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Abstract

While end-to-end ASR systems have evolved to achieve great performance in mono-
lingual speech recognition in many languages, researchers have tried to improve the
performance of these systems further with several different approaches. For exam-
ple, researchers have found potential ways to leverage the end-to-end architecture
for multilingual code-switching speech recognition by fine-tuning pre-trained mod-
els on multilingual datasets directly (Lovenia et al., 2022). Because the previous
attempts focused on higher-resourced language pairs such as Mandarin and English,
this thesis tests if training end-to-end ASR systems based on self-supervised learning
models with multilingual data directly can improve multilingual ASR performances
for lower-resourced language pairs such as Frisian and Dutch as well. It was found
that fine-tuning monolingual end-to-end models with code-switching dataset can
achieve good results. Additionally, researchers have also found that the hidden
representations generated by the intermediate layers in the neural network encode
certain acoustic features (Pasad et al., 2021). This thesis also proposes using out-
puts from the intermediate layer to train a language identification system that can
measure the language integration of code-switching utterances. Based on previous
research on multilingual, code-switching capable ASR systems (Baevski et al., 2020;
Bentum, 2022; Tseng et al., 2022; Yılmaz et al., 2016), a language identification
system that can indicate the level of language integration of a word should be able
to improve the accuracy of code-switching ASR further. However, as the experi-
ment in this thesis revealed, a simple LID model for very similar language pairs
such as Frisian and Dutch does not produce great results. It is possible that using a
LID module in building a truly multilingual speech recognition software is not the
best approach for languages that have many similarities. It also reveals more future
topics in the multilingualism research field in finding out more features that human
listeners use to identify the dialect or languages being spoken.
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Chapter 1

Introduction

With the development of artificial intelligence and machine learning, the perfor-
mance of Automatic Speech Recognition (ASR) systems has reached a high point
for higher-resource languages. End users can easily rely on products such as Google
Assistant, Alexa, or Siri to facilitate some of their daily tasks. While a lot of ASR
frameworks brand themselves as “multilingual”, what they mean is that the ASR
systems can recognize languages from the list provided that it is the only language
used in the utterance. However, the reality of daily language use for multilingual
speakers is that these speakers frequently alternate the language they use when talk-
ing to a multilingual interlocutor. A true multilingual ASR system should be able
to recognize multiple languages in the same utterance. To achieve true multilingual
ASR, the system will need to be able to handle code-switching utterances.

Code-switching is the language use phenomenon where a language user alternates
the use of different languages in the same utterance. As will be elaborated in the
literate review, code-switching scholars have hypothesized that language switching
is not a binary distinction between loanword (total assimilation) or code-switching
(minimal assimilation) (Appel & Muysken, 1987). For languages that have been
in language contact for long periods of time, it can be relatively challenging for
even native bilingual speakers to determine if a foreign word is a loanword or a
code-switching. Here the term foreign word is used very loosely in that it could
include foreign vocabulary that entered the language at any point of the language
development process. They may be a word that looks and sounds like they are
from another language, i.e. retaining some features of the original language such
as spelling or pronunciation; or they may be a word that entered the vocabulary
for a long time that people don’t even realize it has foreign roots. With the wide
variety of foreign words present in any language, we should treat code-switching as
a gradient phenomenon, a spectrum ranging from most integrated (loanwords) to
least integrated (insertional code-switching). In the context of the present study,
the language contact phenomenon contributes to the challenges in the language
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identification (LID) task for multilingual ASR systems: the ASR system has a hard
time “picking” the optimal downstream language-specific ASR module to produce
the correct transcription. The basic idea, essentially, is that if the LID module
can identify the code-switching words correctly, it can help pick out the most suit-
able downstream ASR module so that the ASR system can produce more accurate
transcriptions in code-switching speech.

Developing ASR systems with current machine learning methods is an extremely
data-heavy task. There are a limited number of language pairs that can generate the
data required for developing true multilingual ASR systems. This thesis will look
at two language pairs: Mandarin-English and Frisian-Dutch. As two of the most
resource-abundant languages in the world, Mandarin and English get a considerable
amount of attention from universities and companies owing to the large bilingual
speaker populations worldwide. Hence many of the new advancements in ASR and
LID are first made in these two languages. On the other hand, language pairs
with fewer speakers should not be ignored. The linguistic landscape in Europe is
perfect for conducting research and development in this field. Frisian is a language
spoken in the north of the Netherlands. While it holds the status of one of the
Netherlands’ official languages, it is undoubtedly an under-resourced language. Since
the country speaks Dutch in most official settings and most Frisian speakers are only
literate in Dutch, Frisian speakers need to code-switch to Dutch on the daily basis.
As descendants of the West-Germanic language, Frisian and Dutch are not only
closely related, but they also have gone through extensive language contact due to
economical, political, and geographical factors. These factors all contribute to the
significant challenges in measuring language integration.

While end-to-end ASR systems have evolved to achieve great performance in
monolingual speech recognition in many languages, researchers have made several
attempts in improving the accuracy of the ASR systems further. Language model
decoding is a common method used in conjunction with the popular wav2vec 2.0
architecture (2020) to reduce the word error rates (WER). Specific to code-switching
and multilingual ASR, researchers have also found potential ways to leverage the
same end-to-end self-supervised learning architecture for multilingual code-switching
speech recognition for higher-resource language pairs (Lovenia et al., 2022). This
thesis tests if the same methodology, training end-to-end ASR systems based on self-
supervised learning models with multilingual data directly, can improve multilingual
ASR performances for lower-resourced languages as well.

Language identification (LID) techniques have been a popular approach to solv-
ing code-switching and multilingual speech recognition. Previous attempts in lan-
guage identification models focused on manual feature engineering to generate speech
representations suitable for the LID task. Recently, researchers have also found that
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the hidden representations generated by the intermediate layers in the neural net-
work encode certain acoustic features (Pasad et al., 2021). This thesis also proposes
using outputs from the intermediate layer to train a language identification system
that can measure the language integration of code-switching utterances. Based on
architectures of multilingual, code-switching capable ASR systems (Baevski et al.,
2020; Bentum, 2022; Tseng et al., 2022; Yılmaz et al., 2016), a language identi-
fication module is expected to provide an indication on where a word lies on the
language integration spectrum. If such an experiment is successful, the language
identification module could be a valuable addition to multilingual speech recogni-
tion software in enhancing performance by decreasing the errors caused by words
with similar pronunciation or loanwords.

