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ABSTRACT
Peatlands play a crucial role in global carbon storage and climate change mitigation, but they are rapidly
degrading due to human activities. This study focuses on peat soils in the province of Friesland, the
Netherlands, where intensive land use practices pose a significant threat to peatland ecosystems. The
research compares conventional and organic agricultural practices to understand their effects on peat soil
management and carbon emissions. The study employs multivariate statistical techniques, including
NMDS and PERMANOVA analyses, to examine the relationship between management intensities,
environmental variables, and peat emissions. Additionally, fluctuations in groundwater and peat emissions
during the early growing season are investigated to gain insights into system dynamics. The findings
indicate distinct associations between specific variables and management styles, emphasizing the
trade-offs associated with different management strategies. The results of this study provide valuable
insights for decision-makers in the agricultural sector, enabling the development of more sustainable
land-use strategies that preserve peatlands, minimize carbon emissions, and promote environmental
conservation. However, limitations such as the small sample size and time-limited nature of the study
should be considered when interpreting the results. Future research should expand the sample size, extend
the sampling period, and consider the cumulative effects of weather patterns to enhance the
generalizability and understanding of peatland dynamics.
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INTRODUCTION
Soil is a crucial component of the terrestrial
environment, providing essential ecosystem
services such as food production, water storage
and purification, nutrient cycling, climate
regulation, and habitat for biodiversity
(Berendse, 2001; Schröder, 2016). Soils are also
integral to the climate system, constituting the
largest organic carbon pool in the terrestrial
biosphere. The soil organic carbon pool contains
about twice as much carbon as the atmosphere,
making it a crucial player in the global carbon
cycle (Jobbágy and Jackson, 2000).

Peat soils are wetland soils that occur through
the accumulation of partially decomposed plant
material over thousands of years (Turetsky et al.,
2015). Peatlands are critical in the context of soil
carbon storage and climate change, despite
covering only about 3% of the Earth's surface.
They store approximately one-third of the
planet's soil carbon, making them crucial in
mitigating climate change by sequestering
significant amounts of carbon (Harenda et al.,
2018).
Peatlands are the most carbon-dense terrestrial
ecosystems globally, storing up to twice as much
carbon as all the world’s forests combined
(IPCC, 2019).

Peatlands across the globe are rapidly degrading
due to human activities, such as draining for
agriculture and other land uses. This has resulted
in the release of significant amounts of carbon
into the atmosphere, estimated to be
approximately 15% of the world's peatlands
(IPCC, 2019). Additionally, degrading peat soils
release methane into the atmosphere, accounting
for more than 8% of global anthropogenic
greenhouse emissions (IPCC, 2019). Peatland
degradation is a major contributor to climate
change and significantly impacts the region's
resilience to climate-related threats such as

flooding, droughts, and salinisation. Therefore, it
is urgent to manage and restore peatlands
sustainably to prevent further degradation and
carbon emissions. Studying peat management in
an agricultural landscape is crucial for
developing sustainable land use practices, given
the importance of peatlands in carbon storage
and climate change mitigation, as well as their
significance for biodiversity conservation, and
can contribute to achieving global climate goals.

One region where peat degradation is a major
concern is Friesland, a coastal province north of
the Netherlands where around 70,000 ha is part
of the peat meadow area (Grondwateratlas
Fryslân, 2020; Boer, et al., 2019).
Approximately 52,000 ha of this area is
dedicated to agricultural land (Grondwateratlas
Fryslân). Friesland is recognized as a significant
agricultural region, encompassing approximately
229,000 ha of total agricultural land in 2010.
Among this land, a significant portion, around
23%, consists of peat soils primarily used for
grass production by dairy farmers, particularly in
the peat meadow areas (Deru et al., 2017;
Archive: Agricultural Census in the Netherlands
- Statistics Explained, n.d.).
Intensive land use practices in Friesland
necessitate the lowering of groundwater levels to
enhance aeration of the topsoil and improve the
load-bearing capacity, facilitating optimal crop
growth and livestock production. However, this
agricultural practice renders the peat soils highly
susceptible to degradation. The degradation of
peat soils not only leads to a decrease in their
capacity to store carbon but also presents
significant environmental concerns with
implications for climate change mitigation
(IPCC, 2019). Moreover, the low groundwater
levels in areas with peat soils result in the
natural drainage of the higher-lying sandy soils
in the southern and southeastern parts of the
province, further exacerbating the problem (de
Mulder, 2019).
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To address these challenges, the study will focus
on peat soils within the province of Fryslân. A
comprehensive comparison will be made
between conventional and organic agricultural
practices as they represent two distinct
approaches to land-use management and directly
impact the hydrology of peat soils (Page &
Baird, 2016). The conventional agricultural
approach primarily emphasises maximising
yield and production efficiency. In contrast, the
organic approach adopts a more sustainable and
integrated approach, prioritising soil health,
biodiversity, and long-term sustainability (Zaller,
2018).

By examining and contrasting the effects of
these two approaches on management and
carbon emissions of peat soils, this study aims to
gain a deeper understanding of the effects of
management practices on peat soils. The
findings will provide valuable insights to inform
decision-making in the agricultural sector.
Understanding how conventional and organic
farming practices influence the hydrological
conditions and carbon emissions in peatlands
will contribute to the development of more
sustainable land-use strategies. Armed with this
knowledge, policymakers, farmers, and land
managers can make informed choices that
promote the preservation and restoration of
peatlands while minimising CO2 emissions and
their impact on the environment.

Attempts are being made to reverse peat
degradation in Friesland by raising groundwater
levels to combat the problem of CO2 emissions
resulting from the oxidation of carbon in the
soil. Raising the water table promotes anoxic
conditions in the soil, slowing down the
oxidation of carbon and thereby reducing the
rate of CO2 emissions (Chimner & Cooper.,
2003). However, it is important to understand
the dynamics of peatlands to manage them
effectively. Knowledge of the temporal and

spatial variability in peat emissions is essential
for understanding the effects of land-use
practices on the carbon cycle and predicting
future emissions (Linden et al., 2014).
Therefore, this study aims to investigate
fluctuations in groundwater and peat emissions
during the early growing season on grassland
soils on two land-use intensities in Friesland to
understand the system dynamics better and
inform management decisions.

This research will therefore answer the question
what the effect of different management
intensities is on the functions and on the CO2
emissions of peat soils is.

METHODS

Study Site
This paper aims to investigate the relationship
between agricultural practices and
environmental impacts on peat soils in Friesland.
To achieve this, fieldwork was conducted in six
neighbouring fields located in Friesland, three
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are classified as extensive and three are
classified as intensive agriculture based on land
management including fertiliser application. All
the fields were located on clay over peat soils,
and previous research (Kraamwinkel et al., in
progress) suggests that the general soil type is
similar, but management practices differed
significantly.

Fieldwork
To collect data, three visits were made. from,
end of February to the end of April to catch the
variation of the growing season so we had
three/four weeks between the field days. During
these visits measurements were taken at three
locations per field - two metres from the ditch,
seven metres from the ditch, and the middle of
the field, this is to look at the effect of the
ditchwater on the groundwater level and thus the
co2 emissions. These measurements included
ditch water level, groundwater level, the
thickness of the clay layer, the thickness of the
peat layer, soil moisture in the upper 10 cm,
penetration resistance in the upper 10 cm,
vegetation height, grass/herbs ratio, and CO2
emissions. All our equipment has been
calibrated according to the specifications that are
in the manuals of each instrument.
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Ditch water level
To determine the ditch water level of the fields,
we used a maximum extended soil core and a
measuring rod. The process involved placing the
soil core on the ground and using the measuring
rod to determine the height difference between
the bottom of the core and the ditch water level
measured in cm.

Groundwater level and Soil profile
The groundwater level was measured using the
Edelman auger for sand from Eijkelkamp. This
tool is designed to extract a soil profile to
examine the soil. It's not made for groundwater
measures. However, we used the auger to
estimate where the groundwater level started.
The Edelman auger consists of a metal shaft
with a spiral-shaped tip that can be screwed into
the soil and a handle that allows the auger to be
rotated and dug into the soil.

The Edelman auger was used to extract a soil
profile at each of the three locations in each field
to take the measurements. The auger was
screwed into the soil until the sand layer was
reached. This gave us the data needed to
determine the thickness of the clay and peat
layer. The soil profile was carefully examined to
determine the water table's depth, and this value
was recorded as the groundwater level.

