Measure (TOM)4, a measurement scale
that ranges from 1 to 5 and corresponds to mild, mild-moderate, moderate, moderate-
sever, and severe dysarthria. Speakers with aphasic syndromes, dementia or intellectual
disability were excluded.

The recordings contain 37 spoken commands per speaker, related to the task of mak-
ing a phone call, like typing and calling phone numbers or saving new contacts. They
also contain 30 non-commands per speaker, namely words that are near or inside com-
mands, or sentences that are phonetically close to commands.

1https://people.ict.usc.edu/ gordon/copa.html
2https://opensource.org/license/bsd-2-clause/
3http://neurolab.unife.it/easycallcorpus/
4https://natspec.org.uk/therapy/tools/therapy-outcome-measures-toms/

https://people.ict.usc.edu/~gordon/copa.html
https://opensource.org/license/bsd-2-clause/
http://neurolab.unife.it/easycallcorpus/
https://natspec.org.uk/therapy/tools/therapy-outcome-measures-toms/
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2.2.3. UA-SPEECH DATABASE

The UA-Speech database5 (H. Kim et al., 2008) is a large corpus of dysarthric speech in
American English, available for free for university and government lab researchers. Its
goal is to be used for automatic speech recognition development for people with neu-
romotor disability, as well as for research on articulation errors in dysarthria that can
benefit clinical treatments of such people.

The corpus consists of 541 read speech recordings, from 19 adult individuals (14
males, 5 females) with Cerebral Palsy and a dysarthria diagnosis (spastic and other forms)
confirmed by a certified speech-language pathologist. Its overall duration is around 102
hours. The recorded speakers were asked to repeat digits, radio alphabet letters, com-
puter commands, and common words and uncommon words from corpora. The record-
ings were assessed for speech intelligibility, resulting in an overall index of dysarthria
severity for each speaker. The aim of this assessment was to categorize speakers in terms
of intelligibility and explore any possible relation of articulation error types and ASR ar-
chitectures to intelligibility levels.

2.2.4. DOMOTICA-3
The Domotica-3 speech database6 (Ons et al., 2014) is a publicly available collection of
recordings of Flemish Dutch dysarthric speech that contain commands related to home
automation. Examples include utterances like "turn on the kitchen light", "close the blind
living room door", "increase heating", etc. The recordings have been derived from 17 par-
ticipants, 15 adults aged between 14 and 61 years old, and two children. These partici-
pants suffered from multiple sclerosis, spastic quadriparesis and other similar diseases.

The total number of utterances in the collection is a bit more than 3000. The dataset
contains also speech intelligibility scores for all adult speakers, obtained by applying an
automated procedure to the recorded speech (for more details see Middag, 2012). The
scores ranged from 64.2 to 89.4, with those greater than 85 being considered normal
while those equal to or lower than 70 being considered severely pathologic.

2.2.5. TORGO DATABASE

TORGO7 (Rudzicz et al., 2010) is an English speech database, initially developed as a
resource for developing advanced ASR models for dysarhtric speech. The database’s cre-
ators focused particularly on collecting detailed physiological information that can help
ASR models learn hidden articulatory parameters. The database is free for academic and
non-profit purposes and consists of aligned acoustics and measured 2D and 3D articu-
latory features, derived from 14 speakers, 7 without any disorder (control group) and 7
with different levels of dysarthria (4 male, 3 female).

The dysarthric speakers had either cerebral palsy (spastic, athetoid, or ataxic) or
amyotrophic lateral sclerosis, and were between the ages of 16 and 50 years old. More-
over, they covered a wide range of intelligibility. The speakers were asked to read single
words or sentences and to describe the content of some photos. A total of 5980 and 2762

5http://www.isle.illinois.edu/sst/data/UASpeech/
6https://www.esat.kuleuven.be/psi/spraak/downloads/
7http://www.cs.toronto.edu/ complingweb/data/TORGO/torgo.html

http://www.isle.illinois.edu/sst/data/UASpeech/
https://www.esat.kuleuven.be/psi/spraak/downloads/
http://www.cs.toronto.edu/~complingweb/data/TORGO/torgo.html
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utterances were produced from dysarthric and non-dysarthric speakers, producing ap-
proximately three hours of speech.

2.2.6. EST DUTCH DYSARTHRIC SPEECH DATABASE
The EST Dutch dysarthric speech database (Yilmaz et al., 2016) has been developed as
a resource for conducting research on dysarthric speech and for building speech-to-text
systems which can be incorporated in various assistive applications for neurological pa-
tients in the Netherlands. It consists of recordings of words and sentences uttered by 16
speakers with mild to moderate dysarthria due to Parkinson’s disease, traumatic brain
injuries and cerebrovascular accident. In particular, the speakers suffered from non-
progressive, (asymmetrical) hypokinetic, ataxic, spastic and flaccid dysarthria.

The recordings were collected in both face-to-face speech therapy sessions as well
through an interactive web application. The speakers were asked to read aloud written
material that includes Dutch numbers, phonetically rich sentences and frequent utter-
ances from the Dutch Polyphone database (Damhuis et al., 1994). Moreover, the record-
ings have a total duration of 376 minutes with individual durations varying between 2
minutes to around 60 minutes among different speakers. They have been sampled at
a frequency of 16 kHz, annotated with the orthographic transcriptions, and accompa-
nied by detailed speaker information such as age, gender, speech intelligibility level and
origin of dysarthria. Unfortunately, the database is not publicly available.

2.2.7. SSNCE DATABASE

The SSNCE Database of Tamil Dysarthric Speech8 (Vijayalakshmi et al., 2022) was devel-
oped by the Speech Lab at the SSN College of Engineering in India and it may only be
used for non-commercial projects related to linguistic education, research and technol-
ogy development. It contains around 8 hours of Tamil speech data, collected from 30
speakers (20 with dysarthria and 10 without). The non-dysarthric speakers were equally
male and female while the dysarthric speaker group consisted of 7 female and 13 male
persons, aged between 12 and 37 years old, with cerebral palsy. In total, each speaker
recorded 365 utterances consisting of single words and of sentences that included a com-
bination of common and uncommon Tamil phrases. The audio data is stored as 16-bit
16kHz FLAC compressed linear pcm wav files. The corpus includes also time-aligned
phonetic transcripts for all collected speech data, while additional documentation in-
cludes phoneme mappings and speaker metadata.

2.2.8. TYPALOC
The TYPALOC corpus (Meunier et al., 2016) has been developed with the objective to
compare phonetic variation in the speech of dysarthric and healthy speakers. The record-
ings contain French speech collected with the help of 28 dysarthric patients and 12 healthy
speakers. The patients suffered either from Parkinson’s disease (8 patients, 48-81 years
old), Amyotrophic Lateral Sclerosis (12 patients, 32-77 years old) or Cereberall Ataxia (8
patients, 32-77 years old). In all cases it was ensured that none of the patients had a
severe case of dysarthria that might make their produced speech fully unintelligible.