This thesis is organized as follows. Chapter two provides an overview of the
background literature. Chapter three proposes the method used in this thesis while
also including the datasets used and replication works. Chapter four evaluate the
results and discuss the implications. Finally, the thesis concludes with a brief sum-
mary of the work as well as future directions for code-switching speech recognition
and language identification research.
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Chapter 2

Literature Review

To structurally explain the background literature, this chapter is organized into four
main sections. Section one provides a basic overview of the theoretical background
for analyzing the code-switching phenomenon in linguistics, especially including re-
search on the phonetics and phonology of code-switching. Additionally, the section
also formally defines the technical terms used in this project such as loanwords,
code-switching, matrix language, embedded language, and language score. Section
two takes a deeper dive into the language pairs being investigated. Section three
introduces the automatic speech recognition frameworks for traditional monolingual
applications. Section four examines the issues in multilingual speech recognition
while studying topics specific to the language pairs that this thesis focuses on. After
a short summary of the chapter, the research questions and the the hypotheses are
presented.

2.1 Code-switching
Code-switching (CS) is the language use phenomenon where a speaker alternates
the use of languages in the same utterance. Due to the abundance of approaches in
the CS field, we need to define some technical terms to avoid confusion. The matrix
language, for the purpose of the present study, can be considered the language that
comprises the majority of the utterance. It is sometimes also called base language in
other literature (Muysken, 1995). The embedded language is the other language(s)
in the utterance in addition to the matrix language. It can also be referred to as
the guest language. For example, consider the sentence below:

(1) Sometimes
sometimes

I’ll
I’ll

start
start

a
a

sentence
sentence

in
in

English
English

然后
then

用
use
汉语
Mandarin

说
say
完.
PERFECT

“Sometimes I’ll start a sentence in English and finish in Mandarin.”

Inter-sentential and inter-clausal code-switches are relatively more straightfor-
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ward in both their syntax and phonology. Example (1) is an inter-clausal code-
switch adapted from the title sake sentence appeared in Poplack (1980). We can see
that the Mandarin sentence occupies the second half of the sentence and sits on one
of the sentence boundaries. Both inter-clausal and inter-sentential code-switching
occupy a sentence boundary or an utterance boundary. Hence, it is possible for the
speaker to follow English syntax and phonology in the first half and then switch to
Mandarin syntax and phonology in the second half. Intra-sentential code-switching,
however, is comparatively more complicated. CS researchers have proposed that
code-switching is not strictly categorical. It may be more intuitive to consider the
variety of code-switching to be on a spectrum.

(2) 你
you
会
will
主动
active

code-switch
code-switch

吗?
QUES?

“Do you actively code-switch?”

The italicized compound word is the embedded language, English, and the rest of
the sentence is written in Chinese, the matrix language. Depending on the context,
a common differentiating factor in distinguishing several kinds of code-switching is
the switch location. Inter-sentential code-switching is the CS that happens between
sentences, i.e. the speaker “switches” to another language after finishing a sentence.
Inter-clausal code-switching is very similar to inter-sentential code-switching but
the switch point is between clauses instead of complete sentences. Intra-sentential
code-switching is a bit complex in that the switch could be just one word, the nonce-
borrowing coined by Poplack et al. (1988), or it could be a phrase. Example (2)
is a sentence with single-word code-switching. Because the code-switch segment is
surrounded by matrix language, a complete switch to English syntax and phonology
is not only not necessary but cumbersome for the speaker. But the speaker usually
needs to mark the language switch for the listener to parse the multilingual sentence
correctly.

In the past four decades, linguists have proposed several extensive syntax models
for code-switching (Muysken, 1995; Myers-Scotton, 1993; Poplack, 1980). Table 2.1
compares the three main camps of code-switching syntax literature.

Myers-Scotton Muysken Poplack
ML + EL constituent Insertion (Nonce) borrowing

EL-islands Constituent insertion
ML-shift Alternation Flagged switching

ML-turnover Code-switching under equivalence
(Style shifting) Congruent lexicalization (Style shifting)

Table 2.1: Schematic comparison of code-switching and -mixing typologies in three
traditions (Muysken, 2000)
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Because this thesis primarily concerns the phonetic and phonology side of code-
switching, we will not need to dive too deep into the syntax of code-switching.
But it is nonetheless important that we establish a theoretical ground that different
code-switched segments have different levels of integration into the matrix language.
The Matrix Language-Frame (MLF) Model proposed by Myers-Scotton (1993) is
especially suitable for describing intra-sentential code-switching with its granularity
and consistency. The different levels of integration for each layer of the model can be
considered to be a “spectrum”. On the one side, a monolingual utterance sits at one
end of the spectrum as total integration; on the other side, an utterance containing
insertional code-switching, i.e. an inter-sentential code-switching utterance, sits at
the other end of the spectrum as with no integration into the matrix language.

2.1.1 The Sounds of Code-switching

Code-switching scholars have long focused on the syntax and morphology side of
the phenomenon. It was only not too long ago that the phonetics and phonology of
code-switching were systematically studied. One of the fundamental works (Bullock,
2009) in the field presented the notion of phonology as a metric of lexical borrowing:
established borrowings are usually highly integrated into the phonology of the matrix
language. An example Bullock (2009) gave for such borrowing is the assimilation of
“VapoRub” to vivaporú into Spanish. This borrowing would sit on the assimilated
end of the spectrum of non-assimilated to assimilated forms. Bullock (2009) also
pointed out that the main difference between CS and borrowing is that the source
of the lexical items was different. Namely, CS segments come from the embedded
language vocabulary whereas borrowing comes from the matrix language vocabulary.

Linguists also found that for bilingual human listeners, code-switching behav-
ior seems to have a specific onset feature that enables the listeners to process the
perception easier (Piccinini & Garellek, 2014; A. Shen et al., 2020). For example,
A. Shen et al. (2020) found evidence suggesting that, in English-to-Mandarin code-
switching, the fundamental frequency (f0) depends on the tone of the code-switched
Mandarin segment and the location of the code-switched segment. Piccinini and
Garellek (2014) showed that Spanish-English speakers produced different f0 con-
tours for code-switched sentences and in the code-switching audio to anticipate a
code-switch. While previous literature suggested a longer processing time for code-
switch utterances, evidence from the experiment in Piccinini and Garellek (2014)
indicates that listeners process Spanish-English code-switch utterances with prosodic
cues as fast as monolingual English utterances. Similar observations of changes in
vowel quality and stop Voice Onset Time (VOT) were made by other experimen-
tal studies (Elias et al., 2017; Muldner et al., 2019; Piccinini & Arvaniti, 2015).
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If code-switch features such as prosody, vowel quality, and stop quality can help
human listeners in their perceptions of multilingual speech, perhaps the same holds
for machine speech recognition.

These topics in code-switching are very crucial for the development of true mul-
tilingual automatic speech recognition systems. ASR systems cannot be truly mul-
tilingual unless they can tackle all kinds of code-switching in addition to language-
specific speech recognition. On a high level, there seems to be a parallel between the
theoretical models of code-switching perception and multilingual speech recognition
software. While earlier ASR software defaulted to monolingual operation, increas-
ingly the successful ASR systems have multilingual capabilities built in. Starting
from a crude combination of monolingual systems coupled with a language switch
at the input to a multilingually trained hybrid ASR system to the current trend of
joint LID and end-to-end architecture. The evolution of multilingual ASR mirrors
the development in our understanding of the multilingual brain.