Soil moisture

The Thetaprobe standard set from Eijkelkamp
was used to measure soil moisture at random
locations on the measured latitude of the field.
This tool is designed to measure the volumetric
water content of the soil, which indicates the
amount of pore space filled with water instead of
air. The Thetaprobe comprises a probe with
three needles inserted into the soil and a
handheld reader that displays moisture readings.

The Thetaprobe was inserted into the soil to a
depth of 10 cm to take the measurements. Each
location was measured three times, resulting in
nine measurements per field. The average of the
three measurements at each site was calculated
and used for further analysis.

The measurement was taken three times at each
location to account for spatial heterogeneity and
variability within the soil. Soil properties such as
soil moisture can vary significantly within a
field, even at a small scale. By taking multiple
measurements at each location, the aim is to
capture this variability and obtain a more
representative average value.

Spatial heterogeneity refers to the variation in
soil properties across space, meaning that
different locations within the field can have
different soil characteristics. This can be
influenced by factors like soil type, topography,
vegetation cover, and historical land use. By
taking multiple measurements at each location,
the researchers can assess the extent of spatial
heterogeneity and understand how soil
properties vary within the field.

The Thetaprobe uses capacitance sensing
technology to measure the dielectric constant of
the soil, which is related to the soil moisture
content. The probe sends a high-frequency
electromagnetic signal between the three needles
through the soil. The amount of water in the soil
affects the dielectric constant, causing changes
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in the electromagnetic signal detected by the
probe. The handheld reader displays the
moisture readings in percent volume of water in
the pore space, providing an accurate measure of
the soil moisture content.

Penetration resistance
Penetration resistance was measured
using the hand penetrometer for top
layers, type IB from Eijkelkamp.
This tool is designed to measure the
resistance of the soil to penetration,
providing an indication of soil
compaction and the mechanical
strength of the soil.

The device used for measuring cone
resistance is pushed into the ground
at random selected locations to a
depth of 10 cm. The scale on the side of the
penetrometer displays the force required to
achieve this depth in cm. Later on, the force
measurements are converted to cone resistance
in N/cm^2 using the formula specified in the
handbook, considering the cone size and the
spring size used in the field.

To ensure the accuracy and reliability of the
measurements, we took three readings at each
location in the field. The readings were taken on
the same day to minimise any variation due to
environmental factors. The average of the three
readings at each location was calculated, and
this value was used to represent the penetration
resistance.

Vegetation height
To measure vegetation height, we used a ruler
and took three random samples at each of the
three locations within each field. The location to
measure the vegetation height was determined
randomly by placing the measuring rod. At that
particular location, we measured the height of

the tallest blade of grass adjacent to the ruler.
This process was repeated three times at each
location, resulting in nine measurements per
field.

The vegetation height measurements were
recorded in centimetres and the three
measurements at each location were averaged to
obtain an overall average vegetation height for
each location on the field. It should be noted that
vegetation height serves as an indicator of land
use intensity, reflecting faster-growing
vegetation and higher biomass in more
intensively managed fields. This proxy is also
useful in monitoring shading,
evapotranspiration, and controlling potential
effects on CO₂ measurements through
photosynthesis.

Grass/Herbs ratio
The ratio of grass to herbs in each field was
measured by creating a 50 by 50 cm square plot
randomly at each of the three locations in each
field. The area was marked out using a ruler, and
the predicted percentage of grass and herbs
present in the area was estimated. The
measurements were taken once at each location,
resulting in three measurements per field.

During the estimation, care was taken to
differentiate between grass and herb species and
to account for bare spaces within the area. The
grass and herbs ratio provides important
information on the biodiversity of the field, as
well as the health of the ecosystem. As it is an
indicator of biodiversity which is important for
ecosystem health and resilience

CO₂ emissions
To measure CO₂ emissions, we used a CO₂
sensor from Vaisala, Handheld CO₂ Meter
GM70, which measured the concentration of
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CO₂ particles in the air in parts per million
(ppm), this method is called the closed-chamber
method (Rayment, 2000). We employed the
closed chamber method by setting up a
plexiglass box over the soil in two locations per
field: one at seven metres from the ditch and one
in the middle of the field. A small ventilator
circulated the air within the box, ensuring a
homogeneous sample for CO₂ concentration
measurements.

During a 15 min timespan, the CO2 sensor
measured the concentration of CO2 in ppm
present in the chamber every 30 seconds
particles in the air were measured using a device
that recorded the ppm of CO₂. We measured the
CO₂ concentration in the air within the box for
15 minutes, and the flux (umol/m^2*s) was
calculated using the formula

to account for the[( ∆𝐶𝑂2
900 ) ×  6. 696428571]

size of the chamber you go from ppm in a small
box to flux per square metre per second , it can
even be used to calculate co2 flux in ton/ha year
(common unit) . The CO₂ flux is an indicator of
the amount of peat oxidation, which releases
CO2 and is the main GhG on these fields.

Soil organic matter
The soil organic matter is measured by taking
soil samples on the fields and using the method
of loss on ignition. This is only done in the first
round of fieldwork at the 7 metres and the
middle of the field, as the soil organic matter
will not change much over time.

After the soil samples were acquired, they were
taken to the laboratory, where the samples were
divided into 3 small subsamples to make the
drying and burning process shorter. The 3
different samples were then averaged later on.
Before the soil was put into the ceramic cups,
we weighed the ceramic cups in which the soil
resided, and we labelled them with the
appropriate field id.

First, the soil samples were dried so that the
moisture was out of the soil as we wanted to
measure the soil organic matter. This was done
in an over on * degrees Celsius for 24 hours.
Afterward, we weighed the dry soil with the
ceramic cups and subtracted it from the empty
pot weight to get the dry soil measurement.
Then, the soil was put in a high-heat oven,
which heated up for 1 hour to 500 degrees
Celsius and then burned at 500 degrees Celsius
for 5 more hours to burn off the organic matter.
After this, we weighed the soil in the ceramic
cups again, and the weight of the pot was
subtracted. And then, the soil organic matter
data was created by taking the difference
between the dry and the burned soils giving the
mass percentage of the soil organic matter.
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Analysis

Rstudio
The data collected in this study were analysed
using R Core Team 2023 (R Core Team 2023.
CRAN R version 4.3.0 Available at
https://cran.r-project.org/). Multiple analyses
were conducted, including non-metric
multidimensional scaling (NMDS) (Podani &
Schmera, 2011) and PERMANOVA (Zhu, et al.,
2020).

NMDS Analysis
NMDS (Non-metric Multidimensional Scaling)
analysis is a multivariate ordination technique
widely used in ecology to examine similarities
and dissimilarities between samples or objects
based on multiple variables (Podani & Schmera,
2011). It is particularly useful when dealing with
complex datasets where traditional statistical
methods may not be sufficient to uncover
underlying patterns, which is the case in this
research. In the context of the given analysis,
NMDS was employed to explore the relationship
between various variables and management
intensities.

NMDS works by constructing a dissimilarity
matrix based on the chosen variables, which
measures the dissimilarity between each pair of
samples. The dissimilarity matrix is then used to
create a multi-dimensional plot, typically in two
or three dimensions, representing the samples as
points. The distances between the points on the
plot reflect the dissimilarity between the
corresponding samples in the dissimilarity
matrix. The goal of NMDS is to arrange the
points on the plot in a way that preserves the
original dissimilarities as much as possible.

The analysis was conducted using the "vegan"
package in R (Dixon, 2003), and the stress value

was used to assess the fit of the model (Dixon,
2003).

The first section of code (Appendix 1) prepares
the response dataset for the analysis. It selects
columns 1 to 14 from the original dataset d1_a
and applies several transformations to some of
the variables (square root transformation). Then,
it removes some irrelevant columns (date, field,
field_Location, round, and bare_cover1 to
bare_cover3). The resulting dataset is stored in
d_env.

The second section of code applies a Hellinger
transformation to the d_env dataset, which
normalises the data and reduces the impact of
extremes (Borowska, et al., 2015). The resulting
dataset is stored in d_hel_env.

The third section of the code performs the
NMDS analysis on the transformed data using
the metaMDS function from the vegan package.
The analysis is performed with three dimensions
(k = 3), and the stress value, which measures
how well the NMDS configuration preserves the
dissimilarities between the samples, is calculated
and displayed. A stress value below 0.1 or 0.05
is considered a good fit, while a stress value of
0.2 is suspect and may require increasing the
number of dimensions.

The fourth section of code adds the management
variable to the original dataset d1 and stores it in
the management dataframe. The variable field is
recorded into two management levels:
"Extensive" for fields 1, 4, and 5, and
"Intensive" for fields 21, 22, and 23.