8https://catalog.ldc.upenn.edu/LDC2021S04

https://catalog.ldc.upenn.edu/LDC2021S04
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Both dysarthric and healthy speakers produced two styles of speech: read and spon-
taneous. For the read style a children’s story of 172 words was used. For the spontaneous
style, dysarthric and healthy senior speakers were asked to talk about their everyday life,
their personal history or their work. The healthy junior speakers, on the other hand,
talked about particular events or situations in an interactive conversation with a single
interviewer. Moreover, the spontaneous speech recordings were much longer for the
healthy speakers than for the non-healthy ones. Unfortunately, the database is not pub-
licly available.

2.2.9. NEMOURS DATABASE
The Nemours database (Menendez-Pidal et al., 1996) was designed to test the effect of
different enhancing signal processing methods in the intelligibility of dysarthric speech.
It is a collection of 814 short nonsense sentences, spoken by 11 male speakers with dif-
ferent degrees of dysarthria. Additionally, it contains two connected-speech paragraphs
produced by each of the 11 speakers. The database has been labeled at both the word
and phoneme levels. Word-level labels were assigned manually, however, the phoneme-
level labels were assigned using a Discrete Hidden Markov Model (DHMM) labeler fol-
lowed by manual inspection and correction. The recordings were digitized using a 16
kHz sampling rate at 16-bit sample resolution with appropriate low pass filtering. Un-
fortunately, the database is not publicly available.

2.2.10. HOMESERVICE CORPUS
The homeService corpus (Nicolao et al., 2016) is a database of realistic English dysar-
rthric speech, available from the University of Sheffield under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. The corpus has 10 hours of dysarthric
speech elicited from 5 speakers with severe dysarthria (3 male and 2 female). The speak-
ers were recorded interacting with voice-controlled devices in their real home environ-
ments.

2.2.11. CANTONESE DYSARTHRIC SPEECH CORPUS
The Cantonese Dysarthric Speech Corpus (Wong et al., 2015) has been developed as a re-
source for investigating articulatory and prosodic characteristics of Cantonese dysarthric
speech with particular focus on speaking rate and pitch and loudness control. It contains
around 10 hours of speech produced by both healthy and dysarthric speakers. 7.5 hours
of dysarthric speech were produced by 6 male and 5 female speakers while 2.5 hours of
non-dysarthric speech came from 3 male and 2 female speakers. All speakers were native
speakers of Cantonese from Hong Kong, while the dysarthric speakers were diagnosed
with cerebellar degeneration. The stimuli for the speech generation included a range of
speaking styles like single word, short sentence, paragraph and conversation, as well as
articulatory tasks. The resulting audio was sampled at 44.1 kHz and quantized at 16 bits.
Unfortunately, the corpus is not publicly available.

2.2.12. CORPUS OF CHILDREN’S DISORDERED SPEECH
The Corpus of Children’s Disordered Speech (Saz et al., 2008) has been built to help the
development of environment control systems based on oral interfaces for physically dis-
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abled children, as well as for providing computer-aided speech and language therapy. It
contains Spanish speech recorded from 14 young speakers (ages from 11 to 21 years old)
with various developmental impairments (including Down’s syndrome) and/or neuro-
muscular disorders like cerebral palsy or ataxia. These speakers have uttered several
sessions over a 57-word Spanish vocabulary, producing 3192 thousand isolated-word
utterances, 459 short-sentence utterances and 30 long-sentence utterances. The overall
duration of the produced speech was more than 3 hours. In addition, a parallel corpus of
speech from 168 unimpaired young speakers has been recorded with more than 6 hours
of speech with the same vocabulary. Unfortunately, the corpus is not publicly available.

2.2.13. PC-GITA
The PC-GITA database (Orozco et al., 2014) contains speech recordings of 50 people with
PD and 50 healthy people that had no symptoms associated to PD or any other neurolog-
ical disease. Both groups consist of 25 men and 25 women, all Colombian Spanish. The
recordings were collected following a protocol that included tasks related to phonation,
articulation and prosody, such as sustained phonations of vowels, diadochokinetic eval-
uation, reading of words, sentences, and dialogues, and production of a spontaneous
monologue. Unfortunately, the database is not publicly available.

2.3. APPROACHES AND MODELS FOR DYSARTHRIC SPEECH RECOG-
NITION

2.3.1. TRANSFER LEARNING APPROACHES
The existing body of research on ASR for dysarthric speech includes several works that
follow a transfer learning approach. A relatively recent model is described in Xiong et
al., 2020. This is an acoustic model that is first trained on healthy data from the UA-
Speech database and then it is fine-tuned on the dysarthric speech of the same corpus.
It uses a hybrid neural network architecture, known as CNN-TDNN-F, that combines
Convolutional Neural Networks (CNN) with Time-Delay Neural Networks (TDNN) and
Feed-Forward Neural Networks (FNN). The CNN component extracts local features from
input acoustic frames, the TDNN component models temporal dependencies, and the
FNN component performs classification or regression tasks. A novelty of this model is
that is applies a data selection strategy for each dysartric speaker based on the intuition
that data from speakers with similar dysarthria severity could mutually benefit from each
other in transfer learning. The evaluation of the model on the UA-Speech database in-
dicated a relative recognition improvement of 11.6% in comparison to the conventional
speaker-dependent training.

Another interesting transfer learning model is that of Green et al., 2021. This is an
end-to-end ASR model based on the Recurrent Neural Network Transducer (RNN-T) ar-
chitecture, pretrained on around 162,000 hours of typical speech (from Google’s internal
production dataset), and fine-tuned (overall and per speaker) with the recordings of 432
dysarthric speakers. The overall model Word Error Rate (WER) across all 432 speakers
was 29.4%, while the median personalized WER was 4.6%.

A transfer learning approach is also used in Shor et al., 2019 where the authors de-
velop two personalized models for Amyotrophic lateral sclerosis (ALS) speech, one Bidi-
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rectional RNN Transducer and one based on the Listen, Attend and Spell paradigm. The
pre-training of the models is performed on the Librispeech9 dataset, while the fine-
tuning is performed with 36.7 hours of audio from 67 ALS patients. The fine-tuning,
according to the experiments, manages to bring down the WER score to 10% for mild
dysarthria and to 20% for more severe cases.