However, it must be noted that the current language identification approaches,
even with streaming end-to-end speech recognitions, do not yet have the capability
of leveraging the extra information from the previous few frames in the frame-level
language identification. Perhaps one of the future directions the multilingual ASR
community can take is to incorporate theoretically grounded code-switching per-
ception research into account when designing the next generation of code-switching
detection systems.

2.2 Speech Recognition for the Language Pairs
Investigated

2.2.1 Mandarin & English

Mandarin and English are two of the most resource-abundant languages in the world.
Both languages are spoken widely in the world and both boast extremely high num-
bers of native (L1) speakers and second language (L2) speakers: 919,856,040 L1
speakers and 198,728,000 L2 speakers for Mandarin; 372,862,090 L1 speakers and
1079,609,320 L2 speakers for English (Eberhard et al., 2022). In the meantime,
with a large number of Mandarin-speaking students and workers living in English-
speaking countries, we can assume that there are more L1 Mandarin L2 English
(L1M-L2E) speakers than L1 English L2 Mandarin (L1E-L2M) speakers.

Mandarin and English belong to different language families, Sino-Tibetan and
Indo-European respectively, and went through drastically different historical devel-
opment. There are a couple of crucial differences between the two languages. While
Mandarin is a tonal language and has four tones, English is not. The two languages
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also have drastically different writing systems. Both Mandarin and English also
went through extensive language contact with other languages in the world and
hence have a large borrowed vocabulary in both languages.

A large overlap between Mandarin and English speakers facilitates code-switching
between the two languages. As pointed out by H. Liu (2019), code-switching between
Mandarin and English in China is connected to the large population of L2 English
learners in China and the cultural contact between Chinese people and the Western
world. While there is no doubt code-switching is a language behavior that is impos-
sible to avoid, the attitude toward Mandarin-English code-switching is not always
positive. For example, some Mandarin speakers may think that Mandarin-English
code-switching can harm language integrity. Different population groups may also
hold different attitudes toward CS in their daily lives due to exposure, proficiency in
English, etc. These attitudes can be found in speakers of any language in the world.
However, these studies on code-switching attitudes focused on code-switching from
Mandarin to English, the other direction, from English to Mandarin was less stud-
ied. Anecdotal evidence suggests that while code-switch from Mandarin to English
is common both in and outside of China, code-switching from English to Mandarin
sounds less natural to proficient speakers. And code-switching from English to Man-
darin is limited to certain specific scenarios such as language instruction settings or
cultural exchange settings (i.e. talking about Chinese food). This discrepancy in
attitude could be attributed to the fact that there are significantly more L1M-L2E
speakers in the world.

2.2.2 Frisian & Dutch

Frisian and Dutch are two languages spoken in the Netherlands. The speaker pop-
ulation of Frisian and Dutch is much smaller in sharp contrast to Mandarin and
English: 873,000 Frisian speakers and 16,000,000 Dutch speakers (Eberhard et al.,
2022). Language resources such as corpora for the two languages are also more
sparse than the more resourceful pair. But with the intertwined history, Frisian-
Dutch code-switching is very much worth investigating.

Frisian was spoken widely along the coast of the North Sea. As the figure shows
below, Frisian is regarded to be the closest relative to English in the West Ger-
manic languages whereas Dutch (Netherlandic) and German are grouped into a sis-
ter cluster called Netherlandic-Germanic. However, it is important to keep in mind
that languages and dialects do not have clear borders. When you cross the border
from the Netherlands to Germany, for example, the language spoken by the locals
does not make the big jump from Standard Dutch to Standard German. While
its historical significance is notable, at present, only a small number of speakers
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Proto-Germanic

West-Germanic

Anglo Frisian (Ingæonic)

English Frisian

Netherlandic-German

Netherlandic German

Figure 2.1: The traditional language family tree with Frisian, Dutch, German, and
English

still remain. There are three main dialects of Frisian: West Frisian, spoken in the
Friesland province in the Netherlands, East Frisian (Saterland Frisian), and North
Frisian, spoken in small parts of North Germany. We must make the distinction
that Frisian in this thesis from here on strictly refers to West Frisian, as the other
two Frisian varieties are not mutually-intelligible with West Frisian. Hence the other
two dialects are not included in the dataset or supported by the ASR software.

Descended from West-Germanic, Frisian bears similarities with English, Dutch,
and German. While English and Frisian branched off as Anglo-Frisian from Dutch
and German (Netherlandic-German), due to the geographical proximity to Dutch,
Frisian received a significant amount of loanwords in various aspects of the language
throughout its development. Gooskens and Heeringa (2012) proposed using Leven-
shtein distance to measure the distance between various dialects of Frisian with other
Germanic languages. Gooskens and Heeringa (2012) found that, while Frisian shares
a genetic relationship with Old English historically, it has grown closer to Dutch
more than any other language in the West-Germanic group. The Town Frisian vari-
ant spoken in Leeuwarden, the capital of Friesland, is even more similar to Dutch
than other Frisian dialects. This finding shows that language contact plays a more
important role in languages being similar to each other than the genetic relationship
in historical linguistics.

The interwoven relationship between Frisian and Dutch means code-switching
between the two languages is not just common but also necessary in some situations.
With conservation efforts by the Friesland provincial government and the Dutch
national government, Frisian is no longer on the verge of extinction. However,
for a long time, Frisian was considered a lingua rustica that carries less prestige
compared to Dutch (Markey, 1980). Despite its relatively small speaker population,
however, Frisian still has a considerable amount of dialects, possibly due to a lack
of standardized written form for a long period. Most of the speakers can only speak
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Frisian and only a small percentage can write in Frisian. Frisian gained its official
language status in Friesland in 1956. It is possible to use Frisian in official settings
and schools from then. This helped the preservation of the language. There are
Frisian-instruction schools in the province so that young children can learn Frisian
in an immersive setting. There has been an effort on producing Frisian textbooks,
however since there have already been Dutch standardized textbooks, the textbook
used by schools that engage in Frisian instructions are still in Dutch (“Language
Plan Frisian 2030 –Frisian, for Now and Later,” n.d.).

2.3 Relevant Automatic Speech Recognition Tech-
nologies For The Present Study

An informal extrapolation from the state of the art reveals the following few ASR
technologies. The following ASR toolkits and frameworks also serve as the technical
backbone of the methodology used in this thesis.