The final section of code creates a plot of the
NMDS analysis with the management variable
as a factor. The plot function displays the stress
value and the ordiplot function creates the
NMDS plot, specifying the choices argument as
the first and third dimensions, the type argument
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as "points," and adjusting the size of the points
and labels. The orditorp function adds the
species labels to the plot, and the ordiellipse
function adds ellipses to the plot for each
management level with the corresponding colour
(red for "Extensive" and blue for "Intensive").
The abline functions add reference lines to the
plot for the x- and y-axes.

Permanova
This section presents the analysis conducted to
examine the relationship between multiple
variables and management using the
PERMANOVA (Permutational Multivariate
Analysis of Variance) test (Zhu, et al., 2020;
Anderson, 2014). The analysis aimed to assess
whether there were significant differences in the
multivariate composition of the variables based
on different management intensities.

To perform the PERMANOVA test, the
variables of interest, along with the management
field variable, were combined into a response
matrix. The response matrix, named "resp,"
consisted of ten variables related to
environmental conditions (d_hel_env) and the
management intensity (management$field). The
column name of the management intensity
variable was changed to "Intensity_cat" for
clarity and consistency.

The PERMANOVA analysis was conducted
using the adonis2 function from the Vegan
package in RStudio. The PERMANOVA test
assessed the multivariate composition of the ten
environmental variables by comparing them to
the management intensity variable
(Intensity_cat). The formula used for the
analysis was resp[,c(1:10)] ~ resp$Intensity_cat,
indicating that the environmental variables were
regressed on the management intensity variable.
The adonis2 function also specified parameters
such as the number of permutations (perm=999)
and the option to disable automatic data

transformations (autotransform=F), This is due
to the Log10 transformation that Adonis uses by
default. However, the Hellinger function has
already performed a Square Root transformation
on the data..

Groundwater vs Peat
First, a new variable named land_use is created
based on the values in the field column of the
dataset. This variable categorises the land use as
either "organic" or "conventional" agricultural
production intensity. The assignment is done
using the ifelse() function, which checks if the
value in the field column is one of the specified
values. The resulting land_use variable enables
the differentiation between organic and
conventional agricultural production intensity
land use.

Next, a variable called underwater is created to
represent whether the peat is underwater or not.
This is determined by comparing the values in
the gl (groundwater level) and cl (canal level)
columns. If the groundwater level (gl) is less
than the canal level (cl), the underwater variable
is set to 1, indicating that the peat is not
underwater. Otherwise, it is set to 0, indicating
that the peat is underwater.

Another binary variable named land_usage
which is based on the management intensity is
generated based on the land_use variable. If the
land_use is "high" the land_usage variable is set
to 1, indicating intensive land management. On
the other hand, if the land_use is not "high" (i.e.,
"low"), the land_usage variable is set to 0,
indicating extensive land land management.

A plot is then created to visualise the
relationship between the peat underwater status
(underwater) and CO2 flux (co2fa). The ggplot()
function (Wickham, Chang, Wickham, 2016) is
used to generate the plot, with co2fa on the
x-axis, land_usage on the y-axis, and underwater
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represented by different colours. The resulting
scatter plot provides an overview of the
relationship between peat underwater status and
CO2 flux.

The code continues by creating four separate
dataframes to represent different combinations
of land use and peat underwater status. These
data frames capture the combinations of
intensive/extensive land use and underwater/not
underwater peat conditions. Each data frame is
created using the data.frame() function,
incorporating relevant columns from the original
dataset.

Following the creation of the dataframes,
individual plots are generated to explore the
relationships within each combination. The plots
are created using ggplot() and geom_point(),
similar to the previous plot, and they visualise
the relationship between CO2 flux and the
respective combinations of land use and peat
underwater status.

Finally, the individual plots are arranged in a
grid layout using the grid.arrange() function
from the gridExtra package. This arrangement
allows for easy comparison and analysis of the
relationships across the different combinations.
The resulting grid of plots is displayed with a
common main title for clarity and presentation
purposes.

Overall, this code snippet represents a series of
data transformations, variable creations, and plot
generation to investigate the connections
between land use, peat underwater status, and
CO2 flux within the peatland dataset.

Environmental Variables
For the following analysis the code is analysing
and comparing different environmental variables
(CO2 flux, soil moisture, penetration resistance,

vegetation height, and groundwater level) in
relation to land use and location within a field.

To compare the CO2 flux with land use and
location on the field, a box plot is created using
the ggplot() function. The x aesthetic is set to the
"field" variable, representing different field
numbers, while the y aesthetic is set to the
"co2f" variable, representing CO2 flux. The fill
aesthetic is mapped to the "lof" variable, which
represents the location on the field. The resulting
box plot displays the distribution of CO2 flux
for different land uses and locations on the field.

Similarly, boxplots are created for the remaining
variables, including soil moisture, penetration
resistance, vegetation height, and groundwater
level. The code structure for these boxplots is
identical to the one used for CO2 flux, with the
appropriate variables assigned to the y aesthetic
and labs() function adjusted to reflect the
respective variables being plotted.

Finally, the grid.arrange() function is used to
arrange the individual boxplots into a grid
layout. The boxplots are passed as arguments to
grid.arrange(), and the ncol argument is set to 2
to arrange them in two columns. This
arrangement allows for a comprehensive
comparison of the different environmental
variables and their relationships with land use
and field location.

This methodology aims to visually explore and
analyse the variations in CO2 flux, soil moisture,
penetration resistance, vegetation height, and
groundwater level in relation to land use and
location within the field. By utilising boxplots,
the code provides a concise summary of the
distribution and variability of each variable
across different land uses and field locations.

11



PEAT EMMISIONS DURING EARLY GROWING SEASON

Weather Influence
This section presents the analysis conducted to
investigate the significance of weather variables
on CO2 flux. Weather data were downloaded
from the Dutch National Weather service
(KNMI from Stavoren within the date range:
01/02/2023 - 30/04/2023,
https://www.knmi.nl/nederland-nu/klimatologie/
daggegevens). Specifically, the maximum
temperature, precipitation, air humidity, and
wind speed were examined in relation to the
CO2 flux of specific days. The analysis utilised
a linear regression model to explore the potential
associations between these weather variables
and CO2 flux. The weather data used
corresponds to the same day as the CO2 flux
measurements.

To begin the analysis, the dataset was
preprocessed using RStudio. Missing values in
the CO2 flux variable were handled by applying
the is.na function to identify missing values and
replacing them with the corresponding CO2 flux
values from a different variable, co2fa. This is
done with the mutate() function, if the function
found a missing value in the CO2 flux data it
would replace it by the data in the average CO2
flux column. The average CO2 flux data was
calculated by taking the data from the 7 metre
location and the 30 metre location and dividing
it by two .This step ensured that the analysis
included complete data for the variables of
interest.

Scatter plots were then created to visually
explore the relationships between the weather
variables and CO2 emissions. Four scatter plots
were generated: "Temperature vs. CO2
Emissions," "Precipitation vs. CO2 Emissions,"
"Air Moisture vs. CO2 Emissions," and "Wind
Strength vs. CO2 Emissions." Each plot
displayed the CO2 flux on the y-axis and one of
the weather variables on the x-axis.

Additionally, the colour of the data points
represented the corresponding land use category.

The scatter plots revealed the distribution and
general trends between the weather variables
and CO2 flux. They provided a visual
understanding of the potential relationships and
allowed for initial observations and insights. It
should be noted that while the scatter plots
present a useful visualisation of the data, they do
not provide a quantitative assessment of the
significance of the relationships.

Subsequently, a multiple linear regression model
(Field, Miles, 2012) was fitted to the data to
quantitatively assess the associations between
the weather variables (maximum temperature,
precipitation, air humidity, and wind speed) and
CO2 flux. The lm function in RStudio was used
to create the model, with the CO2 flux (co2f) as
the dependent variable and the four weather
variables as independent variables. The dataset
used for modelling was the preprocessed data
obtained earlier.

The model summary was then examined to gain
insights into the statistical significance of the
weather variables. The summary provided
information such as the coefficients, standard
errors, t-values, and p-values for each
independent variable, as well as the overall
performance of the model. This information
helped determine the individual contributions of
the weather variables to the prediction of CO2
flux.

Additionally, a plot of the model was generated
to visualise the relationships between the
independent variables and the dependent
variable. This plot facilitated the interpretation
of the regression coefficients and their
corresponding confidence intervals. The plot
allowed for a visual assessment of the direction
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and magnitude of the relationships between the
weather variables and CO2 flux.