For the Dutch language, two interesting dysarthric ASR models are described in Yıl-
maz et al., 2016, and Yılmaz et al., 2017. Both models are based on a Deep Neural
Network-Hidden Markov Model (DNN-HMM) architecture and use for pre-training the
CGN corpus (Oostdijk, 2000), which contains representative collections of contemporary
standard Dutch and Flemish. The first model uses the COPAS corpus for fine-tuning,
achieving a WER reduction between 13.0% and 14.7% in sentence reading tasks and
56.1% and 61.0% in word reading tasks. The second model is fine-tuned with the EST
Dutch dysarthric speech database, reducing WER bu a range of 11.0% to 13.6%.

Finally, in Wang et al., 2021, an ASR model for Dutch dysarthric speech is devel-
oped as part of a Spoken Language Understanding (SLU) system, consisting of a Hidden
Markov Model and Gaussian Mixture Model (HMM-GMM) for aligning audio features
with context dependent phonemes, and a TDNN acoustic model. As with other models
described in this section, the initial acoustic model is built with the CGN corpus and the
fine-tuned model is built with the dysarthric COPAS data. The latter manages to increase
accuracy by 5%.

2.3.2. SELF-SUPERVISED LEARNING APPROACHES
The usefulness of self-supervised speech representations for training dysarthric ASR sys-
tems is explored in several works in the literature. For example, the authors in Violeta
et al., 2022 developed two dysarthric ASR models using two different self-supervised
learning framewors, namely wav2vec 2.0 (Baevski et al., 2020) and WavLM (Chen et al.,
2022). The wav2vec model was pretrained on 60k hours of normal speech while the
WavLM model on 94k hours. Both models were fine-tuned for two types of pathologi-
cal speech: dysarthric (using the UA-Speech database) and electrolaryngeal 10 (using an
in-house recorded dataset of Japanese electrolaryngeal speech). Then they were com-
pared with fully supervised models, trained on the Librispeech dataset (Panayotov et
al., 2015). The comparison showed that the best supervised setup outperformed the
best self-supervised setup by 13.9% character error in electrolaryngeal speech and 16.8%
word error rate in dysarthric speech.

Another work that applies self-supervised learning in developing dysarthric ASR sys-
tems is that of Hernandez et al., 2022. The authors trained acoustic models for dysarthric
speech by first extracting speech features with a) the base and large wav2vec 2.0 models,
b) the multilingual XLSR11 model (Conneau et al., 2021), and c) the Hubert model (Hsu
et al., 2021). Then they trained a model for English speakers with cerebral palsy using
the UA-Speech database, a model for Spanish speakers with Parkinson’s disease using

9https://www.openslr.org/12
10Electrolaryngeal speech refers to a method of generating speech sounds using an artificial device called

an electrolarynx. This technique is commonly used by individuals who have undergone laryngectomy, a
surgical procedure in which the larynx (voice box) is removed, typically due to cancer or other medical
conditions.

11XLSR stands for Cross-Language Speech Representation.

https://www.openslr.org/12
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the PC-GITA corpus, and a model for Italian speakers with paralysis using the EasyCall
corpus. In all three cases, improvements were achieved, with the use of XLSR features
resulting in lower WER scores than wav2vec or Hubert.

Pretrained wav2vec XLSR models were also used in Krishna et al., 2021 to develop
dysarthric ASR models for three Indian low-resource languages, namely Telugu, Tamil,
and Gujarati. These models achieved an average relative reduction in WER of 2.88%
compared to the previous state-of-the-art supervised method. The authors also ana-
lyzed the generalization capability of multilingual pre-trained models on languages al-
ready contained in their training data, as well as on languages that were not contained.
In both cases, they found that fine-tuning with only 25% of the training data gives com-
petitive WER to the state-of-the-art supervised methods.

2.3.3. DATA AUGMENTATION APPROACHES
As mentioned in chapter 1, a third approach for dealing with the data scarcity prob-
lem is the generation of synthetic speech data. An application of this philosophy can
be seen in Geng et al., 2020a where the authors synthesize dysarthric speech by modify-
ing the tempo and speed (i.e., the audio duration and the spectral envelope) of healthy
speech, and then use this speech to re-train an DNN-HMM ASR system that was previ-
ously trained only on healthy data. Tempo-based augmentation achieved an absolute
WER improvement of 4.24% , while speed-based augmentation managed to decrease
WER by 2% in WER.

A more recent approach (Geng et al., 2020b) also used tempo perturbation and speed
perturbation, along with vocal tract length perturbation, to augment data from the UA-
Speech database. Speed perturbation gave the highest absolute improvement in WER
(2.92%).

Finally, in Shahamiri, 2021, the authors address the scarcity of dysarthric data prob-
lem both in a visual and an acoustic way. More specifically, the system they have de-
veloped, called Speech Vision, extracts and uses word-level voicegrams for given speech
signals and visualizes these voicegrams as RGB images that highligh the words’ shapes.
Then it utilizes visual-data augmentation (Perez and Wang, 2017) to create modified ver-
sions of the voicegrams by shifting their width, sheering and zooming through them.
In addition to the visual augmentation, Speech Vision also uses the Deep Convolutional
Text-To-Speech (DC-TTS) system (Tachibana et al., 2018) to produce synthetic dysarthric
speech. The overall data augmentation improved the system’s word recognition accu-
racy for almost all dysarthric speakers of the evaluation dataset, with the minimum im-
provement being 0.53% and the maximum one 6.13%.
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METHODOLOGY

This chapter provides a detailed description of the methodology that I followed in order
to test my hypotheses and answer the research questions I defined in chapter 1. In par-
ticular, section 3.1 provides a high-level overview of the experiments I conducted and
section 3.2 describes the speech recognition model I used as a baseline. Section 3.3, in
turn, describes the data I used, while section 3.4 provides some technical details of the
way I trained the different models in my experiments.

3.1. OVERVIEW OF EXPERIMENTS
As mentioned in chapter 1, in this thesis I performed three different experiments. In
the first experiment I took an existing dysarthric speech recognition model from Mat-
sushima, 2022 as a baseline and I fine-tuned it with read speech data coming from speak-
ers with PD. I then evaluated both the new and the baseline model with read and spon-
taneous speech not only from speakers with PD but also from speakers with other dis-
eases that cause dysarthria. I also evaluated the two models on speech data from healthy
speakers. In the second experiment, I fine-tuned the same baseline model with sponta-
neous PD speech data instead of read speech and I evaluated it on the same data as in
the first experiment. Finally, in the third experiment, I fine-tuned the baseline model
on spontaneous dysarthric speech data from speakers with MS and evaluated it on the
same data as in the first experiment. The fine-tuned models, the evaluation script, and
instructions on how to perform the fine-tuning and the evaluation are available in a Git-
lab repository1.

