
Master's Thesis | MSc. Voice Technology

End-to-End ASR with Binarized Neural Networks

2021/2022

Benjamin Luks
S4938712

Supervisor
Shekhar Nayak

Co-Supervisor

Matt Coler

Rijksuniversiteit Groningen | Campus Fryslân

in collaboration with

Screevo.ai

Acknowledgements

Thank you to the Center for Information Technology of the University of Groningen
for their support and for providing access to the Peregrine high performance computing
cluster. Thank you to the University of Groningen and the faculty of Campus Fryslân.
Thank you to the Voice Technology team, and to my advisors, Shekhar and Matt. Your
guidance has been an immeasurable help.

Thank you to my colleagues in the STT team at Screevo, Domenico, Nicola, and Za-
kria, for their guidance, their patronage, and for challenging the limitations of my own
capabilities.

Lastly, thank you to my family for their continued support, feigning interest in a topic so
obscure and foreign, and to my partner, Amarens. For better or worse, your patience and
support has been unwaivering throughout this process. For that I am eternally grateful.

2

Contents

1 Introduction 5

2 Background 6

2.1 On the term binarization . 6

2.2 Basic hardware implications . 7

2.2.1 Neural Network Basics . 7

2.2.2 Matrix multiplications, bit operations, and BNNs 8

3 Related Works 10

3.1 Binarized Neural Networks . 10

3.1.1 Straight Through Estimator . 10

3.1.2 BinaryConnect . 12

3.2 BNNs for ASR . 13

3.3 End-to-End Speech Recognition . 15

3.3.1 Connectionist Temporal Classification 15

3.3.2 Encoder-Decoder . 17

3.3.3 Encoder-Decoder + Attention . 17

3.4 Binarizing Recurrent Units . 20

3.4.1 Learning Recurrent Binary/Ternary Weights 22

4 Learning Recurrent Binary Weights 23

4.1 The anatomy of an LSTM cell . 23

4.2 Adding Batch Normalization . 25

5 Research Question and Hypothesis 27

6 Experiments 28

6.1 Deviations from the Original LRBW Experiments 28

6.1.1 Input Features . 29

6.1.2 Bidirectionality . 30

6.2 Experiment 1: Simple CTC . 30

6.3 Experiment 2: DeepSpeech . 31

6.4 Experiment 3: Encoder-Decoder with Attention 32

3

7 Results & Discussion 32

7.1 Experiment 1: Simple CTC . 33

7.1.1 Training . 33

7.1.2 Comparing the full-precision and binarized during testing 33

7.2 Experiment 2: DeepSpeech . 34

7.3 Experiment 3: Encoder-Decoder + Attention 35

7.4 Discussion . 35

8 Conclusion 37

9 Future Work 38

9.1 Faster BNNs . 38

9.2 Normalization . 39

9.3 Knowledge Distillation . 39

9.4 Attention . 40

4

ABSTRACT: Binarized Neural Networks have demonstrated tremendous abilities in compress-
ing and speeding up neural networks, with, in some cases, comparatively little degradation in per-
formance. Despite their successful application in convolutional and feed-forward neural network
units, little research has been conducted on the binarization of recurrent units. Furthermore,
existing binarized recurrent neural networks have yet to be applied to end-to-end automatic
speech recognition (ASR). This work, to my knowledge, marks the first attempt to apply bina-
rized LSTM units, per (Ardakani et al., 2018), to end-to-end ASR. Experiments are conducted on
networks with Connectionist Temporal Classification (CTC), as well as Attention-based archi-
tectures. Although no experiments produce high-performant, deployment-ready BNNs, greater
insight into the applicability of such networks to ASR is achieved. These insights include the
improved performance of linear input layers in binarized networks, as well as the importance of
bidirectionality in binarized LSTMs.

Keywords: Binary Neural Networks, Neural Network Compression, Quantization, Binarized
LSTM, Automatic Speech Recognition, Connectionist Temporal Classification

1 Introduction

Automatic Speech Recognition (ASR) and applications built thereupon are rapidly be-
coming a central part of improving the efficiency of many personal and professional tasks.
From personal voice assistants, to video captioning, to air traffic control troubleshooting,
its applicability is immensely diverse and ever-growing.

A limitation to the mass adoption of ASR is its hardware demand. Modern ASR tech-
nologies are often built using large, multi-million– or even billion-parameter neural net-
works occupying numerous gigabytes of storage and requiring graphical processing units
(GPUs) in order to operate efficiently. This precludes the possibility of their being de-
ployed directly on the devices on which they are intended to run. Instead, said devices
interface with a remote server which receives the speech input and responds with the
result– a text transcription in the case of speech-to-text (STT).

A number of problems exist with such systems: For one, in order to operate frictionlessly,
the user must have a stable internet connection. Similarly, such frictionlessness requires
that the server housing the ASR engine be within a reasonable proximity to the user.
Running one, let alone several large networks on GPUs is both prohibitively expensive
for smaller entities and degradative to the environment (Biewald, 2019). Furthermore,
passing sensitive data across networks subjects it to security vulnerabilities.

A recent rise of interest in binarized neural networks (BNNs) has come to suggest that
the abundance of required computational storage and power that these power-hungry
ASR technologies demand may not be entirely necessary. BNNs are neural networks
whose weights and often activations and biases are either 1 or −1. Such networks can
operate using a fraction of the computational resources of traditional neural networks.
Their recent success in computer vision, and, to a lesser extent, language modelling tasks
suggest their viability as a technique to reduce the computational demands of a variety
of neural network-based technologies.

5

Despite these successes, little research has been conducted into the application of BNNs
to ASR. Worse yet, nearly none of this research is concerned with modern, end-to-end
ASR approaches. This work aims to change that. This is done with the combination
of techniques used to binarize sequential architectures as well as techniques applied to
binarized hybrid ASR.

More precisely, benchmark performance has been achieved on binarized recurrent neural
networks (RNNs) of the long short-term memory (LSTM) (Hochreiter and Schmidhuber,
1997) variant trained on natural language processing (NLP) tasks, with a technique the
authors dub Learning Recurrent Binary/Ternary Weights, henceforth LRBW (Ardakani
et al., 2018). Given the precedence of successfully applying NLP architectures to ASR
tasks (Chorowski et al., 2014; Dong et al., 2018), it stands to reason that this technique
can be applied to end-to-end ASR networks built upon RNNs.

Although the experiments do not ultimately yield a performant BNN for end-to-end
ASR, this research offers a number of contributions to the literature:

• BNNs are applied to end-to-end, LSTM-based ASR for the first time.

• The temporal dependencies which govern the preservation of information is better
understood, through the comparison of single– and bidirectional LSTMs.

• The effectiveness of LRBW is tested on longer– and dimensionally larger inputs.
The input lengths in the original LRBW experiments do not quite match those
of typical speech inputs. Furthermore, the numerical density is much greater for
speech features, compared with one-hot encoded text tokens. The robustness of
LRBW to such factors is therefore evaluated.

• A PyTorch (Paszke et al., 2019) module is built, interchangeable with the native
PyTorch LSTM cell, which can be used in training LRBW-based BNNs.1

Section 2 offers background into some of the mathematical and hardware technicalities of
BNNs. Section 3 is a thorough literature review, summarizing recent work in ASR, and
BNNs. Section 4 is an in-depth explanation of the LRBW approach to binarization. The
research question and hypothesis are presented in Section 5. The hypothesis is tested
through the experiments described in Section 6, the results of which and ensuing discus-
sions being presented in section Section 7. Finally, concluding remarks and suggestions
for future research are given in Sections 8 and 9, respectively.

2 Background

2.1 On the term binarization

Let us first disambiguate and delimit the use of the term binarize, as well as its various
lemmatic variants, such as binariz [ed][ation][ing].

1The code can be found at https://github.com/benluks/binASR

6

https://github.com/benluks/binASR

For the purposes of this work, binarization refers broadly to approaches to deep learning
that use networks whose weights, biases (if biases are used), and, in some cases, activa-
tions are constrained to the values −1 and 1, henceforth to be denoted as {−1, 1} and ±1.
The choice of −1, as opposed to 0, for the alternate to 1 may seem unintuitive, seeing as
binary operations between the values {0, 1} constitute the fundamental building blocks
of computers. One would therefore expect 0 for neural network binarization, rather than
1. As is demonstrated in this section, operations between values constrained to {-1, 1}
can be effectively computed using hardware built on {0, 1}.

2.2 Basic hardware implications

While BNN implementations often rely on custom, task-specific hardware (Kim et al.,
2014; Ardakani et al., 2018), an understanding of neural networks, the binarization ap-
proach at hand, and broad CPU functionality can help the reader recognize the device-
agnostic implications of BNN research on hardware implementations.

The aim of neural network binarization is absolute quantization of the parameters and
operations of the network. Quantization in this case refers to a reduction in numerical
precision, as expressed in bits. Absolute quantization therefore refers to limiting said
numerical precision to the smallest available unit of numerical distinction, i.e. a single
bit.

2.2.1 Neural Network Basics

A neural network can be though of as a mathematical formula which computes a set
of values based on an input. The output is determined by a set of parameters. For
simplicity’s sake we will limit these parameters to (1) scaling parameters, otherwise
known as weights (2) biasing parameters, otherwise known as biases. In the interest
of brevity, we consider a network with only weights for now. Consider a network that
accepts 2 features as an input X and computes 2 features as output, Y , represented in
Figure 12.

All features and parameters including inputs xi, weights wij , and the output yj for
0 ≤ i < 2 and 0 ≤ j < 2 are numerical values, generally floating points. Values yj of
the output vector Y = {y0, y1} are computed by taking each input value xi of the input
vector X = {x0, x1}, multiplying it by its respective wij , and summing the values of said
operation to obtain the output yj . This operation is described formally in Equation 1
for any neural network with n input features:

yj =

n−1∑
i=0

xiwij (1)

This operation can be generalized to networks with any number of input or output fea-
2this figure was adapted from https://tex.stackexchange.com/questions/104334/

tikz-diagram-of-a-perceptron#answer-104376

7

https://tex.stackexchange.com/questions/104334/tikz-diagram-of-a-perceptron##answer-104376
https://tex.stackexchange.com/questions/104334/tikz-diagram-of-a-perceptron##answer-104376

∑
x0

w00

w01

∑
x1

w10

w11

y0

y1

Figure 1: Diagram of neural network with n input features x0,...,n and 1 output feature
y. For simplicity, biases have been omitted.

tures by adjusting i and j to equal the number of input and output features, respectively.
Furthermore, this operation can apply to networks with multiple layers. Subsequent lay-
ers accept the previous layer’s output as input features, or x in Equation 1.

This series of multiplication and summation can be represented by matrix multiplications.
In the case of a neural network layer with m input features and n output features, the
weights W can be represented as a m× n matrix:

W =


w00 w01 . . . w0n

w10 w11 . . . w1n

...
...

. . .
...

wm0 wm1 . . . wmn

 (2)

such that each column represents the values i and each column the possible values for j
in Equation 1. The value for an output feature yj is therefore the sum of the element-
wise product of the vector X and the jth column of W . Using × to represent matrix
multiplication, this can be expressed as:

yj =
[
x0 x1 . . . xm

]
×


w0j

w1j

...
wmj

 (3)

2.2.2 Matrix multiplications, bit operations, and BNNs

Returning now to hardware implementations, let us consider the properties of BNNs.

Assuming that a BNNs’ activations in addition to its weights are constrained to {-1, 1},
then the element-wise multiplications in Equation 3 are limited to:

8

Inputs Output

A B A XNOR B

0 0 1

1 0 0

0 1 0

1 1 1

Table 1: XNOR logic gate functionality


−1 · −1 = 1

−1 · 1 = −1

1 · −1 = −1

1 · 1 = 1

In other words, the element-wise multiplication is simply some function that returns a
positive value when the two inputs match, and a negative one otherwise. Such operations
are possible with the XNOR logic gate (Table 1).

By mapping −1 values to 0 and 1 to 1, the element-wise product of two vectors can
be computed between two vectors, in this case some set of input features X having m
elements, and some column wj = {w0j, . . . , wmj} of a weight matrix W , occupying a
single bit per value xi and wij . Considering that the same operations in full-precision
networks use 32 or 64-bit floating-point arithmetic, the memory reductions of BNNs are
significant.