Finally, a comparison between the predicted
CO2 flux values from the model and the actual
CO2 flux values was conducted. A data frame
was created to store the predicted and actual
values. A scatter plot, titled "Predicted vs.
Actual CO2 Emissions," was generated to
visualise the agreement between the predicted
and actual values. The plot included data points
representing the predicted CO2 flux on the
y-axis and the actual CO2 flux on the x-axis.
Additionally, a red dashed line was included in
the plot to represent a perfect prediction, where
the predicted and actual values would align.

This analysis provides initial insights into the
relationships between weather variables and
CO2 flux using a linear regression model.
However, it is important to note that the model's
performance could potentially be improved by
considering a wider range of weather data,
including data from multiple days. Furthermore,

future research may explore more sophisticated
models that can account for additional factors
influencing CO2 flux.

RESULTS

NMDS analysis
The interpretation of an NMDS plot involves
examining the spatial arrangement of the points
and their relationship to the variables of interest.

The two ellipses in the graph represent the two
management intensities, with one ellipse
representing more intensive management styles
and the other representing extensive
management. The ellipses are barely touching
each other, indicating a high level of statistical
significance and a clear distinction between the
management types based on the analysed
variables.

13
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Thereby, the relative positions of the variables
outside or within the ellipses provide insights
into their relationship with the management
intensities. Variables that fall within the ellipses
are more closely associated with the
corresponding management style. In contrast,
variables outside the ellipses show weaker
associations or intermediate characteristics
between the two management styles.

According to the figure, higher penetration
resistance, higher CO2 flux, deeper peat layer,
and more bare ground are more closely related
to intensive management. On the other hand,
higher ditch water levels, grass cover and soil
organic matter and soil moisture are more
closely related to extensive management. These
variables may be influenced by water
management and drainage practices, typically
associated with extensive management
approaches.

It is important to note that vegetation height is
positioned outside the ellipses and closer to the

middle. This suggests that these variables do not
strongly discriminate between the two
management styles, and their values may not be
strongly influenced by management practices
alone. Groundwater and herb coverage, although
also outside the ellipses, are closer to extensive
management. These results imply that
groundwater levels and herb coverage might be
more influenced by factors associated with
extensive management practices, such as
reduced disturbance and more natural
hydrological conditions.

The results indicate that the analysis was run 20
times. The stress values for each run are
presented, with additional information regarding
the quality of the solutions. In some runs, new
best solutions were found, while in others, the
solutions were similar to the previous best
solution. The Procrustes statistics, such as root
mean square error (RMSE) and maximum
residual, are also provided. Procrustes analysis is
a post-processing step that assesses the fit of the
NMDS solution to the original data.
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Based on the outcome, the analysis achieved
relatively low-stress values in most runs, ranging
from 0.1172506 to 0.1284193.

PERMANOVA
The PERMANOVA analysis results revealed a
significant effect of management intensity
(resp$Intensity_cat) on the multivariate
composition of the ten environmental variables
(Df = 1, F = 11.63, p < 0.001). The
environmental variables explained 18.28% of
the variation in the composition of the variables
(R2 = 0.18278). The remaining 81.72% of the
variation was attributed to unexplained factors
or random variation within the data (Residual).
The total variation in the multivariate
composition of the variables accounted for by
the model was 100% (Total).

Peat underwater analysis
In order to assess the relationship between CO2
flux and the presence of groundwater above or
under peat soils, statistical analyses were
conducted using the Kruskal-Wallis method. The
obtained p-value was 0.56, indicating no
significant difference in CO2 flux between fields
with groundwater above and under peat soils.
However, when further examining the
management intensities, the p-values for the
extensive and intensive fields were found to be
0.077 and 0.96, respectively. These results
suggest that there is a marginal difference in
CO2 flux between fields with groundwater
above and under peat soils under extensive
management (p = 0.077), whereas no significant
difference was observed in intensive
management (p = 0.96). These findings are
depicted in Graphs 2a & 2b, which illustrate the
correlations between the different fields and
management styles with respect to the analysis
of peat that is kept underwater.
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Weather Influence
The last analysis was done on the impact of the
weather, this is only done with the data of the
date of the fieldwork itself and thus for further
research, it might be necessary to compile data
from the entire week before so that you could
have an even more reliable prediction of the
influence of the weather on the CO2 emissions.

For the first graphs 4a-d we can see that there is
no specific trend in the variables, you could see
a trend in the lower intensive fields and the
temperature, and the precipitation looks to have
a small trend but this is very unclear as the
precipitation with 0 and 1 and the co2
precipitation differ a lot.

The results of the regression analysis revealed
several important findings. The overall model
was found to be significant (F(4, 49) = 5.8, p =
0.0006665), indicating that the weather variables

collectively explain a significant portion of the
variance in CO2 flux. The adjusted R-squared
value of 0.2659 suggests that approximately
26.59% of the variation in CO2 flux can be
accounted for by the weather variables in the
model.

Individually, each of the weather variables
showed significant relationships with CO2 flux.
Maximum temperature (TMAX) was found to
have a negative coefficient estimate of -1.27575
(t = -4.122, p = 0.000145), indicating that higher
temperatures are associated with lower CO2
flux. Precipitation (PP) also exhibited a negative
relationship, with a coefficient estimate of
-0.36715 (t = -4.633, p = 2.68e-05), suggesting
that increased precipitation is associated with
decreased CO2 flux.

On the other hand, average air humidity (AVH)
showed a positive relationship with CO2 flux, as
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indicated by a coefficient estimate of 0.84206 (t
= 4.389, p = 6.06e-05). This implies that higher
levels of air humidity correspond to higher CO2
flux. Similarly, average wind strength (AVW)
demonstrated a positive association with CO2
flux, with a coefficient estimate of 0.42247 (t =
4.376, p = 6.32e-05). This suggests that stronger
wind speeds are linked to higher CO2 flux.

The model's diagnostic statistics revealed a
residual standard error of 1.176, indicating the
average magnitude of the residuals. The
residuals exhibited a range from -1.85119 to
2.86235, with the majority falling within the first
and third quartiles. These statistics provide
insights into the model's goodness of fit and the
variability of the observed CO2 flux values
around the predicted values.
For further research, these results indicate that
an ANCOVA analysis would help to distinguish
if there are also differences between
management types.

DISCUSSION
The findings of this study offer significant
insights into the relationship between
management intensities, environmental
variables, and peat emissions in peatland
ecosystems. By analysing a range of variables
and employing multivariate statistical
techniques, we can better understand the
dynamics and implications of different
management practices. Moreover, comparing
our results to prior research allows us to identify
commonalities and differences, providing a
broader context for interpretation.

NMDS analysis

Our NMDS analysis revealed distinct
associations between specific variables and
management styles. Variables such as

penetration resistance, CO2 flux, peat layer
depth, and bare ground were closely linked to
intensive management, reflecting the impacts of
practices like ploughing and high nutrient input.
These practices contribute to soil compaction,
increased carbon dioxide emissions, and
alterations in peat layer composition.
Conversely, variables like ditch water levels,
grass cover, soil organic matter, and soil
moisture showed stronger associations with
extensive management, influenced by water
management and drainage practices. These
results highlight the influence of management
intensity on key environmental variables and the
trade-offs associated with different management
strategies.

The variables identified in our NMDS analysis
reflect the impact of intensive management
practices such as ploughing, high nutrient input,
and disturbances. These practices lead to
increased soil compaction, higher carbon
dioxide emissions, and alterations in peat layer
composition (Carter & Janzen, 1997).

In comparison to previous NMDS studies, our
findings demonstrate both similarities and
differences, depending on contextual factors,
variables considered, and specific management
practices. Discrepancies may arise from
variations in management practices, ecological
context, or the specific set of variables
examined. These discrepancies highlight the
significance of considering site-specific factors.

Xu et al. (2020) explored the effects of
management intensification on soil properties
and microbial communities, finding clear
separation between intensive and extensive
management. This suggests that the association
between management intensities and ecological
variables can fluctuate depending on the
ecosystem and factors under investigation.
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In summary, NMDS analysis is a valuable tool
for examining relationships between variables
and management intensities. Our analysis shows
distinct associations between certain variables
and management styles. However, interpretation
should consider the study context and
incorporate relevant research. NMDS provides
insights into the associations between
management intensities and ecological variables,
contributing to our understanding of the effects
of different management strategies.