The Hidden Markov Model Toolkit (HTK), by its namesake, is a toolkit for
researching and developing hidden Markov models (HMM). Hidden Markov mod-
els are probabilistic models that can efficiently use statistics to reduce the model
size and improve speed. While HMMs have been around for decades, HTK still
forms the backbone of popular tools used in phonetics research such as the FAVE
forced alignment tool (Rosenfelder et al., 2015). First introduced in 2009, Kaldi
is a research-focused toolkit for speech recognition (Povey et al., 2011). Based on
Gaussian Mixture Models (GMM), Kaldi GMM and HMM are frequently used to-
gether as GMM can be used to generate the output probability of the HMM process.
The recipe-based development system in Kaldi also helped in the quick iteration and
replicating methods for different datasets. In addition to the traditional GMM mod-
els, Kaldi recipes can also make use of deep neural network (DNN) models to achieve
even better performance.

PyTorch (Yang et al., 2022) is a popular machine learning library in Python.
In addition to this lower-level library, there are more user-friendly higher-level ma-
chine learning libraries relying on the PyTorch implementation such as fastai and
Transformers from HuggingFace. All of these Python libraries enabled researchers
to quickly and easily iterate and experiment on newer ASR frameworks. These
machine learning libraries have integration with the popular wav2vec 2.0 model
(Baevski et al., 2020) for ASR and audio research. HuggingFace, apart from provid-
ing higher-level machine learning libraries suitable for speech recognition research,
also hosts open-access datasets and pre-trained models. The transformers library
(Wolf et al., 2020) builds on top of the frameworks such as PyTorch and Tensor-
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Flow to enable quick evaluation, testing, and iteration for machine learning models.
The standardized dataset format and streamlined inference tools also make ASR
development considerably more accessible. This thesis not only uses the Common
Voice dataset, the ASCEND dataset (Lovenia et al., 2022) and multiple pre-trained
models published on HuggingFace, but hosts the completed ASR demonstrators on
HuggingFace as well.

End-to-end models and self-supervised learning are two of the most recent trends
in many subfields of machine learning. The wav2vec 2.0 model (Baevski et al.,
2020) is an end-to-end model that was pre-trained using unannotated speech data
for downstream tasks. The basic architecture of the model consists of a multi-layer
convolutional network to extract features and then feeds the feature representa-
tions through a transformer architecture before passing the intermediate outputs
through a quantization module (Baevski et al., 2020). Baevski et al. (2020) com-
pared the performance of the model architecture with 12 transformer blocks (the
base model) and 24 transformer blocks (the large model). Both models achieved
great performances but the base model consumed significantly less time and com-
putational resources in the pre-training process. Using un-labeled data such as
the Librispeech corpus to pre-train the model first, the wav2vec 2.0 model demon-
strated that self-supervised pre-training could provide great performance improve-
ments in downstream ASR tasks while also reducing the amount of labeled data
needed. These advantages make wav2vec 2.0 a great model for implementing ASR
in low-resource languages. The Cross-lingual Speech Representation (XLSR) model
is a pre-trained model with the wav2vec 2.0 Large architecture with a 53-language
multilingual dataset combined from the Common Voice, BABEL, and Multilingual
LibriSpeech corpora. Many wav2vec 2.0 models fine-tuned for higher- and lower-
resourced languages alike used the XLSR model as their fine-tuning base. These
fine-tuned models achieved great performance without needing a large amount of
training data thanks to the self-supervised pre-training. This thesis will leverage
the XLSR model and its fine-tuned derivatives as well.

Regarding the future development in ASR technologies, Hannun (2021) made the
observation that semi-supervised learning such as the techniques used in wav2vec
models (Baevski et al., 2020) is likely to improve on the state-of-the-art. Self and
semi-supervised learning can leverage a large amount of un-annotated data, some-
what avoiding the data scarcity issue faced by many subfields of machine learning.
Hannun (2021) also pointed out that the current performance metric for ASR sys-
tems, Word Error Rate (WER), and its various derivatives, will not be as impactful
as it was before. While the last point may hold true for higher-resourced languages,
I personally think the metric still has use in evaluating and testing ASR systems for
lower-resourced languages.
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2.4 Multilingual ASR
Traditionally, Automatic Speech Recognition systems can recognize utterances in
one language. With the advancements in the field, multilingual Automatic Speech
Recognition (MultiASR) is becoming a reality with several different implementa-
tions. The earliest attempts at MultiASR implemented a language identification
module serving as a switch to feed the input data to a combination of several mono-
lingual ASR systems. When correctly implemented, this kind of system can yield
great results by virtue of the great monolingual performances of the individual ASR
systems. But the system increases in size linearly with the number of languages
added. As end-to-end ASR gained popularity, newer approaches started investigat-
ing single models trained on multilingual datasets.

We have seen newer frameworks such as Deep Speech (Hannun et al., 2014)
and Deep Speech 2 (Amodei et al., 2015) that claimed great performances in more
than one language under monolingual testing scenarios. Although the architecture
is slightly out-of-date right now, we can still say that early end-to-end models such
as Deep Speech 2 can perform great for monolingual utterances in the languages it
was trained on (Mandarin and English). However, due to the unbalanced nature of
training datasets, the result is often not as good as monolingual ASR systems.

Most recently, Tseng et al. (2022) proposed using self-supervised learning (SSL)
pre-trained models such as wav2vec 2.0 (Baevski et al., 2020) to serve as speech
representation extractor in addition to the classic Connectionist Temporal Classifi-
cation (CTC) end-to-end speech recognition framework.

In addition to using the final output from a pre-trained model as input for lan-
guage identification modules, there might be another more efficient way of obtaining
language features from the raw audio signal. The intermediate transformer layers
of the wav2vec 2.0 model were used as encoders in automatic speech recognition
tasks. While literature studying the intermediate representations of the wav2vec
2.0 model is sparse, Pasad et al. (2021) found that the representations generated by
each wav2vec 2.0 intermediate layer each encode slightly different information. The
information encoded follows a trend from low-level, such as phonetic information, to
high-level, word meaning. For example, Fan et al. (2021) investigated speaker veri-
fication and language identification using the representations generated from these
intermediate layers as input features. Fan et al. (2021) found that lower layers can
better distinguish speakers or languages.

2.4.1 Battling data scarcity

Code-switching detection has always been a hard topic in ASR. Several big chal-
lenges come with the topic. One of the biggest challenges is the lack of data. It is
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very hard for people to produce natural monolingual sentences in normal circum-
stances already, as much sociolinguistic research has shown. It is even harder to elicit
code-switching bilingual speech. Such difficulty is magnified in lower-resourced lan-
guages. To solve the data scarcity issue, researchers adopted several different ways
to increase the effective data size such as data augmentation (Yilmaz et al., 2018).
In addition to the classic data manipulation techniques, Chang et al. (2019) pro-
posed using Generative Adversarial Networks (GAN) with Reinforcement Learning
(RL) to generate realistic code-switching sentences for data augmentation. While
Chang et al. (2019) focused on generating new code-switching text data, it would
be possible to generate code-switching audio data to facilitate the development of
code-switching speech recognition systems. With limited resources and time, this
thesis will not attempt using a similar method to generate more code-switching au-
dio but leave the topic for future researchers to explore. However, as mentioned
before, self-supervised learning models such as wav2vec 2.0 can leverage unlabeled
data and cross-lingual training to make the best use of the limited labeled datasets.
Hence this thesis will focus on the various applications of the wav2vec model.