The previous explanation assumes inputs or activations constrained to ±1. However for
numerous, specifically NLP-based tasks, the inputs are one-hot encoded vectors, such
as in Hou et al. (2016); Ardakani et al. (2018); Liu et al. (2018). The element-wise
multiplication in this case is considerably simpler: return row i of weight matrix matrix
W such that input feature xi of X is equal to 1. Recall that indexing is of constant
(O(1)) time complexity.

This explanation is a massively simplified glance into the hardware motivations of BNN
operations. It is naive, neglecting biases, matrix multiplication summation, and the
possibility of more complex input features. This explanation does, however, demonstrate
that (1) weight matrices can be stored effectively as binary strings in as many bits as
it contains values, and (2) these binary strings need not be expanded to occupy greater
space in order to undergo standard neural network operations.

9

3 Related Works

This section explores the individual avenues of research motivating the present work.
These include binarized neural networks, BNN-based ASR, end-to-end ASR, and bina-
rized recurrent units.

3.1 Binarized Neural Networks

The first experiment performed on a neural network with parameters constrained to
{−1, 1} appears in Gardner and Derrida (1988). In the interest of optimizing networks’
sizes on limited computational storage, the authors evaluate the effects on network ac-
curacy as numerical precision of said network’s parameters are reduced. The authors
demonstrate that, unsurprisingly, greater precision is preferable. It is, however, con-
cluded that the viability of a given reduction factor, (i.e. the ability for a network to
perform within reason) is task-dependent. Such a conclusion suggests that monumental
reductions in numerical precision can potentially be applied to learning tasks, limited
only by the formulation of the learning criteria. Subsequent research, to be discussed in
the following section, would leverage error criteria and optimization algorithms, in efforts
to reduce numerical precision with minimal accuracy reduction.

The back-propagation algorithm, (Rumelhart et al., 1986), a standard operation in
present deep-learning algorithms, allows for small, incremental parameter updates, en-
abling nuanced representation learning. The success of this, however, relies on a nu-
merical precision fine enough to allow for such small incremental shifts. The single-bit,
all-or-nothing nature of BNN parameters therefore requires adjustments to prevent both
stagnant parameters and overly-active parameter changes. Efforts to combat this issue re-
lied on learning approaches deviating from back-propagation (Köhler et al., 1990; Golea
and Marchand, 1993; Solla and Winther, 1998). The dominance of back-propagation
based learning in more recent years has limited the applicability of other learning algo-
rithms.

3.1.1 Straight Through Estimator

A solution enabling both parameter binarization and learning through back-propagation
is the straight-through estimator (STE) (Bengio et al., 2013). A network’s output, or
prediction is measured against the intended outcome, or target, by some metric, otherwise
known as the loss function or criterion for correctness. This correctness is expressed in
the inverse as the prediction’s error or loss. This loss is expressed at a single, real
number. Training a neural network is the act of minimizing the loss on a given dataset.
Back-propagation is therefore a calculation whereby the parameters of the network are
measured in terms of their contribution to the loss. Very simply put, weights which
contribute to an output which is ascribed a high loss are penalized proportionally to
their contribution to said loss. The penalty is expressed in terms of a gradient. The
gradient of a given parameter can be thought of as the parameter’s contribution to the
model’s incorrectness. It, too, is a single value, and signals the extent to which the

10

parameter should be adjusted in pursuit of a more accurate model. Let us walk through
this explanation one more time, in order to better understand the connection between a
model’s performance and the trainability of its parameters:

1. The loss is computed in order to quantify the extent to which a model’s output is
incorrect.

2. A gradient is calculated with respect to said loss. This ensures that parameters
are updated in proportion with the extent to which they are "responsible" for the
loss.

3. Parameter updates are performed using this gradient, a detailed explanation of
which can be found in Trehan (2020).

The STE is an innovation that enables us to leverage the sophistication of back-propagation
when training BNNs. Consider in a full-precision neural network some weight w = 0.350.
Say now that the gradient computed after the forward pass and loss calculation is
▽ = 0.844. The parameter update step involves subtracting (or adding, depending on the
choice of notation) the gradient from the parameter, often in the order of ▽w ·10−3. The
latter expression is the learning rate, intended to inhibit volatility in parameter changes
to enable gradual updates. The so-called optimizer step and resulting weight w′, in this
case, would be:

w′ = 0.350− 8.44× 10−4 = 0.296 (4)

This subtle, incremental updates is crucial to the back-propagation algorithm and its
ability to nudge the network towards better performance (Rumelhart et al., 1986).

Weights in BNNs constrained to ±1 cannot be subject to the small, incremental updates
necessary in order to undergo gradient descent. Binarized parameters only have the
ability to stagnate or reverse, which begs the question of how to handle real-number
updates. Are they rounded to the nearest values in {0, 1} or {0, 2}? If they are as small
as in Equation 4, then one can expect no parameter updates, and an ever-stagnating
performance. In contrast, if the learning rate is set to an abnormally large value, then
the network will update drastically with no improvement to the performance (Zeiler,
2012).

The innovation of STE is to perform parameter updates on a set of full-precision pa-
rameters, binarizing the parameters on the forward pass. This means that an output is
computed using parameters constrained to ±1. The loss is then computed against the
model’s output. The gradient, too, is calculated with respect to the real-valued weights.
In the optimizer step, however, the full-precision weights are updated. In the subsequent
forward pass, the full-precision weights are binarized, their values exercising influence
over the values of the resultant binarized weights. This has the advantaging of leverag-
ing slow updates for consistent convergence on a set of parameters whose values do not
lend to small, incremental change (Bengio et al., 2013; Xiang et al., 2017; Simons and
Lee, 2019).

11

3.1.2 BinaryConnect

The ability to adapt standard training protocol in order to train and test BNNs has
enabled researchers to investigate the applicability of the technique on numerous exist-
ing neural network architectures. The first work of this sort uses a method referred to
as BinaryConnect (Courbariaux et al., 2015), which achieves near state-of-the-art per-
formance on various image classification tasks. BinaryConnect is the basis of much–
arguably most of the BNN research to succeed it (Hubara et al., 2016; Courbariaux
et al., 2016; Rastegari et al., 2016; Simons and Lee, 2019; Mishra et al., 2020; Yuan and
Agaian, 2021). This section discusses the BinaryConnect method, a few of its notable
successors, and motivates the need for innovation in order to be applied to new tasks,
namely, sequence-to-sequence based ones.

The authors of BinaryConnect introduce two options for calculating the binarized weights
during the forward pass, namely (1) deterministic and (2) stochastic:

1. Deterministic binarization is a simple matter of binarizing according to the sign
function. In other words, each weight wij in a weight matrix W is binarized ac-
cording to (with notation taken from Courbariaux et al. (2015):

wbij =

{
+1 if wij ≥ 0

−1 otherwise

Note that wbij in this case refers to the binarized version of weight wij .

2. Stochastic binarization computes the value of wbij probablistically. In the interest
of simplicity and generality, this explanation of stochastic binarization is somewhat
less detailed than that offered in Courbariaux et al. (2015). Some function f is used
to fix the values of W between 0 and 1, greater values wij being closer to 1 and
vice-versa. The fixed values are then treated as probabilities. The greater the
probability, the greater chance of wbij being +1, and the lower the probability,
the greater chance of it being −1. These outcomes are drawn from a uniform
distribution. Per Courbariaux et al. (2015)’s notation:

wbij =

{
+1 with probability p = f(wij)

−1 with probability 1− p

In the case of BinaryConnect, f is a so-called hard sigmoid function σ(x), wherein
1 is added to the real-valued weight wij , the result is divided by 2, and the result
of that is clipped at {0, 1}:

σ(x) = clip(
x+ 1

2
, 0, 1)

Stochastic binarization can be seen as treating the f -treated weights as a Bernoulli
distribution adjusted for the ±1 constraint of binarization. In this method, the
full-precision value wij does not determine wbij , but rather influences it.

12

The authors attribute the success of BinaryConnect to its utilizing binarization as a
means of regularization. Regularization in this case refers to techniques that reduce
overfitting the network to the training data (Kukačka et al., 2017). More specifically,
in this case binarization introduces noise, i.e. it obscures the precision of the network
information in order to reduce overfitting, much in the same spirit as dropout (Srivastava
et al., 2014).

Prominent successors to BinaryConnect include BinaryNet (Courbariaux et al., 2016)
and XNOR-Net (Rastegari et al., 2016). BinaryNet is an extension of BinaryConnect
that binarizes not only the network’s parameters, but also the activations. This enables
the network to use bit operations in computing all layers. XNOR-Net improves upon
this implementation by adjusting the binarized parameters with the use of a scaling
factor. This parameter adjustment is implemented with the theoretical goal of regain-
ing some precision lost in the binarization process (Simons and Lee, 2019). XNOR-Net
outperforms its BNN predecessors on the ImageNet (Deng et al., 2009) image classifi-
cation task. This also presents the first successful application of BNNs to large-scale
datasets, a weakness of BNNs that Courbariaux et al. (2015) and Courbariaux et al.
(2016) acknowledge.

Below, I summarize three crucial takeaways from this section:

1. Large deep neural networks contain a certain degree of redundancy
which can be exploited through the reduction of numerical precision.
Reducing the precision of the network’s parameters by a factor of 32 (namely from
32-bit floating point precision to 1-bit binary values) results in a comparatively
modest reduction in accuracy. As will be discussed below, strategic implementa-
tional choices help to regain some of this accuracy, which is a further testament to
the relative superfluity of such precision.

2. Regularization/noise is a delicate balance. Courbariaux et al. (2015) welcome
the noise brought from binarization as a means of regularization. The extremity of
this noise does, however, negatively impact the network’s performance, as well as
its ability to generalize to larger datasets.

3. Precision can be artificially regained with little compromise to perfor-
mance. As Rastegari et al. (2016) demonstrate, the forfeiture of accuracy can be
compensated for with operations implemented on the network’s parameters, rather
than hampering the compression of the network. This is promising, as it demon-
strates, per the first bullet-point, how simple changes to BNN architectures can
improve the network’s performance without sacrificing compression.

3.2 BNNs for ASR

Note that the models discussed in Section 3.1.2 refer only to computer vision tasks. Early
work in BNNs focused largely on image classification and similar tasks (Simons and Lee,
2019; Yuan and Agaian, 2021). Nonetheless, a number of efforts have been made to apply
highly-quantized networks to ASR (Kim et al., 2014; Xiang et al., 2017; Qian and Xiang,

13

2019; Gao et al., 2021). Kim et al. (2014); Xiang et al. (2017); Qian and Xiang (2019)
use hybrid, HMM-DNN models, whereas Gao et al. (2021) uses a convolutional model.
The approaches are discussed below.

Kim et al. (2014) perform ASR with networks whose weights are constrained to {−1, 0, 1}.
Although some inconsistencies exist in the literature regarding whether or not to include
these "ternary" networks in discussions of BNN, such networks are not considered in this
work. Nonetheless, the work of Kim et al. (2014) is worth mentioning as an early proof-
of-concept of the viability of very low precision networks for ASR tasks. Its relevance in
this case is limited, however. It predates STE, and therefore relies on training methods
of much narrower applicability than back-propagation based ones.

Xiang et al. (2017) and Qian and Xiang (2019) apply the approach introduced in Cour-
bariaux et al. (2015) to hybrid ASR. Xiang et al. (2017) apply BNNs to phone recogni-
tion tasks in HMM-DNN networks. Per the discussion on hardware implementations in
Section 2.2.2, the first layer’s weights are not binarized, but rather are computed in a
full-precision matrix multiplication with the network inputs. According to the authors,
speech features do not lend themselves to binarization. The results show only a minor
loss in accuracy compared to the full-precision model.

Qian and Xiang (2019) extend the approach of Xiang et al. (2017) with a more complex
neural network. Numerous experiments are conducted with a combination of convo-
lutional and feed-forward layers. In the experiments, various subsets of the network’s
layers, (i.e. only the convolutional layers, only the feed-forward layers, and a combina-
tion of both) are binarized and compared for their effect on performance. Results show
that binarizing only convolutional layers causes a negligible increase to the word-error-
rate (WER). Such an observation is consistent with the earlier insights indicating the
effectiveness of binarization in computer-vision tasks, on CNN-based networks (Cour-
bariaux et al., 2015; Rastegari et al., 2016). This is of course of limited utility, as such
an approach preserves many of the full-precision weights. This paper also shows that
the accuracy of a BNN can be imrpoved through knowledge distillation (Hinton et al.,
2015) from its full-precision counterpart. This is a common technique for boosting the
performance of small-footprint networks (Howard et al., 2017) and could likely be of use
for BNN research, but it is beyond the scope of this discussion.