3.2. BASELINE DYSARTHRIC SPEECH RECOGNITION MODEL
The detailed description of the dysarthric speech recognition model I utilized as a base-
line and fine-tuned throughout my experiments can be found in Matsushima, 2022. It
is a model specifically designed to explore the efficacy of self-supervised learning in rec-
ognizing Dutch dysarthric speech, in comparison to a supervised learning method. The

1https://gitlab.com/spyretta.leiv/ssl_parkinson_dysarthria_asr
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main reason I chose it as a baseline was that, at the moment of starting the thesis, it was
the only currently available model that applied a self-supervised training strategy for
Dutch dysarthric speech recognition. The foundation of the model is wav2vec 2.0 XLSR-
53, a large crosslingual speech representation model that has been pre-trained with an
extensive dataset of 56 thousand hours of speech across 53 languages (Conneau et al.,
2021) using the wav2vec 2.0 framework for self-supervised learning of speech represen-
tations (Baevski et al., 2020). To adapt it for dysarthric Dutch speech recognition, the
XLSR-53 model was fine-tuned using the COPAS dataset, which I previously described in
Section 2.2.1.

3.3. TRAINING AND EVALUATION DATA

3.3.1. DATA DESCRIPTION
The primary speech data I used in all three experiments, for both training and evalu-
ation purposes, were derived from a Dutch dysarthric speech corpus that is described
in Verkhodanova, 2021 and which was constructed with the purpose of analyzing the
speech characteristics of people with PD. The corpus contains recordings derived from
126 individuals, each of whom performed the following speech production tasks:

• MMSE: In this task participants were asked to answer questions from the Mini–Mental
State Examination (MMSE)2, a 30-point questionnaire used extensively in clinical
and research settings to measure cognitive impairment.

• Prolonged phonation: In this task participants were asked to hold twice the sound
/a/ as long as possible.

• Prosody elicitation tasks: These tasks targeted production of lexical stress, bound-
ary marking, and sentence type and focus intonations.

• Interview: In this task participants were asked and answered interview-style ques-
tions about their first job, the place where they grew up, their hobbies and their
family.

• Video description: In this task participants were asked to describe a short scene
from Charlie Chaplin’s silent film "The Idle Class" 3.

• Picture description: In this task participants were asked to describe two pictures.
The first picture was the Cookie Theft Picture (CPT), originally used on aphasic
patients but then also applied in clinical research with various disease groups. The
second picture was one of the Heaton pictures (Heaton, 1972). Both pictures can
be seen in appendix D.

• Reading: In this task participants were asked to read a Dutch translation of the
Aesop’s fable "The North Wind and the Sun" (see appendix E).

2https://www.ihacpa.gov.au/health-care/classification/subacute-and-non-acute-care/standardised-mini-
mental-state-examination

3https://youtu.be/F5l4DGInCBE

https://www.ihacpa.gov.au/health-care/classification/subacute-and-non-acute-care/standardised-mini-mental-state-examination
https://www.ihacpa.gov.au/health-care/classification/subacute-and-non-acute-care/standardised-mini-mental-state-examination
https://youtu.be/F5l4DGInCBE
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• DDK: In this task, known as phonoarticulatory diadochokinesis test, participants
were asked to repeat the sounds /pa/, /ta/, /ka/, /pata/, /taka/, /pataka/, two or
five times, at both speaking and accelerated pace.

The tasks were performed in Dutch, with the recording sessions taking place in quiet
rooms. Initially, all tasks were recorded in a single audio file per participant but then
these files were split into smaller files, each containing an individual task. Also, certain
speakers’ data was removed from the corpus due to quality issues, including a substan-
tial amount of the interviewer’s speech.

The read speech (RS) data that I used in my experiments included the reading task
recordings from 101 participants, while the spontaneous speech data (SpoS) included
the same participants’ recordings of the video description and picture description tasks.
The RS recordings contained no interviewer speech, while the SpoS recordings con-
tained, in average, between 2 and 7 words of interviewer’s speech. From the 101 partici-
pants, 40 were completely healthy (HC), 43 had Parkinson’s disease (PD), 4 had Multiple
Sclerosis (MS), 4 had suffered a stroke, 6 had Spinocerebellar Ataxia (SCA), and 4 had
some other disease that caused their dysarthria. Participants age’s ranged from 31 years
old to 87, while the information about the severity of their dysarthria was not available.
Table 3.1 shows the number and the duration of the recordings per participant group
and speech type.

Read Speech Spontaneous Speech
Group No of Recordings Duration (hours) No of Recordings Duration (hours)

PD 43 0.67 130 2.07
MS 4 0.11 12 0.15
Stroke 4 0.08 12 0.14
SCA 6 0.14 18 0.19
Other 4 0.09 12 0.21

HC 40 0.52 120 2.48

Total 101 1.61 304 5.24

Table 3.1: Number and duration of recordings per participant group and speech type

A second dataset that I used in all three experiments, but only for evaluation pur-
poses, is the Domotica database that I described in 2.2.4. This dataset had been also
used in the evaluation of the baseline dysarthric speech recognition model.

3.3.2. DATA PREPARATION

READ SPEECH

Before I could use the read speech recordings I had to pre-process them in two ways.
First, I performed a normalization of their intensity, as some recordings had their inten-
sity too low (and sounded as if the speaker was far from the microphone) while other
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recordings had it too high. For that purpose, I used a Praat script4. Second, because
the text that had been read by the participants was not aligned with their speech, I per-
formed a sentence level forced alignment between each recording and the read text us-
ing the aeneas Python library 5. In that way, each RS recording was split into five smaller
recordings, one per text sentence. In addition, the alignment library detected the exact
position of each sentence in each recording, automatically removing any trailing silences
in their beginning and end.

SPONTANEOUS SPEECH

Before I could use the spontaneous speech recordings I had to acquire transcriptions for
them. To do that I worked as follows. First, as with read speech, I normalized the in-
tensity of the recordings. Second, because in almost all the recordings there was a small
but not negligible amount of speech uttered by the interviewer, I had to remove that
speech before I started the transcription. To do that I labeled the different segments of
the recordings based on who was speaking (Interviewer or Participant), and I generated
a separate recording for each segment.

To perform this labeling I used the Prodigy annotation tool 6 that allowed me to load
the waveform of each recording, listen to it, and annotate its different parts according
to the speaker type (see figure 3.1). The annotations were stored in a jsonl file that for
each recording contained its name and the exact time spans that either the participant
or the interviewer spoke. Thus, when the all recordings were annotated, I generated a
new recording file for each different time span using the librosa tool 7.