2.4.2 Mandarin-English Speech Recognition

Software companies based in countries where Mandarin and English are spoken con-
tributed to some of the most influential driving forces in the development of ASR and
TTS software. Researchers from companies like Baidu, Google, Meta, Apple, and
academic institutions have been working on datasets and algorithms since the begin-
ning of the field. For example, the DeepSpeech 2 model from 2015 (Amodei et al.,
2015) obtained similar or better performance compared to human transcriptionists
in many speech-to-text tasks including read speech, accented speech, noisy speech in
English and Mandarin. Granted, the authors only tested the model with monolin-
gual utterances from different corpora, we can see the great potential in developing
a true multilingual speech recognition system for Mandarin-English code-switching
speech. However, with the trend to use more and more data in neural network
training, we have to note that code-switching dataset is still a niche in the field. Re-
searchers focusing on Mandarin-English bilingual code-switching speech recognition
and language identification algorithms have relied on a limited number of datasets
such as the SEAME (D.-C. Lyu et al., 2010).

As mentioned in the sections before, Mandarin and English have seen more
resources in the development of multilingual speech recognition implementations.
However, as resource abundant as the Mandarin and English languages are, most of
the earlier ASR frameworks focused on getting better performance in monolingual
speech recognition tasks. After all, it was not until relatively recently (the past
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decade (Amodei et al., 2015; Hannun et al., 2014)), that the monolingual perfor-
mance of ASR systems become comparable to expert human transcriptions. The
SEAME corpus (D.-C. Lyu et al., 2010) was one of the first code-switching corpora
that were used for ASR development. While there are other Mandarin-English code-
switching corpora such as H.-P. Shen et al. (2011), the availability of corpora was
not guaranteed. The next chapter will dive deeper into the dataset availability issue
further.

2.4.3 Frisian-Dutch Speech Recognition

In contrast to the Mandarin-English pair, Frisian-Dutch receives less attention from
companies. Most of the developments of Frisian-Dutch ASR are led by non-profits,
the regional government, and research institutions. However, the development of
the ASR field in the direction of low-resourced languages brought several exciting
advancements in Frisian-Dutch training datasets and speech recognition systems.
The Fryske Akademy, the scientific research center focusing on Frisian culture, has
undertaken multiple projects on speech technology applications for Frisian. There is
a project on Dutch-Frisian code-switching speech recognition on the Frisian Audio
Mining Enterprise project (FAME!) (Yilmaz et al., 2018). The corpus consists of
radio broadcasts in Dutch and Frisian. More recent attempts in improving ASR
performance for the language pair by (Bentum, 2022) created code-switching lan-
guage tags for the Frisian Council Meeting Corpus (FCMC) to train a bilingual
speech recognizer. In addition to the two academic-focused Frisian-Dutch corpora,
Mozilla’s Common Voice project also has both Frisian and Dutch recordings publicly
available for experiments.

The FAME! project (Yilmaz et al., 2018) collected speech data of the Omrop
Fryslân. A speech recognition system for transcribing the speech in radio broadcasts
was developed. The system is capable of recognizing the bilingual code-switching
speech of the local broadcast anchors. In 2021, the Frisian Council Meeting Corpus
(FCMC) project (Bentum, 2022), under the Fryske Akademy’s consultant, was cre-
ated for the speech recognition system for its namesake. Along with more data, the
new corpus also tackled challenges such as speech recognition in domain-specific set-
tings (i.e. government debates) and extensive code-switching. The Common Voice
corpus, on the other hand, only includes monolingual utterances while benefiting
from crowd-sourcing data from enthusiastic native speakers of Frisian and Dutch.
The methodology chapter will provide more complete descriptions of the corpora
used.

The most recent implementations of Frisian-Dutch multilingual speech recogni-
tion systems by Bentum (2022) and Yılmaz et al. (2019) used Kaldi (Povey et al.,
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2011) to quickly iterate their development of the ASR software. In the results pre-
sented by Bentum (2022), the authors mentioned that some of the Word-Error-Rate
(WER) metrics are slightly misleading in the context. They argue that while the
best WER achieved in the experiment is still relatively high at 29.59%, some portions
of the errors are so minor that they should be excluded from the metric. Three cate-
gories of these minor errors were presented in the study: Compound words, Spelling
variations, and Abbreviations. To better understand why the authors consider these
errors minor, we will examine each one in detail below:

Since the FCMC corpus consists of government meeting recordings, a lot of
domain-specific compound words in the legal field appear in speech. The ASR
system sometimes breaks compound words up into their components. While this
behavior does not hinder the comprehensibility of the transcript produced by the
ASR system, the performance evaluation metric takes it into account. Secondly, due
to the similar pronunciation of certain Frisian and Dutch words, the ASR system
could attribute an erroneous language tag to the word and is penalized on perfor-
mance metrics. The absence of a uniform spelling system also contributes to spelling
variation errors. As mentioned in Markey (1980), Frisian, even to this day, still has
quite a few inter-dialectal variations. With variations in spelling leaning toward a
more “Frisian” spelling versus a more “dutch” spelling, Bentum (2022) argue that
the language model cannot possibly take all the variations of the same word into
account. Lastly, abbreviations are a classic challenge for ASR systems to conquer
due to the variations in the pronunciations. The error metric could simply be a
slight difference between the automatic transcription and the human transcriptions.

2.4.4 Language Identification Task

At the moment, end-to-end speech recognition frameworks, even for resourceful lan-
guages such as Mandarin and English, do not have great performance for code-
switching speech compared to monolingual ASR as shown in Lovenia et al. (2022).
Developing language identification methods to improve code-switching speech recog-
nition could prove to be a fruitful attempt for researchers in the field. In the past
decade, the trend is to use a mix of acoustic features and language models to im-
prove the accuracy of language identification tasks and hence improve code-switching
speech recognition performances. Attempting to solve the issue of code-switching
detection in Mandarin-English speech recognition, Zhang (2012) first proposed to
integrate the LID module into an already trained Gaussian Mixture Model (GMM)
speech recognizer. Zhang (2012) used features extracted from the wave audio files
to get a language feature GMM model and trained a support vector machine (SVM)
as a LID module. Yilmaz et al. (2018) used data augmentation techniques to in-
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crease the code-switching data available for training a code-switching ASR system.
Yılmaz et al. (2019) leveraged multi-graph decoding techniques to decrease the re-
liance on the language models and hence get better performance on the monolingual
utterances.