Following the success of binarization on convolutional units, Gao et al. (2021) introduce
1-bit WaveNet. This work constructs a network based on WaveNet (van den Oord et al.,
2016). WaveNet operates on raw audio waveforms, using multiple layers of convolutions
on the signal, much like in computer vision, in order to distill the raw audio into features
relevant to the task. It should be noted the the original WaveNet was mainly applied to
generative tasks (i.e. creating more audio), rather than classification or recognition. Gao
et al. (2021) apply this model to keyword recognition tasks. This approach is clever, as it
leverages the success and original application of BNNs, namely convolutional units, and
transfers it to the audio domain on an already performant model. Nonetheless, the purely
convolutional WaveNet architecture is idiosyncratic, never having achieved popularity in
the speech technology domain. There is therefore little-to-no scholarly basis supporting
its ability to perform large-vocabulary ASR tasks. For this reason, no further discussions
on the matter will ensue.

14

3.3 End-to-End Speech Recognition

End-to-end speech recognition refers to approaches to ASR which yields transcription
predictions given acoustic speech features. What exactly qualifies as end-to-end in an
environment where an increasing number of components are being performed in the
acoustic model itself, such as feature extraction (Schneider et al., 2019; Sainath et al.,
2013; Palaz et al., 2013) and language modelling (He et al., 2018). For the purposes
of this work, models which accept as input speech features or raw audio, and output
some transcription, be it phonetic, character, word-piece, or word-based, are considered
end-to-end.

The concept exists so as to be distinguished from the predecessor and long-time domi-
nant approach to ASR: Hidden Markov Model (HMM)-based speech recognition Graves
(2006); Graves et al. (2013); Graves and Jaitly (2014). HMM-based recognition is bro-
ken down into a complex pipeline of components, including duration modelling, phonetic
transcription, HMM-state training, possibly acoustic modelling with Gaussian Mixtures
(GMMs), etc. (Rupali et al., 2013). Improving such systems therefore requires diagnos-
tics on individual components, changing them individually before testing their improve-
ment with respect to the entire system Graves et al. (2013). End-to-end systems are
therefore advantageous, as these unique tasks, (i.e. duration modelling, acoustic model-
ing, etc.) are performed implicitly in the network, capable of updating in tandem to and
in accordance with one-another.

3.3.1 Connectionist Temporal Classification

Graves (2006) is an early approach to forego HMMs in favour of neural networks in an
ASR pipeline. This method introduces Connectionist Temporal Classification (CTC),
allowing a model to learn alignments between speech features and the transcribed char-
acters, a separate component in HMM-based ASR. The system uses Recurrent Neural
Networks (RNNs), capable of factoring temporal information in the interest of sequence
modelling. RNN-based models would come to dominate ASR, and are the focus of the
present work.

End-to-end ASR with CTC-based models has shown excellent performance, with no-
table examples including Graves et al. (2013); Hannun et al. (2014); Amodei et al.
(2015). Some of these models leverage the performance improvement of Long-Short-
Term-Memory (LSTM) (Hochreiter and Schmidhuber, 1997) or Gated-Recurrent-Unit
(GRU) (Cho et al., 2014) cells. These cells replace, or rather upgrade the funtionality
of so-called "vanilla" RNN cells. These improvements have become the standard unit in
recurrent models. The term "RNN" is henceforth used as an term to denote a model
built with some variant thereof, either LSTM or GRU.

CTC-based ASR operates as follows: A network accepts some input X of length T . At
each time step t ≤ T , a vector of speech features xt is passed through the network,
containing at least one recurrent (i.e. RNN) layer. The output of this forward pass is
a prediction over the set of possible character transcriptions, generally represented as
log-probabilities. The output yt at time t would therefore be something to the effect of:

15

yt = {−3.884,−1.030, . . . ,−4.279}
the indices of which denoting a probability of a given character in a set of characters
chars, e.g.:

chars = {< blank >,< space >,< apostrophe >, a, . . . , z}

such that the lengths of yt and chars are equal.

Note the first character in chars: < blank >. This character is the key innovation of
CTC-based ASR. Considering the mismatch between the length of speech features and
the characters in its transcription, there must be some way for the network to express
that, at a given input xt, no new characters are being predicted, i.e. the character
predicted at xt−1 is still being uttered at xt, or there is a break before the following one.

In decoding a CTC output, repeated characters are removed, and then < blank > char-
acters are removed. Therefore, a network might output a prediction ŷ such as, (−
representing the < blank > character):

ŷ = hhhh−−− ee−−lll −−l −−oo−−
= h− e− l − l − o

= hello

Note the "−" separating instances of the letter "l", indicating the presence of 2 separate
"l" characters. The CTC loss function remains agnostic to the particular X − Y align-
ment, and computes the error with respect to any possible alignment of the transcription.

The primary drawback which authors note about CTC-based ASR is the absence of "lan-
guage awareness" (Bahdanau et al., 2014). Each output yt depends on xt and surrounding
hidden activations, but not on surrounding outputs {yu : u ̸= t}. This is a problem, as
there is no one-to-one mapping between English phonemes and graphemes. The output
yt relies on information from surrounding outputs. An obvious example of this would be
the decoding of speech features resembling the phoneme /f/, and determining whether
to transcribe them as f, ff, gh, or ph.

In order to solve this, CTC decoding tends to rely on beam-search decoding (Scheidl
et al., 2018) with a language model. This algorithm compares the network’s ascribed
likelihoods of certain outputs with the language model’s computed likelihood of certain
outputs. Rather than selecting only the top character at each output step yt, the k
most likely sequences are kept, step-by-step, the most likely of which (as determined
by some weighted comparison between the language model and the acoustic model) is
returned. k is a hyperparameter referred to as the "beam-width". The influence of
the language model in computing the combined likelihood is controlled through another
hyperparameter, refered to as the "language model weight", wlm. If wlm is too high,
the output will disregard the acoustic features and return high probability sequences
from the language model. If it is too low, the output will be gramatically incoherent,
confusing like-sounds and homophones. It goes without saying that the necessity of added
components, in this case the language model, further obscures the goal of "end-to-end"
speech recognition, and still necessitates the configuration of separate components.

16

3.3.2 Encoder-Decoder

Another effective option in RNN-based end-to-end ASR has been the encoder-decoder
architecture (Sutskever et al., 2014; Cho et al., 2014). Encoder-decoder architectures
are used for tasks that map sequential inputs to sequential outputs. This architecture,
originally applied to neural machine translation (Sutskever et al., 2014), takes as input a
sequence X = {x0, . . . , xT } of length T . The main components of the architecture, per
its name, are (1) the encoder and (2) the decoder. The network functions as follows:

1. Encoding : X is passed through the encoder, an RNN, to obtain a hidden state
hT . This can be thought of the hidden state at time t. hT is a fixed-length
vector, meaning that its size is independent of the length T of X, but rather
determined by a hyperparameter of the encoder RNN, namely the network’s hidden
size/dimension.

2. Decoding : ht is treated as an initial hidden state for the decoder network. The
decoder network, also an RNN, accepts as input the previous hidden state (begin-
ning with ht) and the previously generated token (beginning with a "start" token),
and returns (a) a probability distribution predicting the next generated token yu
at decode time step u, and (b) the following hidden state hdec,u to be used as in-
put to the upcoming decode step u + 1. The decode process repeats until some
"end" token is generated, or u has reached some maximum length hyperparameter,
established in order to keep the decoding process from repeating ad infinitum.

In the case of ASR, the X can be thought of as speech features, such as mel spectrogram
slices, t being the horizontal length of said spectrogram. Y = y0, . . . , yu, in this case,
would be the token predictions, being phonemes, characters, words, or word-pieces.

3.3.3 Encoder-Decoder + Attention

The "vanilla" encoder-decoder architecture has performed rather unimpressively in ASR
tasks (Lu et al., 2015), with results inferior to those of traditional, HMM-based sys-
tems. performance improvements would come later, with the innovation of attention
mechanisms (Graves et al., 2013; Bahdanau et al., 2014).

Attention-equipped RNN encoder-decoders have lent significant contributions to the im-
provement of End-to-end ASR. The so-called attention-mechanism was first used in
Graves et al. (2013) for handwriting synthesis, being applied shortly thereafter the neu-
ral machine translation (Bahdanau et al., 2014). Chorowski et al. (2014) is the first use
of such a mechanism for ASR. While early performances using this mechanism offer, at
best, comparable performance to hybrid (i.e. HMM-DNN-based) ASR (Chorowski et al.,
2014, 2015), later improvements to this architecture offer state-of-the-art performance
(Chan et al., 2015; Chiu et al., 2018).

The attention mechanism can be seen as a component in an RNN encoder-decoder,
between the encoder and the decoder. It improves performance by allowing the decoder
to "focus on" particular portions of the input sequence when making token predictions.

17

During encoding, at each time-step t, the encoder emits and stores an encoding ht. After
encoding, the matrix H of length T is a sequence of vectors, each of which representing
the inputs at their respective time-step t. During decoding, the attention mechanism uses
the decoder hidden state hdec,u−1 along with the encoder hidden states H to produce
an attention vector a of length T , summing to 1. This vector is treated as a weighting
over H. The vectors ht of H are summed according to their respective weightings, and
passed along with the previous token prediction yu−1 into the decoder RNN in order to
produce the next prediction yu and decoder hidden state hdec,u.

This weighted sum, sometimes referred to as the context, can be seen as a prediction about
which input features, and in what proportions, are relevant to predicting the upcoming
token. Figure 2, from Bahdanau et al. (2014) shows the learned attention vectors in
predicting a French sequence from an English input in neural machine translation, lighter
squares representing greater values, and vice-versa. This figure should be read as follows:

Figure 2: Visualization of attention vectors in English-to-French neural machine trans-
lation task, from Bahdanau et al. (2014)

1. The whole input (English) sequence is visible. The model "looks at" the entire
English sequence, and returns the weightings a over the English tokens. In this
case, The is deemed to be, by far, the most relevant to generating the first output,
i.e. the first French token.

2. Using this attention vector a, a weighted sum over the inputs is computed and
used to predict the first token. This weighted sum is expressed as the first row
in Figure 2. In this case the prediction is L’, the French definite article, or direct

18

translation of English the. Note the some energy is given to the second English
word as well, agreement. This information is also pertinent to the model, to a lesser
extent. The following French word, accord, begins with a vowel, thus influencing
the choice of article (L’ rather than Le).

3. Having made the first prediction, the following attention vector is computed over
the English sequence, expressed as the second row. This, along with the inputs and
previous token prediction are used to make subsequent predictions, and so forth.
This continues until the <end> token is predicted.

There are a few points of particular interest in Figure 2. For one, note that the fourth
predicted token, la (en: the, feminine) focuses on both the and Area. This is because
the choice of definite article relies on the gender of the noun it references. This signals
the model to choose a feminine article, as it modifies Area, which the model predicts as
having, in this context, some feminine translation.

Another point of interest is a visual representation of the mismatch of order between the
English European Economic Area and French zone économique eurpéenne. Each maps
to an individual word in the other language, but in a separate order, and the attention
mechanism leverages both a knowledge of syntax as well as word-for-word translation in
predicting this.

Last and most interesting is the way the mechanism handles a mismatch in number of
words to express a similar construction. The preteritive was is translated to the perfec-
tive. In this case, both components of the French a été, a morpho-sytactic equivalent of
has been, "attend" to the entire verb complex was signed in order to capture and convey
the proper aspective meaning of the English. This is an example of forfeiting literal,
word-for-word translation in favour of capturing a more accurate meaning.

How attention applies to ASR is somewhat more intuitive. Each encoder hidden state
ht represents a slice of the input features. Figure 3 from Chan et al. (2015) illustrates
the attention vectors computed over input features that factor into subsequent input
predictions. One can note from Figure 3 how attention can spread focus across a small
region of an utterance in order to factor coarticulation and surrounding sounds into token
predictions.