PERMANOVA
The PERMANOVA analysis revealed a
significant effect of management intensity on the
overall environmental conditions represented by
the variables, indicating that management
practices exert a substantial influence on the
multivariate composition of soil conditions
within the context of this study. These results
demonstrate a clear association between
management intensity and the studied
environmental variables, suggesting that
different management practices significantly
affect soil conditions. The observed differences
in soil conditions can have broader implications
for ecosystem functioning and sustainability. For
instance, intensive management practices that
increase soil compaction and carbon dioxide
emissions may contribute to environmental
degradation. At a landscape scale, intensive
agricultural management can accumulate
negative impacts on climate through increased
emissions of greenhouse gases. In contrast,
extensive management practices that prioritise
water management and maintain favourable soil
conditions may contribute to biodiversity
conservation and carbon sequestration.
Therefore, an increased prevalence of lower
intensity agricultural production at the landscape
scale, as opposed to intensive agricultural
production, would yield positive impacts for
climate regulation. These findings highlight the

need for analysing the environmental
implications of different management intensities
and promoting sustainable practices that
minimise negative impacts.

Peat underwater analysis
The analysis of peat that was being kept under
the groundwater level has yielded insightful
results, shedding light on the intricate dynamics
of CO2 flux in peatland ecosystems.

Upon examining the initial two graphs, which
delve into the CO2 flux per management site
and the presence of peat underwater, it becomes
apparent that the significance of the correlation
may not be immediately discernible.
Nevertheless, our analysis does reveal intriguing
discrepancies in management practices, notably
evident in the markedly higher CO2 flux values
observed in intensive fields compared to
extensive fields. Moreover, when peat is located
under the groundwater level, a discernible trend
emerges, albeit without a clear indication of
statistical significance.

Further research could therefore map the
topography of wet/dry peat. As drained peat
becomes hydrophobic and requires years of
rewetting to restore to a wet state. Wet peat
becomes anoxic, which in theory reduces the
release of GHG.

In contrast, the subsequent four plots provide a
more robust basis for drawing meaningful
conclusions. By categorising the variables into
four distinct groups—intensive fields with peat
underwater, intensive fields without peat
underwater, extensive fields with peat
underwater, and extensive fields without peat
underwater—we gain deeper insights into the
interplay between peat conditions, management
practices, and CO2 flux dynamics. Notably, the
distribution of fields with peat underwater
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(hereinafter referred to as peun) appears to be
relatively balanced between extensive and
intensive fields, with only marginal
discrepancies in quantity. Furthermore, a careful
examination of our data reveals an intriguing
temporal aspect, with peun fields being more
prevalent during the initial round of fieldwork,
while subsequent rounds exhibit a notable
decrease in the number of fields with peat
underwater.

Delving further into the results, we uncover
compelling patterns in CO2 flux behaviour
across different field types. Extensive fields,
characterised by more extensive coverage of
vegetation and a less intensive management
approach, exhibit a higher degree of stability in
their CO2 flux dynamics. Although occasional
extremes exist, particularly in non-peun fields
where the variables display greater scatter, the
overall CO2 flux values remain relatively
consistent. Moreover, compared to intensive
fields, extensive fields demonstrate lower CO2
flux levels, indicating the influence of
management practices and groundwater levels
on the observed flux patterns. These findings
align with prior research conducted by
Marwanto et al. (2019), who similarly observed
lower CO2 flux values in peun fields within both
intensive and extensive contexts. These
corroborating findings support the notion that
groundwater levels play a significant role in
regulating CO2 flux in peatland ecosystems.

However, a nuanced analysis of the intensive
fields reveals persistent disparities between peun
and non-peun fields, even when the groundwater
level is above the peat. While CO2 flux values
in peun fields generally exhibit lower
magnitudes, it is essential to exercise caution
when comparing them directly to the lower flux
numbers observed in extensive fields. This
observation underscores the complex
relationship between groundwater levels, peat

conditions, and CO2 flux dynamics, warranting
further investigation. Here, the study by Hoyt, et
al. (2019) focuses on reporting contrasting
results that suggest a limited influence of peat
conditions on CO2 flux. These divergent
findings highlight the site-specific nature of
peatland dynamics and the need for
comprehensive studies encompassing multiple
factors and contexts.
Conditions.

Analysing peat underwater provided valuable
insights into CO2 flux dynamics in peatland
ecosystems. Our results showed higher CO2 flux
values in intensive fields compared to extensive
fields, indicating the influence of management
practices. This finding aligns with prior research
and supports the notion that intensive
management practices contribute to higher
carbon dioxide emissions (Li, Zhou, Wang,
2019). Additionally, the presence of peat
underwater showed a discernible trend, although
statistical significance was not reached.
Extensive fields demonstrated higher stability in
CO2 flux dynamics, with lower overall flux
levels than intensive fields. These findings
highlight the importance of groundwater levels
in regulating CO2 flux in peatland ecosystems.
Adequate rewetting management practices that
restore optimal groundwater levels help mitigate
carbon dioxide emissions and preserve the
integrity of peatland ecosystems (Cui, et al.,
2017).

Weather Influence
In this study, the graphs 4a - 4d presented
include weather data in relation to CO2 flux
from peat soils. However, it is important to note
that the weather data collected solely from the
field days itself may not provide a
comprehensive view of the overall weather
conditions during the entire spring period. This
limitation arises from the fact that the graphs do
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not account for the cumulative effects of weather
patterns throughout the spring season.
Furthermore, it should be emphasised that the
wettest spring in recent history, as widely
reported in the news (KNMI, 2023), has not
been explicitly captured in the graphs. The
absence of a graph displaying cumulative
precipitation for the study period relative to the
average hinders a direct assessment of the
impact of this notable weather event on
groundwater dynamics and CO2 emissions.

Location
The analysis of variables per field and field
location, which can be found in Appendix 2,
further revealed trends in CO2 flux based on
management styles and field locations.
Extensive fields consistently exhibited lower
CO2 flux, particularly at the 7-metre distance
within the field. In contrast, intensive fields
demonstrated higher average CO2 flux but with
less variation across field locations. These
findings suggest that field locations influence
CO2 flux at different distances. The observed
variations in CO2 flux patterns based on field
locations may be attributed to variations in soil
characteristics, hydrology, and management
practices within the peatland ecosystem.
Topography and hydrophobic nature of drained
peat might also play a role in these outcomes.

LIMITATIONS
Despite the valuable insights provided by this
study, it is important to acknowledge its
limitations. Firstly, the study is relatively small
and time-limited, which may affect the
generalizability of the findings. The trends
observed in the data could be enhanced by
expanding the sample size and including a more
extensive range of fields within each
management type. Moreover, the sampling
campaign should be extended throughout the

entire growing season (March - October) to
capture the full dynamics of soil conditions and
environmental variables.

Another limitation is the reliance on weekly
measurements, which may not fully capture the
impact of weather fluctuations on the measured
variables. To better understand the influence of
weather on the measurements, future studies
should consider summing the data per week
preceding each measurement to account for
weather variations and provide a more accurate
representation of environmental conditions.

Furthermore, certain measures, such as
vegetation height, are known to be influenced by
the position within the growing season.
Vegetation growth tends to be slower during the
initial stages when the weather is cold and wet,
while it accelerates logarithmically as conditions
become warmer and drier later in the season.
Therefore, the timing of measurements within
the growing season can introduce variability in
the data, which should be taken into account in
future research.

And the last limitation is the unpredictability of
other environmental factors. Some examples of
these were the mice plaguing the farm fields in
the first round and the goose that ate much of the
vegetation. Both these biological factors might
have had an impact and further research is
necessary to determine the significance of these
impacts.

Despite these limitations, the findings of this
study provide a basis for several policy
recommendations aimed at promoting
sustainable peatland management. These
recommendations include encouraging the
adoption of extensive management practices that
prioritise water management and maintain
favourable soil conditions. Strategies such as
controlled drainage systems to maintain optimal
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groundwater levels, avoiding over-drainage,
re-wetting restoration measures and minimising
soil compaction can contribute to sustainable
peatland management. Additionally, reducing
intensive management practices involving
ploughing and high nutrient and chemical inputs
can help mitigate carbon dioxide emissions and
preserve the integrity of peatland ecosystems. To
support these recommendations, raising
awareness among farmers and landowners about
the environmental impacts of different
management intensities and providing incentives
for sustainable management practices are crucial
steps towards achieving positive change in
peatland management.

In addition to the aforementioned policy
recommendations, addressing the issue of
incentives for farmers who already demonstrate
effective management practices on peatlands is
of paramount importance. Currently, existing
incentives tend to be aimed at farmers who
possess the potential to "improve" their peatland
management approaches. However, it is essential
to acknowledge that farmers who already exhibit
favourable management practices may not have
the capacity to further enhance their strategies in
the same manner.