Figure 3.1: Speaker Type Annotation with Prodigy

4https://www.acsu.buffalo.edu/ cdicanio/scripts/Rescale_peak.praat
5https://www.readbeyond.it/aeneas/
6https://prodi.gy/
7https://librosa.org/doc/latest/index.html

https://www.acsu.buffalo.edu/~cdicanio/scripts/Rescale_peak.praat
https://www.readbeyond.it/aeneas/
https://prodi.gy/
https://librosa.org/doc/latest/index.html
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The result of this segmentation was a new set of recordings, the number and duration
of which per participant group is shown in table 3.2. In general, the duration of a single
recording ranged from 30 seconds to 3 minutes.

Participant Group No of Recordings Duration (mins)

PD 172 111.37
MS 16 8.66
Stroke 15 8.44
SCA 20 11.04
Other 16 12.29
HC 134 145.08
Interviewer 88 3.47
Total 461 173.4

Table 3.2: Number and duration of spontaneous speech recordings per group, after removing interviewer
speech.

Having these new set of recordings, I moved on to have them transcribed. For that, I
hired two native Dutch transcribers, the first to transcribe the dysarthric speech record-
ings and the second to transcribe the healthy speech recordings. When both transcribers
were done with the transcriptions, the one transcriber proofread the transcriptions of
the other. To perform the transcription, the transcribers used Prodigy, listening to the
waveform of each recording and writing in a textbox the text they could hear (see figure
3.2).

Beyond words, the transcribers also used certain tags to denote hesitation (tag [hes]),
noise (tag [noise]), or words they could not understand (tag [unknown]). On the other
hand, because of limited time, the transcribers did not mark the time span of each ut-
tered word or sentence in the recordings; instead they just wrote the text they could hear.
To fix this issue, I performed forced alignment of the final transcriptions at both word
and sentence level, just as I did with read speech. Before performing the alignment, I
cleaned the transcriptions by removing any trailing spaces, line changes or strange char-
acters, as well as all tags except for [unknown]. The latter was necessary so that the
trained models could deal with the inaudible parts of the recordings.

It is important to note that the two transcribers had controlled and limited access to
the recordings. They could only listen to the recordings via the Prodigy interface which
could access only via a password protected link to a server that ran on my local machine.
This was made possible through the Ngrok8 tunneling software that allowed me to ex-
pose my local development server to the internet in a secure way. This made sure that
the recordings would not leak to third parties.

8https://ngrok.com/

https://ngrok.com/
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Figure 3.2: An example of the transcription done with Prodigy

3.4. TRAINING AND EVALUATION SET UP
For the fine-tuning process in all three experiments I utilized Fairseq 9 (Ott et al., 2019),
an open-source sequence-to-sequence toolkit created by Facebook AI Research. Fairseq
offers a collection of modular and adaptable components designed for training and as-
sessing a variety of neural network models. These models can be applied to tasks such
as machine translation, language modeling, text generation, and speech recognition.

For each experiment, the respective data with which the baseline model would be
fine-tuned (RS-PD for experiment 1, SpoS-PD for experiment 2 and SpoS-MS for exper-
iment 3) were split into two sets, one for the training and validation phase (80% of the
data), and one for the evaluation phase (20% of the data). The other types of data that
were not used for fine-tuning were used for evaluation. Also, all recordings were resam-
pled to 16kHz in order to be compatible with the baseline model.

The technical configuration of all three experiments were the same as the one used

9https://github.com/facebookresearch/fairseq

https://github.com/facebookresearch/fairseq
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in the baseline model:

• Fine-tuning with the CTC loss (Graves et al., 2006) and up to 16K updates.

• Model optimization with the Adam optimizer (Kingma and Ba, 2015) with the fol-
lowing tri-state learning rate schedule: 10% of updates for warming up, next 40%
for annealing, and last 50% for linear decay.

• Peak learning rate set to 0.00001.

• Evaluation with the CTC beam search decoder, with beam width 50, implemented
with the pyctcdecoder 10 library.

10https://github.com/kensho-technologies/pyctcdecode

https://github.com/kensho-technologies/pyctcdecode




4
RESULTS

In this chapter I present the results of the three experiments I performed in order to
answer the two research questions I defined in chapter 1. In particular, in section 4.1
I present the results related to the role of the speech elicitation method in the perfor-
mance of dysarthric ASR models, while in section 4.2 I do the same for the second re-
search question about the role of the underlying disease in dysarthric ASR performance.

4.1. THE ROLE OF THE SPEECH ELICITATION METHOD

The first research question of this thesis is whether fine-tuning an ASR model with differ-
ently elicited speech data (read vs spontaneous) improves the ASR performance for the
respective elicitation method. To answer this question I took the dysarthric ASR model
of section 3.2 and I fine-tuned it once with the PD read speech from the dataset de-
scribed in section 3.3 (RS-PD) and once with the PD spontaneous speech from the same
dataset (SpoS-PD). Then I evaluated the two fine-tuned models and the baseline model
on read and spontaneous speech from speakers with PD, speakers with other diseases,
and healthy speakers. I also evaluated the models on the Domotica dataset that con-
sisted of read speech. The evaluation was done using Word Error Rate (WER)1 as an ASR
performance metric.

The motivation behind these first two experiments was to see a) if the RS-PD model
had much better performance on read speech than on spontaneous speech and b) if
the SpoS-PD model had much better performance on spontaneous speech than on read
speech. If that was the case then my hypothesis that fine-tuning an ASR model with
differently elicited speech data results in better performance for the respective elicitation
method would be supported. Table 4.1 contains the experiment results of each model
per evaluation dataset.

1https://huggingface.co/spaces/evaluate-metric/wer
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Evaluation dataset Fine-tuned
RS-PD

Fine-tuned
SpoS-PD

Baseline

RS-PD 0.06 0.31 0.62
RS-SCA 0.05 0.29 0.60
RS-Stroke 0.07 0.35 0.63
RS-MS 0.13 0.49 0.65
RS-Other 0.06 0.33 0.62
RS-HC 0.04 0.17 0.56
SpoS-PD 0.84 0.39 0.73
SpoS-SCA 0.75 0.32 0.69
SpoS-Stroke 0.74 0.33 0.70
SpoS-MS 0.83 0.45 0.73
SpoS-Other 0.81 0.41 0.71
SpoS-HC 0.69 0.22 0.64
Domotica - Medium 0.79 0.44 0.36
Domotica - Moderate 0.79 0.49 0.42
Domotica - Severe 0.86 0.72 0.50

Table 4.1: Evaluation results of the RS-PD, SpoS-PD and baseline models

4.2. THE ROLE OF THE UNDERLYING DISEASE
The second research question of this thesis is whether fine-tuning an ASR model with
speech data from different diseases improves the performance for the respective dis-
ease. This question is partially answered by the first two experiments by looking if the
two PD fine-tuned models had better performance on PD speech than on speech af-
fected by other diseases. If that was the case then my hypothesis that fine-tuning an ASR
model with speech data from different diseases results into better performance for the
respective disease would be supported.