A deviation from neural machine translation is the monotonic (i.e. left-to-right) con-
straint on the attention focus. In neural machine translation, each decoding step yt can
rely on any combination of input values. Speakers of multiple languages can attest to the
lack of uniform word order across languages. As can be noted in Figure 3, the attention
mechanism focuses on the portion of audio that is most relevant to the character, word,
or word-piece that is being decoded, which includes segments in the same place as– or
to the right of the previous attention focus. Chorowski et al. (2014) account for this by
limiting the available input steps xt on which the attention mechanism can focus to a
small, monotonically moving window. The authors show that limiting the search space
to a subset of X decreases memory usage, speeds up convergence, and improves overall
performance.

Attention-based architectures have achieved success in ASR tasks, spurring numerous

19

Figure 3: Visualization of attention vectors in a speech-to-text task, taken from Chan
et al. (2015)

variants (Bahdanau et al., 2016; Kim et al., 2017; Watanabe et al., 2017; Zhang et al.,
2017; Raffel et al., 2017; Chiu et al., 2018; Zeyer et al., 2018; Bello et al., 2019). Bahdanau
et al. (2016) use time downsampling in the encoder. Watanabe et al. (2017) incorporate
CNN modules in the encoder, whereas Zhang et al. (2017) introduce LSTM cells whose
gates are computed using convolutional, rather than simple linear operations. Kim et al.
(2017) use a loss function that combines a standard log-likelihood-based classification
criterion with the CTC loss in order to leverage the contextual awareness of attention
with the noise robustness and forced directionality. In terms of forcing directionality,
Raffel et al. (2017) implement forced monotonic alignment, i.e. attention that centers its
focus only on the right of the attention focus of the previous decoder step. This reduces
training and inference time, as a smaller window of values is computed in the "attending"
phase of the forward pass. Such a strategy appears as early as Chorowski et al. (2014),
but is calculated algorithmically, whereas the window size and location of the attention
focus is learned as a parameter of the network in (Raffel et al., 2017).

3.4 Binarizing Recurrent Units

In spite of the relative popularity of STE-based BNN research applied to convolutional
and feed-forward neural networks, there exist comparatively few efforts to apply these
techinques to RNN-based networks. These works are detailed in this section.

The first effort to binarize recurrent units is found in Ott et al. (2016). The authors
perform basic character-level language modelling and digit recognition experiments on
RNNs and its variants, namely, GRUs and LSTMs. The networks are subject to bina-
rization and ternarization. Both stochastic and deterministic binarization are performed
using the BinaryConnect approach discussed in Section 3.1.2. The authors achieve near-
chance results on the aforementioned tasks and conclude, therefore, that binarization

20

does not lend to RNNs. Note that the authors attempt only to binarize GRUs, which
have generally been shown to perform as well as LSTMs Cho et al. (2014) despite the
former containing fewer parameters.

Ott et al. (2016) explain the poor performance as follows: RNNs by nature re-use the
same set of weights W for each time-step xt in the input sequence X. This relatively small
number of weight parameters fails to capture the subtlety of the training data, leading to
high variance, or overfitting. This is in part the motivation behind the advent of LSTMs
(Hochreiter and Schmidhuber, 1997), which increase the number of parameters in order
to selectively control the flow of information across the network over time. Because of
the scarcity of parameters in W , RNNs rely on the granularity afforded by 32/64-bit
numerical precision in order to capture details across a variety of data. One can think of
each weight w as scaling the proportionality of correlation between a given input feature
to a given output feature. The key to a network’s ability to generalize to a dataset
therefore relies on capturing the relevance of input features without exaggerating their
importance or else said feature’s presence will disproportionately influence the network’s
output, hence, overfitting. The problem with binarization, therefore, is that near-zero
valued weights on which the network relies are forced to large values, namely 1 and −1,
which in turn "emphasizes" subtleties in the data that the original, full-precision, near-
zero value would otherwise merely "acknowledge". Subsequent works seek to overcome
this.

Edel and Köppe (2016) apply binarized bidirectional LSTMs to human activity recog-
nition with considerable success. Compared to other approaches to such task, binarized
LSTMs fall short only of their full precision counterparts. Following these results, the
authors speculate that for certain sequential tasks, capturing temporal dependencies (as
RNNs do) is more important than the precision of the parameters themselves, as the
binarized LSTMs performance suggests, in comparison to a full-precision feed-forward
network. When comparing the results in Edel and Köppe (2016) with those from Ott
et al. (2016) using GRUs, one could reason that the abundance of parameters in LSTMs,
considered redundant in full-precision networks (Cho et al., 2014), may compensate for
the loss of precision resulting from binarization.

Hou et al. (2016) consider various methods of optimizing binarized parameters. In this
method, which the authors refer to as Loss-Aware Binarization, the effects of binarization
are considered and minimized as a separate loss term. This is done in an attempt to solve
the problem that, when binarized, deep recurrent neural netowrks quickly suffer from ex-
ploding gradients (Bengio et al., 1994). This is in contrast to earlier approaches, which
binarize parameters and compute the loss, but do not consider effect of binarization on
the loss, i.e. how much less accurately a BNN performs, relative to its full-precision coun-
terpart, at each forward pass. This network outperforms existing binarization approaches
on character-level language modelling tasks.

Liu et al. (2018) apply a single-layer LSTM language model with binarized input and
output embedding layers to various NLP and ASR rescoring tasks. Their results demon-
strate the viability of binarization of the linear layers in LSTMs. Furthermore, they
are the first to apply this technique to word-level language modelling. Beyond this,
the relevance of their research is of limited relevance to the present work, as the effects

21

binarization on LSTM depth is not studied.

In a similar vein, Xu et al. (2018) search for optimal quantization parameters with the
use of a binary search tree. I use quantization here as opposed to binarization, as this
paper is not specific to binary, i.e. 1-bit parameters. Instead, the authors develop a
method that applies to k-bit quantization for any value k. Similar to Hou et al. (2016),
the quantized weights Wb are not determined through a fixed equation determined (or
in the case of stochastic quantization, influenced) only by the full-precision weights W .
Instead, the possible quantization values, normally {−1, 1} are scaled by some factor α,
referred to as a code. The optimal value of α is learned in the training phase.

Experiments with this method are performed on character-level language modelling with
reasonable success. While the results are promising for relatively low values of k, the
decrease in performance when k = 2 implies that this method does not lend itself to
the extreme quantization that BNNs undergo. Note that this method applies only to
values of k such that k ≥ 2, disqualifying it as a binarization method, strictly speaking.
It is nonetheless discussed here for its being the first highly quantized model to perform
word-level language modelling, and serving as inspiration to Ardakani et al. (2018), a
work of immense importance to the present one.

3.4.1 Learning Recurrent Binary/Ternary Weights

The central focus and primary inspiration of the present work is the method of binarizing
weights introduced in Ardakani et al. (2018). This paper is discussed here insofar as it
inspired by and contributes to the literary cannon pertaining to binarized RNN research.
An in-depth explanation of the technicalities of the authors’ approach follows in Section 4.

Ardakani et al. (2018) introduce a method, to which the authors refer as Learning Re-
current Binary/Ternary Weights (henceforth LRBW). This aim of their research is to
develop an approach that can be applied across a variety of sequential tasks. Hou et al.
(2016) and Xu et al. (2018)’s works are only tested on single tasks, namely character-
level and word-level language modelling, respectively. In terms of word-level language
modelling, Xu et al. (2018) find that 4-bits are required to perform up to par with full-
precision networks, 2-bit quantization causes a dramatic increase in error, and 1-bit,
fixed-value binarization is not explored at all.

The authors introduce batch-normalization (Ioffe and Szegedy, 2015) to the computations
of the gates within the LSTM cell (explained further in Section 4). The reason is as
follows: LSTMs are particularly sensitive to unnormalized input (Cooijmans et al., 2016;
Hou et al., 2019). Just as RNNs rely on subtlety in the individual weight values wij

in order to control the flow of information, they also rely on distributions that are not
too extreme. Batch normalization simultaneously adjusts the values to an optimal scale,
and maintains a normal distribution of values, in order to avoid offsetting, or erasing the
information passed from previous timesteps. In full-precision LSTMs, strategic weight-
initialization prevents this (Glorot and Bengio, 2010). However, as BNN weights are
dynamically changed to values more extreme than the initial weights, batch normalization
is required.

22

Batch normalization is generally used to normalize inputs X in feed-forward and con-
volutional neural networks in an attempt to stabilize convergence. It should be noted,
however, that it is considered ineffective in RNNs, due to the variable input length and
shared weights across input steps (Ba et al., 2016). Since the output of an RNN ht at time
t (also called the hidden state) is used to compute the hidden state at the following time
step ht+1, the use of batch normalization essentialy equates the hidden state ht as inputs
X to the following time step t+1. This is somewhat analogous to the layer-wise forward
pass in feed-forward neural networks, wherein a layer l’s output al relies on the previous
layer’s output al−1. In keeping with RNN tradition, however, batch normalization is not
applied to the inputs X.

In addition to computing the mean and variance, batch normalization includes learnable
scaling and biasing parameters, ϕ and γ, respectively. Furthermore, batch normalization
is not applied at inference time (ever, not just in this work). LRBW can therefore be
categorized as an approach wherein the quantized parameters are learned, similar to Hou
et al. (2016) and Xu et al. (2018), through binarization-specific parameters.

LRBW exhibits superior performance to previous aprroaches. Furthermore, the same
model and quantization approach are used regardless of the task. These include character-
level language modelling, word-level language modelling, and, notably, question answer-
ing per DeepMind’s Attentive Reader (Hermann et al., 2015). This task takes a question
and a context as input. The two are passed, word-by-word, through an RNN, after which
an attention mechanism similar to those discussed in Section 3.3 attends to the input
representation and generates an answer sequentially. Note the similarity between this
model and encoder-decoder + attention ASR models.

4 Learning Recurrent Binary Weights

This section elaborates further on the work of Ardakani et al. (2018). The experiments
that follow rely heavily on the LRBW approach from this paper. As a fully-realized
implementation is to follow, this section explains the technicalities of this approach,
including minor specifications that are important, should the reader choose to attempt
to reproduce the experiments.

4.1 The anatomy of an LSTM cell

In order to understand the approach of Ardakani et al. (2018), let us first take a closer
look at the operations that comprise a time-step in an LSTM cell. The following repre-
sentation, notated as in Ardakani et al. (2018), considers the forward pass in an LSTM
cell having weights W and no bias, at time-step t, given a set of input features xt:

23

ft = σ(Wfhht−1 +Wfxxt)

it = σ(Wihht−1 +Wixxt)

ot = σ(Wohht−1 +Woxxt)

gt = tanh(Wghht−1 +Wgxxt)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct) (5)

where σ and tanh represent nonlinear activation functions, namely sigmoid, and hyper-
bolic tangent, respectively, and ⊙ represents the hadamard, or element-wise product of
two identically-shaped matrices.

The first four terms ft, it, ot, and gt are the cell’s gates. There are referred to as the
cell’s forget, input, output, cell gate, respectively. Each gate has 2 sets of weights. The
first, per the notation above, is the hidden-hidden weight W{gate}h. The other, W{gate}x,
is the input-hidden weight. The two sets of weights, much as in a standard forward pass,
are used in a matrix multiplication with their respective inputs.

The purpose of these gates is control over the flow of information. As each gate has sepa-
rate weights, the gates can compute values that are different from one another given the
same set of inputs xt and ht−1. As these values are combined with one another through
various operations, the forward pass through an LSTM cell is afforded more precise con-
trol over which information is passed from cell-to-cell and to subsequent layers. How this
works, more precisely, is outlined in the following paragraph. Note that "information" is
used here to speak in the abstract of the real-number vectors x, c, and h, whose values
qualify the network’s "learning".

Starting from the bottom, let us consider how the values of these cells control the flow of
information. ht is the cell’s hidden state, treated as both an output of the cell (final or
passed to subsequent layers) and a state passed to the following time step, represented in
Equation 5 as ht−1. Ignoring the nonlinearity function, ht is a product of the cell-state
ct and the output gate. Considering the metaphorical use of gate here, one can think of
ot determining the scale at which certain information from the cell state is relevant to
the output. In a sense, the relevance of each output feature at each time-step is scaled
based on its relevance to the intended output. Figure 4 from Ardakani et al. (2018) is
a histogram of the values of ot over 100 time steps (vertical axis) on a character-level
language modelling task. The figure demonstrates the the gate is rather selective, opting
largely for near-zero values, showing that relatively few features, in few time-steps, are
of remarkable importance to the network’s output.