These farmers serve as valuable role models and
provide essential demonstration areas for
sustainable peatland management.
Acknowledging their efforts and providing
rewards for their positive contributions can
significantly contribute to fostering positive
transitions towards sustainable land
management. Psychological research emphasises
the significance of recognition and intrinsic
motivation in promoting desired behaviours
(Deci & Ryan, 2000; Ryan & Deci, 2017). By
implementing rewards for these farmers, such as
financial incentives, recognition programs, or
other forms of support, their successful practices
can be acknowledged and showcased, thereby

stimulating motivation and promoting further
adoption of sustainable peatland management
practices.

CONCLUSION
In conclusion, this comprehensive study has
provided valuable insights into the relationship
between management intensities, environmental
variables, and peat emissions in peatland
ecosystems. The use of NMDS analysis revealed
distinct associations between specific variables
and management styles, highlighting the impacts
of intensive and extensive management practices
on key environmental variables. The
PERMANOVA analysis further emphasised the
significant effect of management intensity on
overall soil conditions, indicating that different
management practices significantly influence
soil conditions in peatland ecosystems. The
analysis of peat underwater provided additional
insights into CO2 flux dynamics, with higher
CO2 flux values observed in intensive fields
compared to extensive fields.

The findings of this study demonstrate the
importance of considering site-specific factors
and tailoring management approaches
accordingly. While our results align with
previous research in some aspects, such as the
lower CO2 flux values observed in extensive
fields, discrepancies were also identified,
emphasising peatland dynamics' complex and
context-dependent nature.

Based on the findings, several policy
recommendations can be made to promote
sustainable peatland management. Encouraging
the adoption of extensive management practices
that prioritise water management, minimise soil
compaction, and avoid over-drainage is crucial.
Implementing controlled drainage systems,
re-wetting restoration measures, and reducing
intensive management practices can contribute
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to sustainable peatland management and
mitigate carbon dioxide emissions. Raising
awareness among farmers and landowners about
the environmental impacts of different
management intensities and providing incentives
for sustainable management practices are
essential steps towards achieving positive
change in peatland management.

Furthermore, recognising and rewarding farmers
who already demonstrate effective management
practices on peatlands is paramount. These
farmers serve as role models and provide
essential demonstration areas for sustainable
peatland management. Acknowledging their
efforts and providing rewards for their positive
contributions can significantly contribute to
fostering positive transitions towards sustainable
land management.

In conclusion, this study has provided significant
insights into the dynamics and implications of
different management practices on peatland
ecosystems. The findings contribute to our
understanding of the complex relationships
between management intensities, environmental
variables, and peat emissions. By considering
site-specific factors, implementing sustainable
management practices, and recognising the
efforts of farmers, policymakers and land
managers can work towards preserving peatland
ecosystems, mitigating carbon dioxide
emissions, and promoting sustainable land
management practices.
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APPENDIXES

Appendix 1 (CODE)

Capstone Data

2023-01-08

##Reading the data: #The data is extracted using the read.csv command and it uses the file
path to get to the data, after that I rename the data in the dataset “CD”

data <- read_excel("C:/Users/Eigenaar/Downloads/Analysis_sheet.xlsx")

data$land_use <- ifelse(data$field %in% c(1, 4, 5), "low", "high")

Create a new variable for if the peat is underwater using binary (1 if the peat
is not underwater, 0 if the peat is underwater)
data$underwater <- ifelse(data$gl<data$cl, 1, 0)

Plot if the land_usage is intensive or not by ussing binary (1 for high, 0 for
low intensity)
data$land_usage <- ifelse(data$land_use=="high", 1, 0)

Create a plot showing the Peat underwater in correlation to the CO2 flux
ggplot(data,

aes(x =co2fa, y=land_usage, col=underwater)) +
labs(title = "Peat underwater and CO2 flux") +
geom_point(alpha=0.5)
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Make dataframes for the four possibilities
underwater_intensive <- data.frame(data$land_usage == 1 & data$underwater ==
0, data$co2f, data$co2fa, data$round)

underwater_extensive <- data.frame(data$land_usage == 0 & data$underwater ==
0, data$co2f, data$co2fa, data$round)

notunderwater_intensive <- data.frame(data$land_usage == 1 & data$underwater
== 1, data$co2f, data$co2fa, data$round)

notunderwater_extensive <- data.frame(data$land_usage == 0 & data$underwater
== 1, data$co2f, data$co2fa, data$round)

#Plot the 4 possibilities

underwater_intensive <- underwater_intensive %>%
mutate(co2f_a =

data.co2f %>%
is.na %>%
ifelse(data.co2fa, data.co2f) )

unin <-
underwater_intensive[underwater_intensive$data.land_usage....1...data.underwa
ter....0 != "FALSE", ]
uninplot <- ggplot(unin, aes(x=c(1:9) ,y = co2f_a, color = data.round)) +

geom_point() +
labs(title = "Intensive field, Peat underwater Co2f", x = "Intensive and

Peat underwater", y = "Co2 flux")

underwater_extensive <- underwater_extensive %>%
mutate(co2f_a =

data.co2f %>%
is.na %>%
ifelse(data.co2fa, data.co2f) )

unex <-
underwater_extensive[underwater_extensive$data.land_usage....0...data.underwa
ter....0 != "FALSE", ]
unexplot <- ggplot(unex, aes(x=c(1:10) ,y = co2f_a, color = data.round)) +

geom_point() +
labs(title = "Extensive field, Peat underwater Co2f", x = "Extensive and

Peat underwater", y = "Co2 flux")

notunderwater_intensive <- notunderwater_intensive %>%
mutate(co2f_a =

data.co2f %>%
is.na %>%
ifelse(data.co2fa, data.co2f) )

noin <-
notunderwater_intensive[notunderwater_intensive$data.land_usage....1...data.u
nderwater....1 != "FALSE", ]
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noinplot <- ggplot(noin, aes(x=c(1:18) ,y = co2f_a, color = data.round)) +
geom_point() +
labs(title = "Intensive field, Peat not underwater Co2f", x = "Intensive

and Peat not underwater", y = "Co2 flux")

notunderwater_extensive <- notunderwater_extensive %>%
mutate(co2f_a =

data.co2f %>%
is.na %>%
ifelse(data.co2fa, data.co2f) )

noex <-
notunderwater_extensive[notunderwater_extensive$data.land_usage....0...data.u
nderwater....1 != "FALSE", ]
noexplot <- ggplot(noex, aes(x=c(1:17) ,y = co2f_a, color = data.round)) +

geom_point() +
labs(title = "Extensive field, Peat not underwater Co2f", x = "Extensive

and Peat not underwater", y = "Co2 flux")
grid.arrange(uninplot, unexplot, noinplot, noexplot, ncol = 2, top="Main
Title")

Separate the data by land use
high_intensity <- data %>% filter(field %in% c(21, 22, 23))
low_intensity <- data %>% filter(field %in% c(1, 4, 5))

Create summary statistics for each field
high_summary <- high_intensity %>% group_by(lof) %>%
summarise(mean_co2f <- mean(co2f, na.rm = TRUE),

mean_gl = mean(gl),
mean_dl = mean(dl),
mean_pra = mean(pra),
mean_sma = mean(sma),
mean_vha = mean(vha),
mean_pgrass = mean(pgrass),

30



PEAT EMMISIONS DURING EARLY GROWING SEASON

mean_pherbs = mean(pherbs),
mean_bare = mean(pbare),
mean_SOM <- mean(SOM, na.rm = TRUE))

low_summary <- low_intensity %>% group_by(lof) %>%
summarise(mean_co2f <- mean(co2f, na.rm = TRUE),

mean_gl = mean(gl),
mean_dl = mean(dl),
mean_pra = mean(pra),
mean_sma = mean(sma),
mean_vha = mean(vha),
mean_pgrass = mean(pgrass),
mean_pherbs = mean(pherbs),
mean_bare = mean(pbare),
mean_SOM <- mean(SOM, na.rm = TRUE))

high_summary

## mean_co2f <- mean(co2f, na.rm = TRUE) mean_gl mean_dl mean_pra
mean_sma
## 1 2.209119 51.59259 46.11111 92.06173
60.15926
## mean_vha mean_pgrass mean_pherbs mean_bare
## 1 9.834568 81.88889 7.222222 10.88889
## mean_SOM <- mean(SOM, na.rm = TRUE)
## 1 4.612778

low_summary

## mean_co2f <- mean(co2f, na.rm = TRUE) mean_gl mean_dl mean_pra
mean_sma
## 1 0.9234044 38.25926 43.33333 78.23457
65.78765
## mean_vha mean_pgrass mean_pherbs mean_bare
## 1 8.190123 57.38889 37.2037 5.407407
## mean_SOM <- mean(SOM, na.rm = TRUE)
## 1 4.728889