More recently, with the shift to end-to-end ASR systems, newer language iden-
tification techniques emerged. Li et al. (2019) joined the popular CTC ASR model
with a LID system and confirmed such a method could benefit code-switching ASR
performance. Stacking 80-dimensional Mel filterbank energies on three frames at
one time to train the CTC model and the LID module, the model trained on code-
switching speech data was able to achieve 84% switching detection accuracy. Basing
on the findings of Li et al. (2019), Tseng et al. (2022) first proposed leveraging self-
supervised speech representation models and CTC end-to-end ASR frameworks to
improve ASR performance for code-switching tasks. Tseng et al. (2022) found that
self-supervised learning models such as wav2vec 2.0 can learn hidden representa-
tions that contain language identities. And this joint implementation can improve
Mandarin-English code-switching speech recognition. This method has a few advan-
tages over the previous attempts: 1. It can conduct frame-wise LID; 2. It showed
that a model pre-trained on other languages can also encode language information
for drastically different languages; 3. Additional language identification modules can
still be beneficial to end-to-end ASR models. To conduct frame-level LID, Tseng
et al. (2022) used Montreal Forced Aligner (McAuliffe et al., 2017) to find the word
boundary and jointly trained the LID module with the CTC module to test the
code-switching ASR performance. Tseng et al. (2022) compared using a simple fully
connected (FC) layer and a bidirectional Long Short-Term Memory (BLSTM) as the
language ID prediction head. BLSTM performed significantly better (2̃0%) than the
simpler structure of the FC layer.

Implementing a LID module similar to Tseng et al. (2022) in Frisian-Dutch
would help us see if SSL speech representations can distinguish between very simi-
lar languages. Following similar implementations of MultiASR in more resourceful
language pairs, I believe that the ASR performance for code-switching bilingual
Frisian-Dutch speech could also be improved.

Summary
This chapter first defined the technical terms used in this thesis. I also provided an
overview of the code-switching literature, especially focusing on the sounds of code-
switching. The second section briefly introduced the language pairs investigated
in this thesis. Section three outlined some of the relevant ASR implementation
frameworks. Section four touches on one of the biggest challenges in multilingual
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ASR and mentions previous ASR research on Mandarin-English and Frisian-Dutch
as well as presenting the audio-based language identification methods. This chapter
brings us on the path to the methods followed in this thesis.

2.5 Research question
Following the literature background explained earlier in the chapter, the research
question for the thesis is two-fold:

1. Does fine-tuning an end-to-end ASR system with a multilingual dataset bring
performance benefits to under-resourced language pairs such as Frisian and
Dutch?

2. Can intermediate layers of the end-to-end neural network architecture in ASR
be used to train a language identification system for closely related languages
such as Frisian and Dutch?

Hypotheses

1. Following Lovenia et al. (2022), I hypothesize that the performance of a
Frisian-Dutch bilingual code-switching capable speech recognition system based
on wav2vec 2.0 framework (Baevski et al., 2020) could benefit from direct
training with a multilingual corpus such as the FAME! corpus (Yılmaz et al.,
2016). If the experiment result suggests otherwise, it is possible that the
significantly more data afforded by the resourceful languages provided the
performance enhancement.

2. Following Bullock (2009), Piccinini and Garellek (2014), A. Shen et al. (2020),
and Tseng et al. (2022), and Pasad et al. (2021), because there are human
recognizable patterns in code-switching between languages, sometimes native
speakers have an intuition of whether a word is a loanword or code-switching.
However, for language pairs that are as closely related as Frisian and Dutch,
such phonetic cues may not be enough for the native speakers to make the
correct judgment. I hypothesize that novel machine learning methods may be
able to help us identify the features of code-switching transition. Intermediate
representations from a deep neural network can be used to train a language
classification model. If the results suggest otherwise, it could be due to the
features generated by the network are not suitable for the language identifi-
cation task. It could also suggest that native speakers rely on more than just
acoustic features to perceive loanwords and code-switching.
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Chapter 3

Datasets and Methodology

This chapter examines the datasets and outlines the methodology used in this the-
sis. the first section describes the datasets used in this thesis. Section two intro-
duces the methods for investigating multilingual speech recognition. Based on previ-
ous research on Dutch-Frisian code-switching and Mandarin-English code-switching
speech recognition, I adopted modern ASR implementation techniques and frame-
works such as Deep Neural Network (DNN), and wav2vec 2.0. I followed the Kaldi
(Povey et al., 2011) recipe used in the FAME! project (Yılmaz et al., 2016, 2019) and
the FCMC project(Bentum, 2022). I also followed a similar training methodology
used by Lovenia et al. (2022) to improve bilingual speech recognition performance
by fine-tuning the wav2vec 2.0 model (Baevski et al., 2020) directly with bilingual
speech. The last section explains how the intermediate representations from the
previously mentioned wav2vec 2.0 models are used to train a language identification
system.

3.1 Data
Unlike monolingual speech corpora, there is a significantly lower number of mul-
tilingual and code-switching corpora available for speech technology research and
product development. On the Mandarin-English front, the SEAME corpus (D.-C.
Lyu et al., 2010) has been the corpus of choice for Mandarin-English code-switching
researchers for over a decade. This is because it was the only consistently avail-
able Mandarin-English code-switching corpus for a long time. Lovenia et al. (2022)
pointed out that, while there were more Mandarin-English code-switching corpora
such as CECOS (H.-P. Shen et al., 2011) in the past, many were no-longer publicly
available due to communication chains for corpus access being broken, or the cor-
pora were only developed for specific purposes. On the bright side, the Hong Kong
University of Science and Technology released a new corpus called A Spontaneous
Chinese-English Dataset (ASCEND) (Lovenia et al., 2022). ASCEND comprises
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10.62 hours of spontaneous speech recorded in a casual environment in a speech lab.
The corpus contains both inter-sentential and intra-sentential code-switching. Of
all ten hours of recorded speech, they found roughly half contained code-switching.

For the lower-resourced pair, the situation is slightly different. While the resource
is limited, the corpus development process is more organized thanks to the Fryske
Akademy. The first Frisian-Dutch corpus, FAME! (Yılmaz et al., 2016) was released
by researchers affiliated with the Fryske Akademy in 2016. The corpus consists of
around 11 hours of speech, 8 hours of which are Frisian and the rest in Dutch. The
annotation of the corpus, apart from transcriptions, also included speaker labels.
Yılmaz et al. (2016) noted that there are a total of 3837 code-switching utterances
in the entire speech corpus including inter-sentential and intra-sentential CS. The
majority (75.6%) of these CS utterances are Frisian speakers switching to Dutch in
a Frisian majority utterance. A very small percentage (2.5%) is CS in the other
direction. The remaining bunch is what Yılmaz et al. (2016) call a mixed-word.
Yılmaz et al. (2016) defined the term as neither Frisian nor Dutch.