Preceding the hidden state is the cell state, ct. First, the forget gate is multiplied with
the previous cell state. This gives this cell the opportunity to forget information from
previous time-steps. As an extreme example, if ft were to contain only 0 values, outputs
from time t onwards would cease to rely on information from before t. Next, the cell
gate, gt, is scaled according to the input gate it. gt can be thought of as offering new

24

Figure 4: Histogram of output gate values on a character-level language modelling task.

information. it is then tasked with determining the importance of said information in
computing subsequent states/outputs. By summing the two products, ct becomes some
strategic combination of previous information and new information.

The innovation of the cell state ct contrasts with vanilla RNNs, wherein ht serves as both
the output and the only recurrent connection. Disentangling the recurrent connection
from the cell’s output acknowledges that the relevance of information to the current
output ht may not bear the same relevance to subsequent outputs ht+n≥1.

Understanding the flow of information in the LSTM cell, one can better understand
the purpose of having separate weight values for the respective gates. These weights
essentially learn, through network training, how to best process input information in
order to preserve, forget, and update the learned information over time.

4.2 Adding Batch Normalization

Let us now consider the addition of batch normalization, as detailed in Equation 6. Let
W{gate}{h|x}B

denote the binarized version of the weight matrix W{gate}{h|x}, for a given
gate {gate} and input/state h|t, and BN denote the batch normalization operation:

25

ft = σ
(
BN(WfhB

ht−1, ϕfh, 0) +BN(WfxB
xt, ϕfx, 0)

)
it = σ

(
BN(WihB

ht−1, ϕih, 0) +BN(WixB
xt, ϕix, 0)

)
ot = σ

(
BN(WohB

ht−1, ϕoh, 0) +BN(WoxB
xt, ϕox0)

)
gt = tanh

(
BN(WghB

ht−1, ϕgh, 0) +BN(WgxB
xt, ϕgx, 0)

)
ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh
(
BN(ct, ϕc, 0)

)
(6)

Observe that for each gate there exist two BN terms: one for the ht−1 and one for
xt. This brings the total of unique BNs, prior to considering the ct, to 8– 9 with
ct. Each term contains its own scaling parameter ϕ{gate}{h|x}, which is learned during
training. Although not explicitly established in the paper, I take these parameters to be
the namesake of "learning" in the title of the paper and method. Note, also, the 0 in
each BN(). This indicates that batch normalization does not contain biasing, consistent
with the LSTMs in this method.

Equipped with our understanding of the operations in the basic LSTM cell, let us now
consider how batch normalization alleviates the drawbacks of binarization. As mentioned
earlier in Section 3.4.1, binarization forces the weights W to extreme values. This has a
tendency to inflate the subsequent activations a. In other words, after passing the through
the non-linearity, one could expect activations to tend much more closely to the extrema
of their respective non-linearities, i.e. 0 and 1 for σ, −1, and 1 for tanh. Recall, per the
discussion above, that the function of the LSTM’s gates is to scale information relative
to its relevance. The result of extreme-valued gate activations is that information is
essentially categorically forgotten or dramatically over-emphasized. This will result, once
again, in extreme values for outputs. Rather than incrementing towards an optimized
output, as is the function of gradient descent based algorithms (Kang, 2020), the network
will simply move from one drastically incorrect output to the next. The loss and resulting
gradient will be large, leading to exploding gradients– the problem that motivates the
use of BN in Ardakani et al. (2018).

BN addresses this by normalizing the gate activations. The BN terms are initialized
with a mean of 0, and a variance of 1. As the biasing factor γ is not included, the mean
remains unchanged. This adjusts the outputs to more moderate values, similar to those
in a full-precision LSTM. As such, its function is to enable the network to select optimal
binarized parameters without the volatility of large gradients inhibiting convergence.

The use of the batch normalization term BNc on ct when computing ht serves a similar
function. ct is computed using a sum, thereby changing the scale of the values. In com-
puting ht, renormalizing the values of ct before computing the product with it allows the
output to remain reasonably normalized. ht also serves as the input to subsequent layers.
LSTMs, which are inherently sensitive to the distribution of input features (Ba et al.,

26

2016; Hou et al., 2019), therefore benefit from previous layers’ output being constrained
to a limited scale and normal distribution.

5 Research Question and Hypothesis

The aim of the present work is to examine whether a network trained with binarized
LSTMs, per LRBW, could achieve results with a minimal reduction in accuracy, com-
pared with its full-precision counterpart.

Research Question: Is the LRBW method capable of performing ASR? As the
authors claim, LRBW is designed to serve as an all-purpose binarization technique for
recurrent units. This experiment investigates the degree to which that is the case.

Quantifying the success or failure of such experiments is not trivial. Of course, some
minimum accuracy is required in order for an ASR technology to be of any real use.
However, how that error is reached is important to the takeaways of the experiment.
If the model shows slow, consistent convergence over many training steps, then it may
be an indication that a lower error could be achieved with architectural adjustment– an
indication of being "on the right track". However, if there is no convergence and the loss
over training steps is random noise, that would be cause for a more resounding rejection.

Ardakani et al. (2018) report language modelling results in terms of bits-per-character
(BPC) and perplexity, both metrics particular to evaluating language models. Further-
more, these metrics measure cross-entropy, i.e. errors over probability distributions. In
keeping with the ASR conventions, the present work compares the word-error-rates. Prior
research in binarized ASR reports relative WER increases between 10 and 15% after lan-
guage model decoding (Xiang et al., 2017; Qian and Xiang, 2019). It is therefore thought
sensible to use the upper-bound 15% as a baseline to measure the competitiveness of this
method.

Hypothesis: It is hypothesized that an ASR network trained with the LRBW method
will produce a result whose WER is constrained to a 15% relative increase, with respect
to its full-precision counterpart. This word-error-rate is to be computed after language
model decoding.

The notion of applicability entails some nuance. Capturing the "applicability" of LRBW
to ASR is therefore tested through 3 experiments:

1. Basic CTC: In order to test the sheer applicability of LRBW to ASR, Section 6.2
conducts a basic character-level ASR task with a simple LSTM using the CTC
criterion. This is analogous to the single-layer character-level language modelling
tasks in Ardakani et al. (2018).

2. DeepSpeech: In alignment with the practice of binarizing real, practical ASR
architectures (Xiang et al., 2017; Qian and Xiang, 2019), Section 6.3 describes
an experiment wherein LRBW is applied to DeepSpeech Hannun et al. (2014), a
broadly-used yet notoriously simplistic end-to-end ASR model.

27

3. Encoder-Decoder + Attention: Ardakani et al. (2018) expand the use of
LRBW to an attention-equipped encoder-decoder. This is intended to demon-
strate the cross-architectural applicability of LRBW. Section 6.4 therefore describes
a character-level ASR on an encoder-decoder + attention architecture, as described
in Section 3.3.3.

This work can be seen as investigating extensions to the LRBW method, which enable it
to be adapted to domains unseen in the original paper. Should the hypothesis be rejected,
it would mean that the various deviations from the original method, to be discussed in
Section 6.1, were not conducive to the success of LRBW LSTMs on ASR tasks. Whether
this means that different deviations ought to be applied, or that the method altogether
is inapplicable to ASR, will be a matter of future research.

Regardless acceptance/rejection of the hypothesis, these experiments and their subse-
quent results are intended to offer better insight into the types of architectures that
are best suited to the cross-discipline use of LRBW. Again, as stated in earlier in this
section, requiring that a BNN produce a WER within 15% of its full-precision counter-
part is somewhat arbitrary. Though models with higher WERs may be rejected, I urge
the reader to consider the promise of models with higher WERs which show signs of
convergence.

6 Experiments

This section describes the experiments performed. All models are trained on the Lib-
riSpeech ASR Corpus (Panayotov et al., 2015) using "train-clean-100" split for training,
"dev-clean" for validation, and "test-clean" for final testing. The corpus was obtained
through OpenSLR 34. Where applicable, the language model is a 4-gram model built on
the LibriSpeech text corpus5. The choice of 4-gram as opposed to another value was
done out of convenience: a PyTorch wrapper exists with pre-built binaries for a 4-gram
language model. The language models were built with KenLM6.

The models were built in Python with the help of the PyTorch (Paszke et al., 2019)
and Torchaudio (Yang et al., 2021) libraries. This includes the wrapper for the language
model. Training was performed on the Rijksuniversiteit Groningen’s high-performance
computing (HPC) cluster, Peregrine. Training was done on 2 nodes of a single NVIDIA®
V100 Tensor Core7 GPU with 32GB of GPU memory.

6.1 Deviations from the Original LRBW Experiments

In the spirit of minimizing variables, the first experiments are designed to, as closely
as possible, replicate the language modelling experiments in Ardakani et al. (2018). A

3https://www.openslr.org/
4the LibriSpeech ASR corpus is found at https://www.openslr.org/12
5http://www.openslr.org/11
6https://kheafield.com/code/kenlm/
7https://www.nvidia.com/en-us/data-center/v100/

28

https://www.openslr.org/
https://www.openslr.org/12
http://www.openslr.org/11
https://kheafield.com/code/kenlm/
https://www.nvidia.com/en-us/data-center/v100/

(a) full-precision (b) binarized

Figure 5: Full-precision (a) and binarized (b) log-mel spectrograms of the beginning of
the utterance "I wonder".

number of notable modifications are made in order to adapt the experiment to the speech
domain, and, more specifically, to ASR. Furthermore, some additional, arguably gratu-
itous tweakings have been made in order to improve the performance of the networks,
with the hopes of motivating real-life utility of said networks.

6.1.1 Input Features

Ardakani et al. (2018) perform NLP experiments, taking as input features either charac-
ters or words. Their inputs are therefore one-hot encoded vectors. Per the explanation
in 2.2.2, the matrix multiplications between input/hidden features x|h and weights W is
a simple matter of indexing a row of W . In the case of ASR, where inputs are speech
features, i.e. k-dimensional vectors of floating-point values, some binarized or equally
"simple" (i.e. one-hot vector) inputs must be provided. If real-values speech features
are passed as inputs, the binary matrix multiplication described in 2.2.2 is not possible,
thereby negating the benefits of the compression that binarization affords, allthewhile
suffering from the imprecision. The options for providing "simple" inputs are as follows:

• Binarize the speech features

• Begin with full-precision layer

Binarizing speech features

The first option is to extract speech features, in this case log-mel filterbanks, and to
constrain the values to ±1. In order to illustrate the effects of this, 5 demonstrates two
representations of the same spectrogram: the first (a) is the original, and the second (b) is
a binarized version of (a). The spectrogram is composed of 23 log-mel filterbanks using
the torchaudio (Yang et al., 2021) module torchaudio.complicance.kaldi’s fbank8

function. The spectrogram was binarized by normalizing the original spectrogram and
performing deterministic binarization as shown in 1.

As can be seen in 5, far too much information is lost in binarizing speech features. In
this case, the segment shown is the beginning of a male speaker uttering "I wonder",

8https://pytorch.org/audio/stable/compliance.kaldi.html

29

https://pytorch.org/audio/stable/compliance.kaldi.html

so, "I won–". Transcribed in the International Phonetic Alphabet (IPA), this would be
[>aI."w2n]. The formant movement, visible in (a), indicates the articulated phonemes. In
binarization, the distinction between formants is entirely lost, indicating only that there
is energy within a certain frequency range. Binarizing speech features is therefore not an
option.

Beginning with a full-precision layer

Drawing inpiration from previous research in binarized ASR (Xiang et al., 2017; Qian and
Xiang, 2019), this option first passes the speech features through a full-precision layer,
before binarizing the layer’s outputs/subsequent layer’s inputs. Whether a fully-connect
or RNN layer should be used as the first is to be explored. A fully-connected layer
would save on parameters and has the advantage of being parallelizable. The savings on
computation are advantageous, as BNNs are remarkably slower to train (Courbariaux
et al., 2015; Ardakani et al., 2018). However, there is the possiblity that temporal
dependencies preserved across an LSTM forward pass may be crucial to overcome the
loss of precision introduced in binarization. See 6.2 for a discussion thereupon.