Compare groundwater level to peat depth by land use
high_plot <- ggplot(high_intensity, aes(x = cl, y = gl)) +
geom_point() +
geom_smooth(method = "lm") +
labs(title = "High Intensity Land Use", x = "Peat Depth (cm)", y =

"Groundwater Level (cm)")

low_plot <- ggplot(low_intensity, aes(x = cl, y = gl)) +
geom_point() +
geom_smooth(method = "lm") +
labs(title = "Low Intensity Land Use", x = "Peat Depth (cm)", y =
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"Groundwater Level (cm)")

grid.arrange(high_plot, low_plot, ncol = 2)

## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

Compare co2 flux to land use and location on field
co2_plot <- ggplot(data, aes(x = factor(field), y = co2f, fill =
factor(lof))) +
geom_boxplot() +
facet_wrap(~ lof, ncol = 3) +
labs(title = "Co2 Flux by Land Use and Location on Field", x = "Field

Number", y = "Co2 Flux")

Compare soil moisture to land use and location on field
sm_plot <- ggplot(data, aes(x = factor(field), y = sma, fill = factor(lof)))
+
geom_boxplot() +
facet_wrap(~ lof, ncol = 3) +
labs(title = "Soil Moisture by Land Use and Location on Field", x = "Field

Number", y = "Soil Moisture")

Compare penetration resistance to land use and location on field
pr_plot <- ggplot(data, aes(x = factor(field), y = pra, fill = factor(lof)))
+
geom_boxplot() +
facet_wrap(~ lof, ncol = 3) +
labs(title = "Penetration Resistance by Land Use and Location on Field", x

= "Field Number", y = "Penetration Resistance")
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Compare vegetation height to land use and location on field
vh_plot <- ggplot(data, aes(x = factor(field), y = vha, fill = factor(lof)))
+
geom_boxplot() +
facet_wrap(~ lof, ncol = 3) +
labs(title = "Vegetation Height by Land Use and Location on Field", x =

"Field Number", y = "Vegetation Height")

Compare ground water level to land use and location on field
gl_plot <- ggplot(data, aes(x = factor(field), y = gl, fill = factor(lof))) +
geom_boxplot() +
facet_wrap(~ lof, ncol = 3) +
labs(title = "Ground Water by Land Use and Location on Field", x = "Field

Number", y = "Groundwater depth")

grid.arrange(co2_plot, gl_plot, vh_plot, sm_plot, pr_plot, ncol = 2)

## Warning: Removed 18 rows containing non-finite values (`stat_boxplot()`).

#NMDS Analysis of the dataset

Extract dataset again
d1 <- read_excel("C:/Users/Eigenaar/Downloads/Analysis_sheet.xlsx") %>%
as_tibble() %>%
select(-c(vh1, vh2, vh3, pr1, pr2, pr3, sm1, sm2, sm3, co2f, SOM, AVH, AVW,

TMAX, PP))

Change names if necessary
str(d1)

## tibble [54 × 15] (S3: tbl_df/tbl/data.frame)
## $ field : num [1:54] 21 21 21 22 22 22 23 23 23 1 ...
## $ date : POSIXct[1:54], format: "2023-02-28" "2023-02-28" ...
## $ round : num [1:54] 1 1 1 1 1 1 1 1 1 1 ...
## $ lof : num [1:54] 2 7 30 2 7 30 2 7 30 2 ...
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## $ dl : num [1:54] 55 55 55 56 56 56 58 58 58 44 ...
## $ gl : num [1:54] 64 68 56 64 67 37 78 94 64 42 ...
## $ cl : num [1:54] 42 64 34 64.5 70 39 68 117 59 40.5 ...
## $ sma : num [1:54] 66.9 52.7 60.6 65.2 54.7 ...
## $ pra : num [1:54] 127.3 116 45.3 98 86.7 ...
## $ vha : num [1:54] 3.83 4.5 4.43 4.67 5.33 ...
## $ pgrass: num [1:54] 80 60 70 70 58 76 97 94 94 56 ...
## $ pherbs: num [1:54] 0 0 14 6 18 8 3 6 6 36 ...
## $ pbare : num [1:54] 20 40 16 24 24 16 0 0 0 8 ...
## $ co2fa : num [1:54] 2.78 2.78 2.78 2.15 2.15 ...
## $ SOMA : num [1:54] 5.11 5.11 5.11 4.39 4.39 ...

names(d1)

## [1] "field" "date" "round" "lof" "dl" "gl" "cl" "sma"
## [9] "pra" "vha" "pgrass" "pherbs" "pbare" "co2fa" "SOMA"

d1_a <- d1 %>%
rename(c("vha"= "veg_height",

"pgrass"= "grass_cover" ,
"pherbs" = "herb_cover",
"pbare" = "bare_cover",
"co2fa" = "CO2_flux",
"gl" = "gw_level",
"sma" = "soil_moisture" ,
"pra" = "penetration_Resistance",
"lof" = "field_Location",
"dl" = "dw_level",
"cl" = "clay_layer",
"SOMA" = "Soil_Organic_Matter"))

# prepare response dataset
d_env <- d1_a %>%
select(c(1:15)) %>%
mutate(herb_cover = sqrt(herb_cover)) %>%
mutate(bare_cover1 = sqrt(bare_cover)) %>%
mutate(bare_cover2 = sqrt(bare_cover1)) %>%
mutate(bare_cover3 = sqrt(bare_cover2)) %>%
mutate(bare_cover = sqrt(bare_cover2)) %>%
mutate(veg_height = sqrt(veg_height)) %>%
select(-c("date", "field", "field_Location","round", "bare_cover1",

"bare_cover2", "bare_cover3"))

d_hel_env <- decostand(d_env, method="hellinger", na.rm = T)
colnames(d_hel_env)

## [1] "dw_level" "gw_level" "clay_layer"
## [4] "soil_moisture" "penetration_Resistance" "veg_height"
## [7] "grass_cover" "herb_cover" "bare_cover"
## [10] "CO2_flux" "Soil_Organic_Matter"
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NMDS environmental

stress of 0.1 or 0.05 and below is a good fit

stress of 0.2 is suspect and should increase number of dimensions

nmds1 <- metaMDS(d_hel_env, autotransform = F, k = 3, na.rm = T)

## Run 0 stress 0.1172508
## Run 1 stress 0.121928
## Run 2 stress 0.1292861
## Run 3 stress 0.117701
## ... Procrustes: rmse 0.03302183 max resid 0.1768279
## Run 4 stress 0.1177005
## ... Procrustes: rmse 0.03273792 max resid 0.1766054
## Run 5 stress 0.1221184
## Run 6 stress 0.1177007
## ... Procrustes: rmse 0.03300281 max resid 0.1768111
## Run 7 stress 0.1177
## ... Procrustes: rmse 0.03281504 max resid 0.1764876
## Run 8 stress 0.1272519
## Run 9 stress 0.1172509
## ... Procrustes: rmse 0.0004547197 max resid 0.001844197
## ... Similar to previous best
## Run 10 stress 0.1284192
## Run 11 stress 0.1192616
## Run 12 stress 0.1245222
## Run 13 stress 0.1177004
## ... Procrustes: rmse 0.03295428 max resid 0.1767316
## Run 14 stress 0.1172506
## ... New best solution
## ... Procrustes: rmse 0.0003382292 max resid 0.001416087
## ... Similar to previous best
## Run 15 stress 0.1177001
## ... Procrustes: rmse 0.03298984 max resid 0.1768525
## Run 16 stress 0.1272008
## Run 17 stress 0.1239198
## Run 18 stress 0.1172507
## ... Procrustes: rmse 5.026758e-05 max resid 0.0001652619
## ... Similar to previous best
## Run 19 stress 0.1172507
## ... Procrustes: rmse 0.0002562036 max resid 0.001210745
## ... Similar to previous best
## Run 20 stress 0.1284196
## *** Best solution repeated 3 times
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# default autotransformation not needed when data are already transformed
nmds1 # stress is 0.0986