To find further evidence about this hypothesis I did a third experiment where I fine-
tuned the baseline model on the MS read speech from the dataset described in section
3.3 (SpoS-MS). I evaluated this model on the same datasets as the other experiments,
looking to see if this model had better performance in MS speech than speech affected
by PD and other diseases. If that was the case then that would be further evidence that
hypothesis 2 holds. The reason for selecting MS was that the dysarthria that accompa-
nies it has different acoustic manifestations than hypokinetic dysarthria that PD typi-
cally causes. Table 4.2 contains the WER scores of the SpoS-MS model per evaluation
dataset, as well as those of the SpoS-PD model for comparison purposes.
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Evaluation dataset Fine-tuned
SpoS-PD

Fine-tuned
SpoS-MS

RS-PD 0.31 0.46
RS-SCA 0.29 0.46
RS-Stroke 0.35 0.46
RS-MS 0.49 0.53
RS-Other 0.33 0.46
RS-HC 0.17 0.30
SpoS-PD 0.39 0.53
SpoS-SCA 0.32 0.47
SpoS-Stroke 0.33 0.48
SpoS-MS 0.45 0.49
SpoS-Other 0.41 0.51
SpoS-HC 0.22 0.37
Domotica - Medium 0.44 0.47
Domotica - Moderate 0.49 0.54
Domotica - Severe 0.72 0.73

Table 4.2: Evaluation results of the SpoS-MS and SpoS-PD models





5
DISCUSSION

In this chapter I analyze and discuss the extent to which the experimental results I pre-
sented in the previous chapter provide conclusive answers to the research questions of
the thesis. In particular, in section 5.1, I discuss the results with respect to the first re-
search question regarding the role of the speech elicitation method in the performance
of dysarthric ASR models. In section 5.2, I do the same for the second research question
about the role of the underlying disease in dysarthric ASR performance. Section 5.3, in
turn, describes additional observations and insights derived from evaluating the models
on healthy speech and from comparing their average performance on all the evaluation
datasets. Finally, in section 5.4 I discuss the thesis’s findings with respect to the literature
and chapter s 2 related work, while in section 5.5 I describe limitations of this thesis and
potential directions for future research.

5.1. THE ROLE OF THE SPEECH ELICITATION METHOD
The first hypothesis of the thesis is that an ASR model that is fine-tuned with differently
elicited speech data (read vs spontaneous) will have better performance for the respec-
tive elicitation method. As we can see in table 5.1, the RS-PD model achieves a quite low
WER score in each of the RS evaluation datasets (min 0.05 in RS-SCA speech and max
0.13 in RS-MS speech) and it is better in these datasets than the SpoS-PD and baseline
models. Vice versa, as table 5.2 shows, the SpoS-PD model performs better than both the
RS-PD model and the baseline model when evaluated on spontaneous speech.

At first glance, these results seem to verify the first hypothesis. Nevertheless, when
comparing the performance of the SpoS-PD model on read and spontaneous speech (ta-
ble 5.3) we see that the average WER on read speech is 0.35 and on spontaneous speech
0.38. There is a possibility that this better performance is caused by the fact that the
spontaneous evaluation datasets were bigger and more variant than the read speech
data. Still, this result is against hypothesis 1 that suggests that the SpoS-PD model should
have better performance on spontaneous speech.

Moreover, as table 5.4 shows, the RS-PD model performed much worse than the SpoS
model and the baseline model on the Domotica dataset. As described in section 2.2.4,
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Evaluation dataset Fine-tuned
RS-PD

Fine-tuned
SpoS-PD

Baseline

RS-PD 0.06 0.31 0.62
RS-SCA 0.05 0.29 0.60
RS-Stroke 0.07 0.35 0.63
RS-MS 0.13 0.49 0.65
RS-Other 0.06 0.33 0.62

Table 5.1: Comparison of the read speech results of the RS-PD, SpoS-PD and baseline models.

Evaluation dataset Fine-tuned
RS-PD

Fine-tuned
SpoS-PD

Baseline

SpoS-PD 0.84 0.39 0.73
SpoS-SCA 0.75 0.32 0.69
SpoS-Stroke 0.74 0.33 0.70
SpoS-MS 0.83 0.45 0.73
SpoS-Other 0.81 0.41 0.71

Table 5.2: Comparison of the spontaneous speech results of the RS-PD, SpoS-PD and baseline models.

Evaluation dataset Fine-tuned
SpoS-PD

RS-PD 0.31
RS-SCA 0.29
RS-Stroke 0.35
RS-MS 0.49
RS-Other 0.33
SpoS-PD 0.39
SpoS-SCA 0.32
SpoS-Stroke 0.33
SpoS-MS 0.45
SpoS-Other 0.41

Table 5.3: Evaluation results of the Spos-PD model on Spontaneous Speech Data

the Domotica dataset consists of read speech, so if hypothesis 1 held then the RS-PD
model should have performed better. Finally, the fact that the RS dataset consists only of
6 sentences (see appendix E) increases the probability that the exceptional performance
of the RS-PD model on the RS data is the result of model overfitting. All these obser-
vations indicate that the results of the first two experiments do not provide adequate
evidence that the elicitation method of dysarthric speech data play a significant role in
improving ASR performance for the respective method.
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Evaluation dataset Fine-tuned
RS-PD

Fine-tuned
SpoS-PD

Baseline

Domotica - Medium 0.79 0.44 0.36
Domotica - Moderate 0.79 0.49 0.42
Domotica - Severe 0.86 0.72 0.50

Table 5.4: Comparison of the Domotica speech results of the RS-PD, SS-PD model and baseline models

5.2. THE ROLE OF THE UNDERLYING DISEASE
The second hypothesis of the thesis is that fine-tuning an ASR model with speech data
affected by different diseases will result in better performance for the respective disease.
To see if this hypothesis holds, we can first observe the difference in performance be-
tween the SpoS-PD model and the Spos-MS model on PD and MS data. As table 5.5
shows, the SpoS-PD model is consistently performing better than the SpoS-MS model,
even on MS data. This result may be to some extent due to the small amount of MS data
the SpoS-MS model has been fine-tuned on (less than 8 min). Nevertheless, even if this
is the case, it’s a result that does not support the second hypothesis.