Adding an extra layer is a significant deviation from Ardakani et al. (2018), whose experi-
ments use one recurrent layer. However, the granularity of information of speech features
is remarkably greater than that of one-hot encoded characters. In order to preserve this
information, extra numerical precision is a must.

6.1.2 Bidirectionality

The experiments in this work make use of bidirectional LSTMs. The basic language
modelling experiments in Ardakani et al. (2018), on the other hand, use single-direction
networks. The reasoning for this is simple: Ardakani et al. (2018) take as input a sequence
of characters or words and train the network to predict the following character/word. It
goes without saying that knowledge of future inputs in a task that predicts future inputs
renders the task useless. For obvious reasons, this is not the case with ASR.

The experiments in this work compare the difference in performance between equivalent
full-precision and binarized networks. Therefore, no absolute baseline performance is re-
quired. For this reason, the performance improvements afforded by bidirectionality may
be seen as gratuitous for the purpose of these experiments. However, it is the hope that
this work will inspire real-life use-cases for BNNs. In practice, bidirectionality is com-
monplace in RNN-based ASR, it improves the performance, is easily implemented, and
is not "cheating", as it would be with next-token language modelling. Since a reason-
able absolute performance will inspire confidence that such methods have applicability
in industry, this work includes bidirectional LSTMs.

6.2 Experiment 1: Simple CTC

In order to test the general applicability of LRBW LSTM in its most basic form to ASR,
a character-level speech recognition task was conducted. For this experiment, 23 log-mel
filterbanks were extracted from LibriSpeech recordings with a window size of 25ms and a

30

stride of 10ms. Inputs were fed either directly to a 2-layer LSTM or first through a feed-
forward network, consisting of a fully-connected layer and a ReLU activation clipped at
20, per Hannun et al. (2014) before being fed to an LSTM. In the case of binary training,
these outputs were renormalized with a mean of 0 and standard deviation of 1 in order
to avoid having the binarized inputs to the binarized LSTM be nearly– of not all 1s.
The outputs of the LSTMs were fed through a fully-connected layer in order to have the
output size match the the number of characters. A log-softmax was computed over the
outputs.

All hidden layers had 512 units. The batch size was 64, using an Adam optimizer (Kingma
and Ba, 2014) and a starting learning rate of 1e−3. Biases were not used on LSTM layers,
as the LRBW method does not account for biases. Validation was performed after every
100 training steps, and training ran for 24 or 72 hours, depending on the task.

The variables tested were: binarized vs. full-precision LSTM, bidirectional vs single-
direction LSTM, and linear-projected input vs straight-to-LSTM input. Note that, per
Ardakani et al. (2018), only the LSTMs were binarized.

6.3 Experiment 2: DeepSpeech

In order to test the feasibility of LRBW on real-world applications, as is the case with
earlier BNN-based ASR research (Xiang et al., 2017; Qian and Xiang, 2019; Gao et al.,
2021), an architecture similar to Baidu’s DeepSpeech (Hannun et al., 2014), a popular and
reasonably simple CTC-based acoustic model was tested. The model consists of 3 feed-
forward layers, a bidirectional "vanilla" RNN, and a linear output. My implementation
has 4 notable deviations:

1. In the original model, the network input xt is the set of speech features at time t as
well as the speech features for 5, 7, or 9 time steps before and after t. For the sake
of simplicity and memory conservation, this experiment used only the features at
time t

2. The input features in the original DeepSpeech model are linearly-spaced, non-mel
spectral features, computed with a window size of 20ms (and a stride of 10ms).
Again, for simplicity, the same features as in 6.2, i.e. 23 log-mel filterbanks, were
used. This was done in order to minimize variables between the different experi-
ments.

3. The recurrent unit, per the LRBW method, is an LSTM, instead of a vanilla RNN.

4. Per LRBW, again, no biases were used.

All hidden layers had 2048 units, and a dropout of 0.1 was applied to the first 3 fully-
connected layers. The same optimization parameters were used as in 6.2. Training was
allowed to continue for 72 hours, saving the model with the lowest validation CER.

31

6.4 Experiment 3: Encoder-Decoder with Attention

The final experiment in Ardakani et al. (2018) involves a question-answering task with
a model replicating Deepmind’s Attentive Reader (Hermann et al., 2015). Given the
successful application of LRBW to such a task, the present work applies the LRBW
method to an encoder-decoder + attention ASR model. This experiment attempts to
further corroborate the authors’ claim that LRBW can extend to diverse sequence-to-
sequence tasks. The model architecture for this experiment is inspired primarily by
Bahdanau et al. (2016). This architecture was chosen for the fact that it represents
the first character-level experiment using the encoder-decoder + attention architecture
trained on non-proprietary data (as opposed to Google’s Listen, Attend, and Spell Chan
et al. (2015)). Details about the architecture follow below.

The input features are 40 log-mel filterbanks and their energies computed with a window
size of 25ms and a stride of 10ms. Their deltas and delta-deltas were computed, for a
total of 123 input features. The encoder is a 4-layer bidirectional LSTM with 256 hidden
units per layer, where, after the 3rd and 4th layer, every second output was dropped,
for a total downsampling factor of 4 (i.e. 2× 2). In other words, the encoder output to
which the attention mechanism "attends" is a quarter the length of the input.

The attention mechanism uses learned location awareness, meaning that learned param-
eters are used in order to encourage monotonic alignment and reduce the search space at
each decoder step, as explained in 3.3.3. This is done with a 1-dimensional convolution
with a kernel size of 201, representing a center frame and 100 frames on either side.
All inputs to the attention mechanism, i.e. the decoder hidden state and the encoder
outputs, were passed through a linear layers with an output size of 256. Distinct query,
key, and value projections, per Vaswani et al. (2017) are used, all of dimension 256. The
decoder was a single-layer LSTM with a hidden size of 512, and a linear layer projecting
the outputs to the number of characters.

Adjusting for memory constraints, batch sizes of 16 for full-precision and 8 for binarized
training were used. A baseline full-precision and binarized network were trained. For
the latter, only the LSTM layers were binarized, meaning the attention mechanism and
output linear projections in the binarized network was full-precision. This is the same as
in Ardakani et al. (2018). An Adadelta (Zeiler, 2012) optimizer with a starting learning
rate of 1 and ρ = 0.95 and ϵ = 1e−8 was used. Training was allowed to run for 72 hours,
with validation every 1000 steps. The model with the lowest validation loss was kept for
testing.

This experiment used a fork of an existing repository (Liu et al., 2019), originally built
as an end-to-end speech recognition toolkit. The fork extends this repository to include
BNNs.

7 Results & Discussion

This section presents and analyzes the results of the experiments discussed in Section 6.

32

7.1 Experiment 1: Simple CTC

The first experiment tests the viability of adapting LRBW to basic 1- or 2-layer LSTMs.
The performance of their full-precision baselines (Section 7.1.1) and binarized counter-
parts (Section 7.1.2 are compared and discussed here.

7.1.1 Training

Let us first begin with the training metrics. During training, the greedy-decoded char-
acter error rates (CER) were computed on the validation set after every 100 steps. The
architectures and their respective minimum CERs are recorded in Table 2.

full-precision bnn
CER step CER step

2-layer 0.1916 40.8K 0.7366 21.3K
2-layer (bidir) 0.1238 29.6K 0.5930 5.0K
linear proj 0.2647 41.3K 0.5094 6.9K
linear proj (bidir) 0.2385 13.9K 0.3918 7.1K

Table 2: Minimum CER calculations on the LibriSpeech "dev-clean" split on full-
precision and binarized ("bnn") networks. "2 layer" refers to a 2-layer LSTM network.
"linear proj" refers to a linear layer feeding into a single LSTM layer. "bidir" indicates
the use of bidirectional LSTMs. "CER" refers to the minimum CER, and "step" refers
to the training step after which this CER was achieved.

As one can see from Table 2, the added LSTM, rather than simple linear layer improved
training for full-precision netowrks. Curiously, the opposite is true of BNNs. In all
cases bidirectionality improved the networks’ performances. It should be noted that
bidirectionality and the use of LSTMs rather than linear layers come at the cost of
additional parameters. Not accounting for biases, swapping a fully-connected layer for an
LSTM multiplies the number of weights 8-fold, and bidirectionality doubles the number
of weights in an LSTM.

7.1.2 Comparing the full-precision and binarized during testing

For this comparison, the networks were used to compute outputs on the LibriSpeech "test-
clean" split. The outputs were decoded using beam search decoding on a 4-gram language
model built with the LibriSpeech text corpus, using a beam width of 500 and language
model weight of 5.0. The WER was then computed on the beam search outputs.

33

fp bin

2-layer 0.3084 0.9580
2-layer (bidir) 0.1576 0.9831
linear proj 0.6636 0.8777
linear proj (bidir) 0.3209 0.7152

Table 3: WER calculations on various architectures. "2 layer" refers to a 2-layer LSTM
network. "Linear proj" refers to a linear layer feeding into a single LSTM layer. "Bidir"
indicates the use of bidirectional LSTMs. "fp" indicates that the LSTMs used full-
precision weights, whereas "bin" means the weights are binary, trained with LRBW.

Due to the increased resource demand, BNN training underwent considerably fewer steps
than full-precision networks. Depending on the number of LSTM layers and bidirection-
ality, BNNs trained as much as 2.7 × slower than their respective full-precision counter-
parts.

7.2 Experiment 2: DeepSpeech

The full precision network achieved a minimum CER of 0.2827 after 34.1K training
steps. This is considerably higher than the best simple CTC results, and higher still
than the worst results. No specific reports of CER on the validation data is reported in
the original DeepSpeech publication (Hannun et al., 2014). However, these results are
remarkably worse than one would expect. A few reasons could include the use of single
time step feature vectors rather than context windows, the absence of biases, the smaller
hidden size (1024 rather than 2048), the much smaller datasets used in training, and the
smaller number of input features (23 rather than 80). These changes were mostly made
in compliance with the availability of training hardware.

Although such troubleshooting is not necessarily directly pertinent to the present re-
search, it is the hope that the reader can use this to better understand the vability of
binarization on certain architectures. Given that training BNNs is resource-intensive, the
choice of where to add storage complexity, in terms of input features, biases, or hidden
units, will be a trade-off that the reader must make in considering their own hardware
limitations.

Figure 6 Shows the greedy-decoded CER on the validation set of the binarized Deep-
Speech model after every 100 training steps. Note a rising CER to around 6.5, before
settling on a CER of 1.0, i.e. 100% at step 7.8K, where it remained until training stopped.
This represents the model learning to predict empty strings, whereas the high CERs co-
incide with long strings of random repeated characters. As there is no convergence, no
WERs on the test set were conducted.

34

Figure 6: CER by training step of the binarized DeepSpeech model.

7.3 Experiment 3: Encoder-Decoder + Attention

The baseline network exhibited convergence until training was attenuated (again, re-
source constraints), achieving a minimum validation loss of 0.4202 at step 44.6K. Nonethe-
less, the final CER on the validation set at the end of training was 0.1794, nearly 18%.
Despite these promising results, the binarized network failed to achieve a CER below
1. This is, by far, the most resource-demanding network, thereby only undergoing 7.2K
training steps. Again, testing such a network would not be of any use.

7.4 Discussion

Given that no BNNs were trained with performances anywhere near the results of their
full-precision counterparts, the hypothesis is rejected. Nonetheless, a number of take-
aways can be used to inspire future successes. They are discussed here.

Figure 7 plots the CERs of the BNNs trained in Experiment 1 (Section 6.2. It is apparent
that, of all the networks, only (d), namely the bidirectional linear projected network,
shows convergence. This ignores the spike around step 2,000. Although it is difficult
to see from the graph, there is a consistent increase in CER starting around step 7,000,
signalling the end of convergence and the beginning of overfitting. While this is the
clearest picture of convergence, there is potentially a case to be made for (b), i.e. the
bidirectional 2-layer LSTM, up until step 5,000. Starting around step 2,600, there is a
consistent decrease in CER, which may signal the potential for this network to better
converge with the proper tweakings. Note that the other two networks appear more-
or-less hopeless, with an affinity for CERs far greater than 100% (a) and random noise
punctuated by dead predictions, signalling empty predictions (b).