##
## Call:
## metaMDS(comm = d_hel_env, k = 3, autotransform = F, na.rm = T)
##
## global Multidimensional Scaling using monoMDS
##
## Data: d_hel_env
## Distance: bray
##
## Dimensions: 3
## Stress: 0.1172506
## Stress type 1, weak ties
## Best solution was repeated 3 times in 20 tries
## The best solution was from try 14 (random start)
## Scaling: centring, PC rotation, halfchange scaling
## Species: expanded scores based on 'd_hel_env'

add management
management <- d1 %>%
select("field") %>%
mutate(field = case_when(field == 1 ~ "Extensive", field == 4 ~

"Extensive", field == 5 ~ "Extensive", field == 21 ~ "Intensive", field == 22
~ "Intensive", field == 23 ~ "Intensive"))

plot(nmds1)

par(mar=c(5,5,1,1))
ordiplot(nmds1,disp="species",choices=c(1,3),type="points",cex=0.65,cex.axis=
1.5,cex.lab=1.5)
orditorp(nmds1,disp="species",choices=c(1,3),cex=0.65,cex.axis=1.5,cex.lab=1.
5,pcex=0,air=0.01)
abline(v=0, col="grey")
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abline(h=0, col="grey")

colours <- c("red", "purple", "blue", "green")
ordiellipse(nmds1,management$field,label=T,

col=unique(colours), lwd = 2.5)

install_github("pmartinezarbizu/pairwiseAdonis/pairwiseAdonis")

## WARNING: Rtools is required to build R packages, but is not currently
installed.
##
## Please download and install Rtools 4.2 from
https://cran.r-project.org/bin/windows/Rtools/ or
https://www.r-project.org/nosvn/winutf8/ucrt3/.

## Skipping install of 'pairwiseAdonis' from a github remote, the SHA1
(68468fe1) has not changed since last install.
## Use `force = TRUE` to force installation

resp <- cbind(d_hel_env,management$field)
colnames(resp)[11] <- "Intensity_cat"

PERMANOVA from package Vegan
permanova <- adonis2(resp[,c(1:10)] ~ resp$Intensity_cat, data=resp,
perm=999,autotransform=F,)
permanova

## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
##
## adonis2(formula = resp[, c(1:10)] ~ resp$Intensity_cat, data = resp,
permutations = 999, autotransform = F)
## Df SumOfSqs R2 F Pr(>F)
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## resp$Intensity_cat 1 0.049304 0.18278 11.63 0.001 ***
## Residual 52 0.220444 0.81722
## Total 53 0.269748 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Climate Data High & Low

dataw <- data %>%
mutate(co2f =

co2f %>%
is.na %>%
ifelse(co2fa, co2f))

# Scatter plot: Temperature vs. CO2 Emissions
temperature_plot <- ggplot(dataw, aes(x = TMAX, y = co2f, color = land_use))
+
geom_point() +
labs(title = "Temperature vs. CO2 Emissions", x = "Temperature", y = "CO2

Flux")

# Scatter plot: Precipitation vs. CO2 Emissions
precipitation_plot <- ggplot(dataw, aes(x = PP, y = co2f, color = land_use))
+
geom_point() +
labs(title = "Precipitation vs. CO2 Emissions", x = "Precipitation", y =

"CO2 Flux")

# Scatter plot: Air Moisture vs. CO2 Emissions
air_moisture_plot <- ggplot(dataw, aes(x = AVH, y = co2f, color = land_use))
+
geom_point() +
labs(title = "Air Moisture vs. CO2 Emissions", x = "Air Moisture", y = "CO2

Flux")

# Scatter plot: Wind Strength vs. CO2 Emissions
wind_strength_plot <- ggplot(dataw, aes(x = AVW, y = co2f, color = land_use))
+
geom_point() +
labs(title = "Wind Strength vs. CO2 Emissions", x = "Wind Strength", y =

"CO2 Flux")

# Combine the plots
grid.arrange(temperature_plot, precipitation_plot, air_moisture_plot,
wind_strength_plot, ncol = 2)
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# Fit the multiple linear regression model
model <- lm(co2f ~ TMAX + PP + AVH + AVW, data = dataw)

# Check the model summary
summary(model)

##
## Call:
## lm(formula = co2f ~ TMAX + PP + AVH + AVW, data = dataw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.85119 -0.84728 -0.05928 0.57413 2.86235
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -65.24218 15.22971 -4.284 8.55e-05 ***
## TMAX -1.27575 0.30953 -4.122 0.000145 ***
## PP -0.36715 0.07924 -4.633 2.68e-05 ***
## AVH 0.84206 0.19188 4.389 6.06e-05 ***
## AVW 0.42247 0.09654 4.376 6.32e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.176 on 49 degrees of freedom
## Multiple R-squared: 0.3213, Adjusted R-squared: 0.2659
## F-statistic: 5.8 on 4 and 49 DF, p-value: 0.0006665

plot(model)
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# Create a data frame with the predicted CO2 emissions and actual CO2
emissions
predictions <- data.frame(Predicted = predict(model), Actual = data$co2f)

# Scatter plot: Predicted vs. Actual CO2 Emissions
plot <- ggplot(predictions, aes(x = Actual, y = Predicted)) +
geom_point() +
geom_abline(intercept = 0, slope = 1, color = "red", linetype = "dashed") +
labs(title = "Predicted vs. Actual CO2 Emissions", x = "Actual CO2

Emissions", y = "Predicted CO2 Emissions")

# Display the plot
print(plot)

## Warning: Removed 18 rows containing missing values (`geom_point()`).
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Appendix 2 (Variables per field
and location on the field)
The analysis of multiple environmental variables
in correlation with the fields and their locations
has provided valuable insights into the
relationship between management styles and
various factors.

Examining the first graph 6a, which illustrates
CO2 flux by field and field location, we observe
a trend that aligns with our earlier discussions.
Specifically, extensive fields (fields 1, 4, and 5)
consistently exhibit lower CO2 flux, particularly
at the 7-meter distance within the field.
However, the disparity diminishes at the
30-meter distance, where CO2 flux levels tend
to be slightly higher. In contrast, intensive fields
demonstrate higher average CO2 flux, but the
variation across field locations is less
pronounced, and interestingly, at the 30-meter

region, the fluxes are even slightly lower than at
the 7-meter mark. These findings suggest that
the field locations play a role in influencing the
CO2 flux at different distances. This observation
aligns with previous studies by Brown et al.
(2021), who reported similar variations in CO2
flux patterns based on field location and
management styles, corroborating our findings.

Moving on to the second graph 6b, which
depicts groundwater levels by field and field
position, the boxplots provide insights into the
variations in groundwater across the different
field types. In most cases, extensive fields
exhibit higher groundwater levels, particularly at
the 2-meter distance from the ditch. At the
7-meter mark, the groundwater levels remain
relatively consistent across both intensive and
extensive fields, while at the 30-meter distance,
there is more variability, evident in both
management styles. These findings align with

42



PEAT EMMISIONS DURING EARLY GROWING SEASON

prior research conducted by Mdowell et al.
(2015), who similarly identified differences in
groundwater levels between intensive and
extensive fields, lending further support to our
observations.

Analyzing the third graph 6c, which showcases
vegetation height by field and field position, we
initially expected to find higher vegetation
heights in intensive fields. However, the
boxplots reveal that vegetation heights are
largely similar across most field types, with only
field number 23 exhibiting significantly higher
vegetation height. This unexpected result
deviates from the anticipated pattern and
highlights the complex dynamics at play. While
our findings contradict the initial expectation,
they do align with the study conducted by
Brown et al. (2021), who also observed
similarities in vegetation height across various
management styles, emphasizing the importance
of considering multiple factors when analyzing
peatland ecosystems.

Shifting our focus to the fourth graph 6d, which
illustrates soil moisture by field and field
position, the boxplots demonstrate relatively
smaller variations in soil moisture, except for
field number 22 at the 7-meter distance from the
ditch, where an extreme outlier is observed.
Overall, extensive fields exhibit greater
variability in soil moisture across different field
locations. These observations align with prior
research conducted by Pan and Wang (2009),
who reported similar trends in soil moisture
variations in extensive fields, providing
additional support to our findings.

Lastly, the fifth graph 6e, displaying penetration
resistance by field and field position, reveals that
extensive fields generally exhibit lower
penetration resistance, while intensive fields
tend to have higher resistance. This finding
aligns with existing knowledge regarding the

influence of management practices on soil
compaction. Studies by Brown et al. (2021) have
consistently reported higher penetration
resistance in intensive fields, confirming our
observations and emphasizing the impact of
management styles on soil.
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