Evaluation dataset Fine-tuned
SpoS-PD

Fine-tuned
SpoS-MS

RS-PD 0.31 0.46
RS-MS 0.49 0.53
SpoS-PD 0.39 0.53
SpoS-MS 0.45 0.49

Table 5.5: Comparison of PD and MS speech results of SpoS-PD and SpoS-MS models

A second observation we can make is how the performance of each individual model
varies when measured against data from all the different diseases. If hypothesis 2 held,
the SpoS-PD model should have had better performance on PD speech than the other
diseases, and so should the SpoS-MS model on MS speech. However, as table 5.6 shows,
none of the models performed best on its corresponding disease. The SpoS-PD model
actually performs better on SpoS-SCA and SpoS-Stroke speech than on Spos-PD speech,
while the SpoS-MS model has one of its worst WER scores on RS-MS speech (0.53). There
are a couple of reasons this might have happened:

• The small size of MS data the SpoS-MS model was fine-tuned on did not help the
model capture all the particular characteristics of MS speech that differentiate it
from speech affected by other diseases. This, on the other hand, does not apply
so much for the SpoS-PD model that has been fine-tuned with almost 2 hours of
SpoS-PD speech (see table 3.2)

• Stroke typically causes unilateral upper motor neuron dysarthria which is a milder
form of spastic dysarthria. The latter has several characteristics in common with
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Evaluation dataset Fine-tuned
SpoS-PD

Fine-tuned
SpoS-MS

RS-PD 0.31 0.46
RS-SCA 0.29 0.46
RS-Stroke 0.35 0.46
RS-MS 0.49 0.53
RS-Other 0.33 0.46
SpoS-PD 0.39 0.53
SpoS-SCA 0.32 0.47
SpoS-Stroke 0.33 0.48
SpoS-MS 0.45 0.49
SpoS-Other 0.41 0.51

Table 5.6: Comparison of evaluation results of the SpoS-PD and SpoS-MS models on read and spontaneous
speech data from different diseases

hypokinetic dysarthria (that is caused by PD) such as hypernasality, reduced stress,
imprecise consonants, monoloudness and monopitch Rowe et al., 2022. This can
to some extent explain the fact that the SpoS-PD model performed better on stroke
speech than PD speech. On the other hand, ataxic dysarthria that is typically
caused by SCA is quite different than hypokinetic dysarthria, so the better per-
formance of the SpoS-PD model on SCA speech cannot be explained in the same
way.

These observations indicate that the experiments do not provide adequate evidence
that fine-tuning an ASR model with speech data from different diseases will result in
better performance for the respective disease.

5.3. ADDITIONAL OBSERVATIONS
Looking again at tables 5.1, 5.2 and 5.4, we observe that all three fine-tuned models per-
formed better than the baseline in all the evaluation datasets, except for Domotica. This
is also the case for healthy speech data (table 5.7).

Evaluation dataset Fine-tuned
RS-PD

Fine-tuned
SpoS-PD

Fine-tuned
SpoS-MS

Baseline

RS-HC 0.04 0.17 0.3 0.56
SpoS-HC 0.69 0.22 0.37 0.64

Table 5.7: Comparison of healthy speech results of the all models

To some extent this is to be expected as the three models are further fine-tuned ver-
sions of the baseline model. The lower performance in Domotica, especially in the se-
vere group, is most likely due to the fact that the data I used for the fine-tuning are not
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representative enough in terms of dysarthria severity. Unfortunately, it’s hard to verify
if this is the case as the severity assessments of the speech in Verkhodanova, 2021 are
not comparable to those of Domotica. Another reason could be the regional provenance
of the data; Domotica consists of Flemish speech, a Dutch dialect spoken in Flanders,
while the dataset used for the fine-tuning of the model was acquired from speakers in
the northern part of the Netherlands.

Also, if we calculate the average WER score of each model in all evaluation datasets
we observe that the SpoS-PD model had the best performance (table 5.8)). Moreover, it is
worth noting that the SpoS-PD data was richer in terms of quantity and variety than the
RS-PD and SpoS-MS data. With all these facts combined, it is very likely that quantity
and word/sentence variety of training data played a more important role in dysarthric
ASR performance than the elicitation method and/or disease.

Fine-tuned
RS-PD

Fine-tuned
SpoS-PD

Fine-tuned
SpoS-MS

Baseline

0.48 0.38 0.48 0.61

Table 5.8: Average WER scores of all models on all the evaluation datasets

5.4. COMPARING THE FINDINGS WITH THE LITERATURE
The findings of the previous section contradict the expectations expressed in Bunton
et al., 2000, Blaauw, 1994 and Laan, 1997 that spontaneous speech is more difficult to
automatically recognize than read speech, and therefore that ASR systems that are to
be used on spontaneous speech should better be trained on the same type of speech.
They also contradict the expectations expressed in Lee et al., 2014, Rong et al., 2015, and
Rowe et al., 2022 that the variety of phonemic patterns and articulatory impairments
across different diseases affect the generalization and optimality of ASR systems that are
trained with speech affected by only one or few different diseases.

These contradictions do not necessarilly mean that dysarthria diversity does not play
a role in ASR perfornance. It suggests, though, that the phonetic or other differences we
observe in dysarthric speech of different type and provenance do not always affect ASR
performance in the way we would expect. For this reason, we need to perform more
experiments like the ones in this thesis that involve actual ASR development, and with
richer datasets that contain well-documented information about their provenance and
type.

To the best of my knowledge, this thesis is the first attempt to investigate the effect of
the elicitation method or the underlying disease of dysarthric speech data on Dutch ASR
performance. As we saw in section 2.3, related dysarthric ASR approaches have focused
more on investigating the effect of different model architectures and training strategies
on ASR performance, rather than the effect of targeted data selection. As such, the ASR
models of this thesis are not comparable with those of other related approaches since
they do not explore the same research questions.

Moreover, a key reason why in this thesis I created a new dataset were the limitations
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of the existing Dutch dusarthric datasets with respect to my research questions. The
COPAS dataset had no explicit information about the diseases that caused its speaker’s
dysarthria, Domotica contained no speech with hypokinetic dysarthria, and EST was
not available for public use. As such, enriching and expanding existing datasets, creating
new ones, and explicitly describing their diversity characteristics should be in the agenda
of dysarthric ASR research.

5.5. LIMITATIONS AND FUTURE RESEARCH
Even though the results of the three experiments did not provide adequate evidence to
support the two hypotheses of the thesis, certain limitations of the dataset I used could
have negatively affected the experiments’ informativity.

A first limitation was the very small textual variety of the read speech data which
comprised merely 6 sentences from the fable "The North Wind and The Sun". This small
variety has most likely led the RS-PD model to overfit, as suggested by its very low WER
scores on RS data and very high scores on SpoS data. As such its comparison with the
SpoS models, which are trained in higher variety data, is not so representative. For that,
as future research, it would be useful to obtain more content diverse read speech data
and repeat the first experiment.