The Frisian Council Meeting Corpus (FCMC) (Bentum, 2022), compiled in 2020,
fills the vacuum of spontaneous speech dataset by collecting audio samples from
government council meetings in Friesland. It includes 26 hours of Frisian speech and
23 hours of Dutch speech totaling 49 hours of recordings. The company Humain’r
provided the transcription for the development of a multilingual ASR system to use
in the council meeting environment. Due to the nature of spontaneous speech and
the recording environment, the audio data is significantly noisier compared to lab
recordings. The manual transcriptions provided by the FCMC corpus contain 44
data cleaning tags, which we used to clean up the transcription text. Removing
unrecognizable audio is crucial for the training of a successful ASR system. Doing
so removed one-third of the dataset, reducing the total size from 49 hours to 33
hours of speech. The transcriptions, instead of including cleaning labels and speaker
labels like the FAME! corpus, contain language labels, borrowing labels, as well as
code-switching direction labels identifying the matrix language and the embedded
language. To provide these additional labels, Bentum (2022) developed a text-based
language identification system trained on the FCMC transcriptions that ‘tags’ each
word that was recognized. They also combined the language model trained on
FAME! and FCMC to form an interpolated LM for better performance without
retraining the model on a combined dataset.

3.2 Replication
I want to replicate findings in previous literature and establish them as a baseline
for comparison with the original experiment. This section will roughly outline the
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method used in the previous implementations of Frisian-Dutch ASR and Mandarin-
English ASR and how and if I was able to replicate their results.

3.2.1 Frisian-Dutch ASR with Kaldi

Following the Kaldi (Povey et al., 2011) recipe provided by the FAME! and FCMC
projects, I replicated the performance they found in the Frisian-Dutch multilingual
ASR system. Yılmaz et al. (2016) used 39-dimensional MFCC features including
the delta and delta-delta features to train a DNN network in Kaldi. Bentum (2022)
adopted a similar approach while improving the performance of the original DNN-
based ASR system by using a more recent tDNN training. While most of the
codebase was present along with the dataset, or publicly available, replicating both
implementations have proved challenging. Neither project included sufficient doc-
umentation that enables easy replication. I was not able to re-trace their work
step-by-step.

With regards to the wav2vec 2.0 models, I found a publicly available pre-trained
wav2vec 2.0 XLSR fine-tuned on Frisian by Wietse de Vries. Initially, I wanted to
fine-tune the model from scratch again with the updated Common Voice datasets
since the dataset has received more data since a year ago. However, the public model
still performed better than the model I fine-tuned. During the training process, I
found that the model I trained performed significantly worse with a WER of over
30% compared to the quoted WER of 16.25% of the public model. Since no docu-
mentations exist on how the public Frisian model was fine-tuned, it seems unlikely
that I can replicate or exceed the existing performance in the short timeframe of this
thesis. Hence I opted to fine-tune the public model directly with FAME! data. In
addition to just using the CTC module in wav2vec 2.0 in the final decoding step, I
also wanted to test the performance of using a language model in wav2vec 2.0 model
decoding. While the FAME! corpus included a language model trained for the Kaldi
implementation, due to the discrepancy in language model formats, I decided to
create a new n-gram language model specifically on the text data available to me.

3.2.2 Mandarin-English ASR with wav2vec 2.0

As mentioned in the literature review chapter, Lovenia et al. (2022) offered an
interesting direction in developing multilingual ASR systems: fine-tuning wav2vec
2.0 framework with bilingual dataset directly. Lovenia et al. (2022) established basic
multilingual code-switching ASR performance baselines from three differently pre-
trained models: the XLSR multilingual pre-trained model (Conneau et al., 2020),
and models fine-tuned for ASR using the English corpus and the Mandarin corpus
of Common voice. They found the best performance in the Chinese pre-trained
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wav2vec 2.0 model. The model pre-fine-tuned on Mandarin Common Voice achieved
the best performance out of the three. Lovenia et al. (2022) hypothesized that the
slight performance discrepancy could be attributed to the fact that the ASCEND
corpus consists of more than 50% of Mandarin speech. The larger vocabulary size
in the model pre-trained in Mandarin provided it with performance advantages.

3.3 Improving ASR performance for wav2vec 2.0
models

While older ASR systems relied on separate acoustic models and language models to
function, the newer trend in both the industry and academia is to leverage the much
simpler structure of End-to-End systems. Wav2vec 2.0 has been the ASR model
of choice for researchers in the field. We have seen impressive monolingual ASR
performance using wav2vec 2.0 models. While wav2vec 2.0 model can decode the
audio signal directly using CTC outputs with great performance, it is also possible
to use a language model to rescore the outputs. Before using datasets to fine-tune
the models, I want to test if language model decoding can help further reduce the
WER for the Frisian wav2vec 2.0 model. Then, since Lovenia et al. (2022) showed
that fine-tuning wav2vec 2.0 models with code-switching speech directly can improve
the code-switching ASR performance, testing if such findings also hold for minority
language pairs is the logical next step. In the meantime, I will also experiment if
further fine-tuning the models with different data can also improve the performance.

3.3.1 Language Model Decoding

An informal search revealed that language models can help solve problems in pro-
ducing more complete words. I used the transcription data from the Common Voice
and FAME! corpora to train a language model with the KenLM library. Instead
of making an interpolated language model like Bentum (2022), following their ob-
servation that the corpus text could be further cleaned, I decided that assembling
a language model with a cleaned joint corpus text may yield better performance.
The trained language model is tested in conjunction with the fine-tuned wav2vec
2.0 models from the XLSR model. We can see if the language model improves the
performance for ASR tasks by comparing the testing results between the models
with or without language models.
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3.3.2 Fine-tuning with FAME! corpus

Similar to the models investigated in Lovenia et al. (2022), there are three different
pre-trained models available for fine-tuning using the FAME! corpus, a multilingual
corpus. The first one is the pre-trained wav2vec2-XLSR-53 model. The second
one is a wav2vec 2.0 model fine-tuned for Frisian ASR tasks by Wietse de Vries1.
The last one is a wav2vec 2.0 model fine-tuned for Dutch ASR tasks by Jonatas
Grosman2. The latter two models are fine-tuned for monolingual ASR from the
wav2vec 2.0 XLSR model using the Mozilla Common Voice corpus. To recap, the
Mozilla Common Voice Corpus is a multilingual speech dataset that is produced
and verified by native speakers of the respective language. The Frisian dataset
consists of 1200 hours of recorded speech, 49 of which are verified. The Dutch
dataset has 1200 hours of recorded speech, 99 of which are verified. To fine-tune
the three different models, I initially used a Jupyter Notebook template for fine-
tuning wav2vec 2.0 models for under-resourced language ASR tasks. But soon it
became clear that using a Python script is much more efficient. Hence, I adapted
the ASCEND training script to fine-tune the Frisian pre-trained wav2vec 2.0 model
and the Dutch pre-trained wav2vec 2.0 model with the FAME! corpus. Because
of the FAME! corpus was optimized for training in Kaldi, I conducted preliminary
processing to load FAME! into a HuggingFace compatible dataset format.