It appears that bidirectional LSTMs are the best bet for constructing LRBW ASR net-
works. Networks built thereupon have either achieved the greatest CERs in binary
training or hinted at convergence. This offers us insight into the importance of the tem-
poral dependencies in performing ASR. It may be tempting to select the best-performing
BNN in experiment 1, namely the bidirectional linear-projected network, as the only

35

(a) 2 layer (b) 2 layer bidir

(c) linear proj (d) linear proj bidir

Figure 7: Plots of the valid CERs over time-steps for the BNNs from Experiment 1.

promising contender. I would nonetheless caution the reader against discounting the less
performant BNN architectures. 39% is still a very high CER, and improvements that
benefit this network may very well benefit other architectures as well.

It appears that binarization has taken better to the linear projected networks in Ex-
periment 1 (6.2) than 2-layer LSTMs, despite the opposite being true of full-precision
networks. One would expect the LSTM’s greater number of parameters to be prefer-
able, especially given the BNN’s poverty of precision. This could have to do with the
difference in activation functions. Linear outputs are subject to the ReLU activation and
then renormalized to a mean of 0 and standard deviation of 1 before being binarized.
This normalization could possibly be superior to the LSTM output for the purposes of
binarization. The strategic use of normalization is suggested in Section 9.2 as a potential
approach to future research.

Given the superior performance of binarized LSTMs atop fully-connected layers, it is
surprising that the DeepSpeech model in Experiment 2 (Section 6.3, being remarkably
similar except for having a greater number of fully-connected layers and hidden units,
took so poorly to binarization. This may speak to a diminishing returns phenomenon,
whereby increasing the number of layers and/or input units ceases to improve binarized
LSTMs beyond a certain point, and begins to hamper their performance.

Figure 8 is a plot of the training and validation losses of the binarized attention network
from Experiment 3 (Section 6.4). Despite the losses being very large values (minimum
of 2.851 for validation), this curve could potentially suggest convergence. Alternatively,
7K steps may simply be too few to have a proper picture of the training. This will have
to be examined in research with resources that permit as much.

36

Figure 8: Training (blue) and validation (orange) losses of the binarized encoder-
decoder+attention model. Note that the smoother validation loss is due to the validation
loss’ only being evaluated at every 1000 steps, as opposed to every 100 for the training
loss.

It is possible that the inputs are too long and numerically dense for LRBW. The au-
thors conduct experiments with inputs of up to 1000 time steps, with a slight decrease
in performance as the number of steps increase. The input sequences in my experiments,
i.e. audio features, can be considerably longer. Additionally, these experiments inves-
tigate character-level language modelling on one-hot encoded vectors. This means that
the inputs are constrained to Nc possible values, Nc denoting the number of possible
characters. The sample space for speech features is considerably more dense, given that
each feature in a vector of Nf features can be one of 2P possible values, where P is the
numerical precision with which these features are represented.

The depth of ASR networks may just as well be a source of performance degradation.
The original implementation investigates the method on relatively shallow networks. In
the interest of applying this method to ASR, as has been discussed in Section 6.1, deeper
networks were used.

It stands to reason, also, that the viability of binarizing a given architecture relies on
some performance threshold. Architectures with lower baseline performances tended not
to demonstrate any convergence in binarized training.

The first and most obvious potential avenue to pursue would be adding more hidden
units. Many of the experiments in Ardakani et al. (2018) use networks with 1024 hidden
units, compared to the 512 in experiment 1 (Section 6.2). This was done in order to
cooperate with resource contraints, as well as the double-sized outputs of bidirectional
LSTMs, which Ardakani et al. (2018) does not utilize.

8 Conclusion

This work is a first attempt at the use of binarized LSTMs for end-to-end automatic
speech recognition (ASR). This has been done using the LRBW (Ardakani et al., 2018)

37

method, and adapted it to ASR with the inspiration of earlier attempts to apply BNNs to
ASR (Xiang et al., 2017; Qian and Xiang, 2019; Gao et al., 2021). It was the goal of this
research to produce a binarized network whose performance degradation with respect
to its full-precision counterpart was constrained to a relative WER increase of 15%.
Although this was not achieved, the experiments have made a number of contributions
to research in BNNs as well as in ASR. These contributions include:

• The use of BNNs has been tested for the first time on end-to-end ASR.

• A greater insight into the importance of temporal dependencies in recurrent ASR
has been achieved.

• The importance of numerical precision in representing speech features has been
better demonstrated.

• There now exists an open-source, modular, easy-to-use codebase for building and
training LRBW-based networks.

9 Future Work

Subsequent researchers now have a basis atop which they should seek to find a successful
LRBW ASR network. Such future research should experiment with the variables and
hyperparameters used in this research. These include:

• Finding the minimum number of parameters that can capture the information in an
ASR BNN. In other words, a hidden size of 512 may be too small. Doubling this to
1024 would still mean massive storage reductions, and would allow for much greater
detail, despite the binarization. This could also serve as a compromise between the
sizes of the fully-connected networks in Experiment 1 and the DeepSpeech-based
network in Experiment 2, as the size of the latter is speculated to be a hindrance
to the model’s performance.

• Using smaller datasets in the hopes of contraining the feature space such that it
can be captured with BNNs.

• Experimenting with normalization parameters, both within the binarized LSTM
cell, and when binarizing the data prior to passing it to the cell.

The following sections suggest broader avenues of future research.

9.1 Faster BNNs

The sheer amount of time it takes to train BNNs is a hindrance to the advancement
of research in the field. Improving the training speed of BNNs involves low-level paral-
lelization of the LSTM’s constituents. This entails a knowledge of C++ and computing
hardware that was quite simply beyond the scope of this research.

38

9.2 Normalization

As mentioned, LSTMs and their internal gates are notoriously sensitive to the distri-
butions of their inputs. Future work should seek to perform statistical evaluations that
consider the effects of normalization on training binarized LSTMs. Ardakani et al. (2018)
uses this tactic in developing the LRBW method, and future experiments could benefit
from extending this to ASR-specific problems, such as different speech features, their
respective distributions, the effects of normalizing them, etc.

Furthermore, per the use of batch normalization within the LRBW LSTM cell, future
work could investigate whether binarized LSTMs beenfit from batch normalization on
their binarized inputs, counter to the conventional wisdom (Ba et al., 2016).

9.3 Knowledge Distillation

Distilling knowledge from a large network to a smaller one is a tactic used frequently in
network compression. As discussed earlier, it has proven successful in binarizing networks
for hybrid ASR (Qian and Xiang, 2019). Given the results of the basic CTC experiments
discussed in Section 7, there is reason to believe that Knowledge distillation could afford
improvements. To understand this, we now consider the technicalities of knowledge
distillation.

Knowledge distillation uses the predictions from a larger, teacher network as labels in
training the smaller/compressed/quantized student network. In the case of Qian and
Xiang (2019), the teacher is a full-precision network and the student is its binarized
counterpart. This is helpful in that the student network learns not only the correct
labels, but also the interconnection between similar labels.

Consider the output of a network ŷ in a multi-class classification task. For the sake of
simplicity, let us consider that the probabilities are between 0 and 1 and sum to 1, and not
in log space. This distribution represents the probabilities of a given class. Represented
as a vector, these would be:

ŷ = {0.04, 0.01, . . . , 0.12}

The label y would be a one-hot vector, the value 1 being assigned to the index of the
correct class. The loss function would therefore encourage parameters that maximize the
output at the correct index and minimize them at the incorrect one.

However, if the label were itself a probability distribution from a more precise, more
robust, and better-trained network, then the loss function would not only encourage the
greatest probability at the correct index, but an output distribution that best represents
the given input. This has a number of advantages. For one, it distinguished between
"obvious" and "ambiguous" outputs. The student network can learn when an input
unambiguously belongs to a certain class, and when the label of the training example
is less clear. In other words, the student network is encouraged to seek which input
feature values are characteristic of which classes. This nuance is taken for granted in

39

large networks, but the ability to learn fine features is not necessarily a given in smaller
ones.

The other advantage is contextual awareness. The teacher network, having learned fea-
tures over many training steps across a variety of contexts, can predict outputs based not
only on input features, but surrounding inputs and/or outputs. In the case of CTC, this
would be the outputs ŷt reflecting the possible characters at a given time-step t, taking
into account acoustic features and their hidden representations at timesteps other than
t. This is especially nuanced in CTC-based ASR, where the predictions at t do not take
into account previous/future predictions. The teacher network has therefore learned to
predict the character based on the character predictions that "may" be made at time-
steps surrounding t. Again, while such detail may be available to larger networks, that
may very well not be the case with smaller ones.

9.4 Attention

To my knowledge, no work exists on an attention-specific binarization technique. Should
binarization eventually work on the encoder-decoder + attention model, the greatest
bottleneck, in terms of storage and computational power, would be the attention mod-
ule. This invites the opportunity to further shrink the network with binarized attention
modules.

Furthermore, transformer-based architectures (Vaswani et al., 2017) have come to occupy
much of the ASR landscape with models such as Wav2Vec 2.0 (Baevski et al., 2020) and
Conformer (Gulati et al., 2020). Transformers, built upon self-attention, an extension to
the attention module discussed in Section 3.3.3, could potentially see massive reductions
in terms of their computational footprint with the advent of binarized attention modules.

References
Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C.,

Casper, J., Catanzaro, B., Cheng, Q., Chen, G., Chen, J., Chen, J., Chen, Z.,
Chrzanowski, M., Coates, A., Diamos, G., Ding, K., Du, N., Elsen, E., Engel, J.,
Fang, W., Fan, L., Fougner, C., Gao, L., Gong, C., Hannun, A. N., Han, T., Johannes,
L. V., Jiang, B., Ju, C., Jun, B., Legresley, P., Lin, L., Liu, J., Liu, Y., Li, W., Li,
X., Ma, D., Narang, S., Ng, A., Ozair, S., Peng, Y., Prenger, R., Qian, S., Quan, Z.,
Raiman, J., Rao, V., Satheesh, S., Seetapun, D., Sengupta, S., Srinet, K., Sriram, A.,
Tang, H., Tang, L., Wang, C., Wang, J., Wang, K., Wang, Y., Wang, Z., Wang, Z.,
Wu, S., Wei, L., Xiao, B., Xie, W., Xie, Y., Yogatama, D., Yuan, B., Zhan, J., and
Zhu, Z. (2015). Deep speech 2: End-to-end speech recognition in english and mandarin.
33rd International Conference on Machine Learning, ICML 2016, 1:312–321.

Ardakani, A., Ji, Z., Smithson, S. C., Meyer, B. H., and Gross, W. J. (2018). Learning
recurrent binary/ternary weights. 7th International Conference on Learning Represen-
tations, ICLR 2019.

40

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

Baevski, A., Zhou, Y., Mohamed, A., and Auli, M. (2020). wav2vec 2.0: A framework
for self-supervised learning of speech representations. Advances in Neural Information
Processing Systems, 33:12449–12460.

Bahdanau, D., Cho, K. H., and Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. 3rd International Conference on Learning Representa-
tions, ICLR 2015 - Conference Track Proceedings.

Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., and Bengio, Y. (2016). End-to-end
attention-based large vocabulary speech recognition. IEEE international conference on
acoustics, speech and signal processing (ICASSP), pages 4945–4949.

Bello, I., Zoph, B., Vaswani, A., Shlens, J., and Le, Q. V. (2019). Attention augmented
convolutional networks. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 3286–3295.

Bengio, Y., Léonard, N., and Courville, A. (2013). Estimating or propagating gra-
dients through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5:157–166.

Biewald, L. (2019). Deep learning and carbon emissions. Towards Data Science.

Chan, W., Jaitly, N., Le, Q. V., and Brain, V. G. (2015). Listen, attend and spell. arXiv
preprint arXiv:1508.01211.

Chiu, C. C., Sainath, T. N., Wu, Y., Prabhavalkar, R., Nguyen, P., Chen, Z., Kannan,
A., Weiss, R. J., Rao, K., Gonina, E., Jaitly, N., Li, B., Chorowski, J., and Bacchi-
ani, M. (2018). State-of-the-art speech recognition with sequence-to-sequence models.
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing
- Proceedings, 2018-April:4774–4778.

Cho, K., van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014). On the properties
of neural machine translation: Encoder-decoder approaches. Proceedings of SSST 2014
- 8th Workshop on Syntax, Semantics and Structure in Statistical Translation, pages
103–111.

Chorowski, J., Bahdanau, D., Cho, K., and Bengio, Y. (2014). End-to-end continuous
speech recognition using attention-based recurrent nn: First results. arXiv preprint
arXiv:1412.1602.

Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., and Bengio, Y. (2015). Attention-
based models for speech recognition.

Cooijmans, T., Ballas, N., Laurent, C., Çağlar Gülçehre, and Courville, A. (2016). Recur-
rent batch normalization. 5th International Conference on Learning Representations,
ICLR 2017 - Conference Track Proceedings.

41

Courbariaux, M., Bengio, Y., and David, J.-P. (2015). Binaryconnect: Training deep
neural networks with binary weights during propagations.

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y., and Com, Y. U.
(2016). Binarized neural networks: Training deep neural networks with weights and
activations constrained to +1 or -1. arXiv preprint arXiv:1602.02830.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee.

Dong, L., Xu, S., and Xu, B. (2018). Speech-transformer: A no-recurrence sequence-to-
sequence model for speech recognition. ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings, 2018-April:5884–5888.

Edel, M. and Köppe, E. (2016). Binarized-blstm-rnn based human activity recognition.
2016 International Conference on Indoor Positioning and Indoor Navigation, IPIN
2016.

Gao, S., Wang, R., Jiang, L., and Zhang, B. (2021). 1-bit wavenet: Compressing a gen-
erative neural network in speech recognition with two binarized methods. Proceedings
of the 16th IEEE Conference on Industrial Electronics and Applications, ICIEA 2021,
pages 2043–2047. Need IEEE access to get ahold of this one.

Gardner, E. and Derrida, B. (1988). Optimal storage properties of neural network models.
Journal of Physics A: Mathematical and General, 21:271.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedfor-
ward neural networks. In Teh, Y. W. and Titterington, M., editors, Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, volume 9
of Proceedings of Machine Learning Research, pages 249–256, Chia Laguna Resort,
Sardinia, Italy. PMLR.

Golea, M. and Marchand, M. (1993). On learning perceptrons with binary weights.
Neural Computation, 5(5):767–782.

Graves, A. (2006). Connectionist temporal classification: Labelling unsegmented se-
quence data with recurrent neural networks. ACM International Conference Proceeding
Series, 148:369–376.

Graves, A. and Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent
neural networks. pages 1764–1772.

Graves, A., Mohamed, A. R., and Hinton, G. (2013). Speech recognition with deep
recurrent neural networks. ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings, pages 6645–6649.

Gulati, A., Qin, J., Chiu, C. C., Parmar, N., Zhang, Y., Yu, J., Han, W., Wang, S., Zhang,
Z., Wu, Y., and Pang, R. (2020). Conformer: Convolution-augmented transformer for
speech recognition. Proceedings of the Annual Conference of the International Speech
Communication Association, INTERSPEECH, 2020-October:5036–5040.

42

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger, R.,
Satheesh, S., Sengupta, S., Coates, A., and Ng, A. Y. (2014). Deep speech: Scaling
up end-to-end speech recognition. arXiv preprint arXiv:1412.5567.

He, Y., Sainath, T. N., Prabhavalkar, R., McGraw, I., Alvarez, R., Zhao, D., Rybach, D.,
Kannan, A., Wu, Y., Pang, R., Liang, Q., Bhatia, D., Shangguan, Y., Li, B., Pundak,
G., Sim, K. C., Bagby, T., Chang, S. Y., Rao, K., and Gruenstein, A. (2018). Stream-
ing end-to-end speech recognition for mobile devices. ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing - Proceedings, 2019-May:6381–
6385.

Hermann, K. M., Kočiský, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M.,
and Blunsom, P. (2015). Teaching machines to read and comprehend. Advances in
Neural Information Processing Systems, 2015-January:1693–1701.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computa-
tion, 9:1735–1780.

Hou, L., Yao, Q., and Kwok, J. T. (2016). Loss-aware binarization of deep networks.
5th International Conference on Learning Representations, ICLR 2017 - Conference
Track Proceedings.

Hou, L., Zhu, J., Kwok, J., Gao, F., Qin, T., and Liu, T.-y. (2019). Normalization helps
training of quantized lstm. Advances in Neural Information Processing Systems, 32.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,
M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016). Binarized
neural networks. Advances in neural information processing systems, 29.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. 32nd International Conference on Machine
Learning, ICML 2015, 1:448–456.

Kang, M.-J. (2020). Comparison of gradient descent for deep learning. Journal of the
Korea Academia-Industrial cooperation Society, 21(2):189–194.

Kim, J., Hwang, K., and Sung, W. (2014). X1000 real-time phoneme recognition vlsi
using feed-forward deep neural networks. ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings, pages 7510–7514.

Kim, S., Hori, T., and Watanabe, S. (2017). Joint ctc-attention based end-to-end speech
recognition using multi-task learning. ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings, pages 4835–4839.

43

Kingma, D. P. and Ba, J. L. (2014). Adam: A method for stochastic optimization. 3rd
International Conference on Learning Representations, ICLR 2015 - Conference Track
Proceedings.

Kukačka, J., Golkov, V., and Cremers, D. (2017). Regularization for deep learning: A
taxonomy. arXiv preprint arXiv:1710.10686.

Köhler, H., Diederich, S., Kinzel, W., and Opper, M. (1990). Learning algorithm for a
neural network with binary synapses. Zeitschrift für Physik B Condensed Matter 1990,
78:333–342.

Liu, A. H., Sung, T.-W., Chuang, S.-P., yi Lee, H., and shan Lee, L. (2019). Sequence-to-
sequence automatic speech recognition with word embedding regularization and fused
decoding.

Liu, X., Cao, D., and Yu, K. (2018). Binarized lstm language model. NAACL HLT 2018 -
2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies - Proceedings of the Conference, 1:2113–
2121.

Lu, L., Zhang, X., Cho, K., and Renals, S. (2015). A study of the recurrent neural
network encoder-decoder for large vocabulary speech recognition. In Sixteenth Annual
Conference of the International Speech Communication Association.

Mishra, R., Gupta, H. P., and Dutta, T. (2020). A survey on deep neural network
compression: Challenges, overview, and solutions. arXiv preprint arXiv:2010.03954.

Ott, J., Lin, Z., Zhang, Y., Liu, S.-C., and Bengio, Y. (2016). Recurrent neural networks
with limited numerical precision. arXiv preprint arXiv:1608.06902.

Palaz, D., Collobert, R., and Magimai-Doss, M. (2013). Estimating phoneme class con-
ditional probabilities from raw speech signal using convolutional neural networks. Pro-
ceedings of the Annual Conference of the International Speech Communication Asso-
ciation, INTERSPEECH, pages 1766–1770.

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. (2015). Librispeech: An asr
corpus based on public domain audio books. ICASSP, IEEE International Conference
on Acoustics, Speech and Signal Processing - Proceedings, 2015-August:5206–5210.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala,
S. (2019). Pytorch: An imperative style, high-performance deep learning library. In
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,
R., editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc.

Qian, Y. M. and Xiang, X. (2019). Binary neural networks for speech recognition. Fron-
tiers of Information Technology Electronic Engineering 2019 20:5, 20:701–715.

44

Raffel, C., Luong, M.-T., Liu, P. J., Weiss, R. J., and Eck, D. (2017). Online and
linear-time attention by enforcing monotonic alignments. Proceedings of the 34th In-
ternational Conference on Machine Learning, pages 2837–2846.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). Xnor-net: Imagenet
classification using binary convolutional neural networks. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 9908 LNCS:525–542.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations
by back-propagating errors. Nature, pages 533–536.

Rupali, M., Chavan, S., and Sable, G. S. (2013). An overview of speech recognition using
hmm international journal of computer science and mobile computing an overview of
speech recognition using hmm. IJCSMC, 2:233–238.

Sainath, T. N., Kingsbury, B., Mohamed, A. R., and Ramabhadran, B. (2013). Learn-
ing filter banks within a deep neural network framework. 2013 IEEE Workshop on
Automatic Speech Recognition and Understanding, ASRU 2013 - Proceedings, pages
297–302.

Scheidl, H., Fiel, S., and Sablatnig, R. (2018). Word beam search: A connectionist
temporal classification decoding algorithm. Proceedings of International Conference
on Frontiers in Handwriting Recognition, ICFHR, 2018-August:253–258.

Schneider, S., Baevski, A., Collobert, R., and Auli, M. (2019). wav2vec: Unsupervised
pre-training for speech recognition. arXiv preprint arXiv:1904.05862.

Simons, T. and Lee, D. J. (2019). A review of binarized neural networks. Electronics
2019, Vol. 8, Page 661, 8:661.

Solla, S. A. and Winther, O. (1998). Optimal perceptron learning: an online bayesian
approach.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of Ma-
chine Learning Research, 15(56):1929–1958.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with
neural networks. Advances in Neural Information Processing Systems, 4:3104–3112.

Trehan, D. (2020). Gradient descent explained. Towards Data Science.

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalch-
brenner, N., Senior, A., and Kavukcuoglu, K. (2016). Wavenet: A generative model
for raw audio. arXiv preprint arXiv:1609.03499.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Łukasz
Kaiser, and Polosukhin, I. (2017). Attention is all you need. Advances in Neural
Information Processing Systems, 2017-December:5999–6009.

45

Watanabe, S., Member, S., Hori, T., Kim, S., Member, S., Hershey, J. R., and Hayashi,
T. (2017). Hybrid ctc/attention architecture for end-to-end speech recognition. IEEE
Journal of Selected Topics in Signal Processing, 11:1240–1253.

Xiang, X., Qian, Y., and Yu, K. (2017). Binary deep neural networks for speech recog-
nition.

Xu, C., Yao, J., Lin, Z., Ou, W., Cao, Y., Wang, Z., and Zha, H. (2018). Alternating
multi-bit quantization for recurrent neural networks. 6th International Conference on
Learning Representations, ICLR 2018 - Conference Track Proceedings.

Yang, Y.-Y., Hira, M., Ni, Z., Chourdia, A., Astafurov, A., Chen, C., Yeh, C.-F., Puhrsch,
C., Pollack, D., Genzel, D., Greenberg, D., Yang, E. Z., Lian, J., Mahadeokar, J.,
Hwang, J., Chen, J., Goldsborough, P., Roy, P., Narenthiran, S., Watanabe, S., Chin-
tala, S., Quenneville-Bélair, V., and Shi, Y. (2021). Torchaudio: Building blocks for
audio and speech processing. arXiv preprint arXiv:2110.15018.

Yuan, C. and Agaian, S. S. (2021). A comprehensive review of binary neural network.
arXiv preprint arXiv:2110.06804.

Zeiler, M. D. (2012). Adadelta: An adaptive learning rate method. arXiv preprint
arXiv:1212.5701.

Zeyer, A., Irie, K., Schlüter, R., and Ney, H. (2018). Improved training of end-to-end
attention models for speech recognition. Proceedings of the Annual Conference of the
International Speech Communication Association, INTERSPEECH, pages 7–11.

Zhang, Y., Chan, W., and Jaitly, N. (2017). Very deep convolutional networks for end-to-
end speech recognition. ICASSP, IEEE International Conference on Acoustics, Speech
and Signal Processing - Proceedings, pages 4845–4849.

46

	Introduction
	Background
	On the term binarization
	Basic hardware implications
	Neural Network Basics
	Matrix multiplications, bit operations, and BNNs

	Related Works
	Binarized Neural Networks
	Straight Through Estimator
	BinaryConnect

	BNNs for ASR
	End-to-End Speech Recognition
	Connectionist Temporal Classification
	Encoder-Decoder
	Encoder-Decoder + Attention

	Binarizing Recurrent Units
	Learning Recurrent Binary/Ternary Weights

	Learning Recurrent Binary Weights
	The anatomy of an LSTM cell
	Adding Batch Normalization

	Research Question and Hypothesis
	Experiments
	Deviations from the Original LRBW Experiments
	Input Features
	Bidirectionality

	Experiment 1: Simple CTC
	Experiment 2: DeepSpeech
	Experiment 3: Encoder-Decoder with Attention

	Results & Discussion
	Experiment 1: Simple CTC
	Training
	Comparing the full-precision and binarized during testing

	Experiment 2: DeepSpeech
	Experiment 3: Encoder-Decoder + Attention
	Discussion

	Conclusion
	Future Work
	Faster BNNs
	Normalization
	Knowledge Distillation
	Attention