A second limitation was the relatively small representation of non-PD diseases in the
data. As shown in table 3.1, the duration of the PD recordings is around 2 hours, while
the duration of data from the other diseases, including MS, does not exceed 0.2 hours
(12 min) per disease. As such, it is likely that the SpoS-MS model was worse than the
SpoS-PD model because it was trained on less data. To check if this is actually the case,
it would be useful to expand the dataset with more spontaneous speech data affected by
MS and re-train and re-evaluate the SpoS-MS model. It would be also nice to train and
evaluate similar models for the other diseases (SCA, Stroke, etc.). That would help gain
a more accurate understanding of the role of the underlying disease in the performance
of dusarthric ASR systems.

A third limitation of the dataset was the lack of dysarthria severity assessments. As
we saw above, the three fine-tuned models performed worse on the Domotica dataset
than the baseline model, especially in the severe subset. This indicates that the dataset
probably does not contain enough severe dysartrhic speech. To verfiy if this is actually
the case, one would need to conduct a proper assessment of the dysarthria severity levels
in the dataset. That would make the experiments more informative and the dataset more
usable for further research.

Finally, something that would also be insteresting to investigate further is how fine-
tuning an ASR model with dysarthric speech affects its performance on healthy speech.
The WER scores of table 5.7 show that all dysarthric models performed better in healthy
speech than in dysarthric speech. We don’t know, however, if these scores would have
been even lower if I had not performed the dysarthric fine-tuning. And because a dysarthric
ASR system could be used in a mixed speaker environment, where speakers with dysarthria
interact with healthy speakers, it is important that it’s performance on healthy speech is
not affected negatively.
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CONCLUSION

This thesis focused on investigating whether the developers of dysarthric ASR systems
should prioritize the use and creation of extensive dysarthric speech data, disregard-
ing their characteristics and provenance, or whether a more cautious and strategic ap-
proach should be taken in data selection. Specifically, the study aimed to address this
question within the context of self-supervised learning and examined two significant as-
pects of dysarthric speech: a) the method used to elicit the speech (read vs. spontaneous
speech), and b) the underlying diseases that contribute to the speakers’ dysarthria. For
these two aspects, I formulated two hypotheses. The first hypothesis is that fine-tuning
an ASR model with differently elicited speech data would lead to improved performance
for the respective elicitation method. The second hypothesis is that by fine-tuning an
ASR model with speech data affected from a specific disease, it would be possible to en-
hance model’s performance on speech affected by the corresponding disease.

To test these hypotheses, I conducted three experiments using an existing recent
Dutch dysarthric SSL ASR model and a new dysarthric speech dataset that I created. The
latter was based on a recent Dutch dysarthric speech corpus that comprised both read
and spontaneous speech from patients with various diseases such as Parkinson’s disease,
Multiple Sclerosis, and others. The first two experiments involved fine-tuning the base-
line model separately with read and spontaneous dysarthric speech data from patients
with Parkinson’s disease, and evaluating the two resulting models on read and sponta-
neous speech from different diseases. In the third experiment I fine-tuned the baseline
model with spontaneous dysarthric speech data from patients with Multiple Sclerosis,
and evaluated it on speech data from patients with Multiple Sclerosis and other diseases.
The results of the three experiments did not provide adequate evidence that the elicita-
tion method or the underlying disease of the dysarthric speakers played a significant
role in the performance of a dysarthric ASR system. Instead, it was mainly the quantity
of data and the content variety that seemed to affect the performance of the system.

Based on the outcome of the experiments and the limitations of the dataset I used, I
identified several areas for improvement as part of future research. One such improve-
ment is to address the limitation of the extremely limited textual variety found in the read
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speech data by acquiring a more diverse set of such data, with a wider range of content.
By doing so, it would be possible to repeat the initial experiment with improved tex-
tual variability. A second improvement is to expand the dataset by incorporating more
spontaneous speech data from individuals with non-PD diseases. This expansion would
enable the extension of the third experiment and provide a more comprehensive analy-
sis.

In overall, the thesis provided empirical evidence on how the choice of elicitation
method (read vs spontaneous) for dysarthric speech data impacts the effectiveness of
SSL ASR models, as well as how the underlying disease responsible for dysarthria af-
fects the effectiveness of these models. Additionally, a valuable labeled speech dataset
was created, with diverse samples of dysarthric speech associated with various diseases.
These outcomes contribute to a deeper understanding of dysarthria’s diversity from an
ASR perspective and offer guidance to ASR developers in optimizing their data collection
strategies to accommodate the specific characteristics of dysarthric speech.
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A
FINE-TUNING DATASET STATISTICS

Dataset Participants Sentences Duration
(mins)

RS-PD 43 206 31.84
SpoS-PD 43 570 91.85
SpoS-MS 4 44 6.96

Table A.1: Statistics of the datasets used for fine-tuning
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B
EVALUATION DATASET STATISTICS

Dataset Participants Sentences Duration
(min)

RS-PD 35 52 8.26
RS-SCA 6 36 8.36
RS-Stroke 4 24 4.55
RS-MS 4 24 6.64
RS-Other 4 24 5.22
RS-HC 40 240 31.18
SpoS-PD 42 143 19.39
SpoS-SCA 6 67 11.03
SpoS-Stroke 4 56 8.44
SpoS-MS 4 11 1.68
SpoS-Other 4 62 12.32
SpoS-HC 40 1231 145.1

Table B.1: Statistics of the datasets used for evaluation
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C
FINE-TUNING LOSS AND

ACCURACY MOVEMENT

Figure C.1: RS-PD Loss
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Figure C.2: RS-PD WER

Figure C.3: SS-PD Loss
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Figure C.4: SS-PD WER

Figure C.5: SS-MS Loss
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Figure C.6: SS-MS WER



D
PICTURES FOR THE PICTURE

DESCRIPTION TASK

Figure D.1: The Cookie Theft Picture (CPT)
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46 D. PICTURES FOR THE PICTURE DESCRIPTION TASK

Figure D.2: Heaton Picture



E
TEXT FOR THE READING TASK

De noordenwind en de zon
De noordenwind en de zon waren erover aan het redetwisten wie de sterkste was van hun
beiden. Juist op dat moment kwam er een reiziger aan, die gehuld was in een warme
mantel. Ze kwamen overeen dat degene die het eerst erin zou slagen de reiziger zijn
mantel te doen uittrekken de sterkste zou worden geacht. De noordenwind begon toen
uit alle macht te blazen, maar hoe harder hij blies, des te dichter trok de reiziger zijn
mantel om zich heen, en ten lange leste gaf de noordenwind het op. Daarna begon de
zon krachtig te stralen, en hierop trok de reiziger onmiddellijk zijn mantel uit. De noor-
denwind moest dus wel bekennen dat de zon van hun beiden de sterkste was.
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