After all fine-tuning steps were finished, I compare the performance metrics
from the two different models. With the observations from the ASCEND training
process, I hypothesized that, because FAME! contains more Frisian speech than
Dutch speech, the performance of the Frisian fine-tuned model will be better in
comparison. However, it should be noted that Mandarin and English output tokens
are very different, Chinese cfileharacters versus the English alphabet. It is also
possible that the performance advantages of a model that is more proficient in one
language do not carry to the Frisian-Dutch speech.

Training details:

I followed Lovenia et al. (2022) and re-used the codebase provided by the paper.
Adam optimizer and Connectionist Temporal Classification(CTC) loss were used.
The training hyperparameters were inherited from the parent models. The models
were fine-tuned using the GPU nodes with a single V100 GPU accelerator on the
Peregrine computing cluster at the University of Groningen. The models were all
trained for up to 100 epochs with early stopping.

1The pre-trained model could be found at https://huggingface.co/wietsedv/wav2vec2-large-
xlsr-53-frisian

2The pre-trained model could be found at https://huggingface.co/jonatasgrosman/wav2vec2-
large-xlsr-53-dutch

25



Gaofei Shen Chapter 3. Datasets and Methodology

3.4 Code-switching/loanword Classification
After finalizing the experiment on fine-tuning wav2vec 2.0 models on more data,
the next step is to implement a language identification model to conduct the code-
switching/loanword classification task. To do so, I extract the intermediate layer
representations of the audio from the Common Voice dataset and train a simple
model for language identification. While the majority of the data is only bilingual,
Frisian, and Dutch, code-switching to other languages is also present in the datasets
investigated. In the case of Frisian-Dutch code-switching, English terms could ap-
pear in the Frisian-Dutch speech. This issue, however, will not be accounted for
during the LID model training because of limitations in the dataset.

Since the language identification system focuses on code-switching/loanword
classification, it needs to operate on the word level instead of the higher utterance
level. Hence I need to align the audio file with the transcriptions first to extract the
timestamps for the word boundary for each word in the audio. Forced alignment is a
method used to align transcriptions to audio files. The wav2vec2 model can also be
used to conduct forced alignment thanks to its CTC architecture. Generating the
start and end times of each letter in the utterance, I can extract the timestamps of
the word boundaries and feed the corresponding audio segment into the LID model.

The language identification model is implemented in PyTorch with a single Long
Short-Term Memory (LSTM) layer. The input features were generated using the
wav2vec2-XLSR model. The LID model is trained using a combined Common Voice
Dutch and Frisian dataset with a language label (locale as defined in the Common
Voice format) as the output. The feature extraction module simply extracts an
intermediate layer of the pre-trained ASR model for Frisian and Dutch. According
to Pasad et al. (2021), layer 10 is chosen as the intermediate layer due to it being
the layer that encodes the highest amount of phone identity. I encourage future
researchers to test using LID task performance using different intermediate layers of
the wav2vec 2.0 XLSR model. At the same time, a more sophisticated model archi-
tecture may achieve better performance, but due to time and resource constraints,
I leave that to future researchers to investigate further.

3.4.1 Challenges

Language contact: Frisian and Dutch share a long history together (Markey,
1980; Steurs et al., 2022). And because of the shared history, Frisian and Dutch
went through extensive language contact, and the low-level phonetic features of
the two languages could appear very similar. Performing code-switch/loanword
classification or even traditional language identification tasks for Frisian and Dutch
may be significantly more difficult compared to more distant language pairs such as
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Mandarin-English where the orthography and pronunciation are both significantly
different.

Problems with the FCMC corpus: While the FCMC corpus offers a significant
amount of new data for training, the corpus itself is not optimal for training ASR
or TTS systems directly. Due to the difficulty in replicating the findings using the
codebase provided by Bentum (2022), I decided to refrain from using the FCMC
corpus for ASR system training. Future researchers may be able to get complete
instructions from the programmers in the project to clean and pre-process the audio
and transcription data so it would be better suited for spoken language applications.

3.5 Ethical Considerations
This thesis project utilizes multiple corpora in the speech recognition, code-switching,
and multilingualism domain. The ASCEND Mandarin-English corpus (Lovenia et
al., 2022) and the Common Voice Multilingual Speech Corpus were available as open-
access datasets on HuggingFace. The SEAME Mandarin-English corpus (D.-C. Lyu
et al., 2010) was purchased by a joint grant from the University of Groningen Li-
brary and Campus Fryslân. The FAME! Frisian-Dutch corpus (Yılmaz et al., 2016)
and the FCMC Frisian-Dutch corpus (Bentum, 2022) were acquired specifically for
research done in this thesis from the respective data controller of the corpora. This
project conforms to the applicable licensing agreement for all the licensed datasets.
Data processing was all completed on the Peregrine High-performance Computing
cluster at the University of Groningen.

Code-switching is sometimes regarded as having less prestige. The study aims
to not reinforce any stereotype associated with code-switching such as the language
users doing so sound less intelligent or code-switching breaches language integrity.
Considering the status of Frisian as a minority and under-resourced language, the
focus on explaining code-switching is crucial. People code-switch for a variety of
reasons, none of which is unnatural. To minimize this risk, chapter one provides a
clear scientific background to the code-switching phenomenon. And the interpreta-
tion of the results from the current study aligns with the theoretical advancements
in multilingualism research field.

Summary
The first section of this chapter examined the datasets used in the thesis in several
different aspects from availability, content, and quality. The second section covered
the process necessary for replicating the previous findings. Section three introduced
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methods for investigating the first research question in improving code-switching
speech recognition performance for lower-resourced language pairs by fine-tuning
end-to-end models directly with code-switching speech data. Section four outlined
the steps for creating a language identification module based on the hidden em-
beddings generated from state-of-the-art end-to-end models. Finally, section five
touched on ethical considerations in undertaking this thesis.
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Chapter 4

Results & Discussion

This chapter presents the results from replicating experiments in previous literature
and the findings from tthe original experiments outlined in the last chapter while also
provides discussions on the implications of the results. The chapter is structured
as follows: section one briefly shows the replication results. The second section
presents findings on experimentations on the wav2vec 2.0 models with language
model decoding and fine-tuning the models with code-switching dataset. Lastly,
section three shows the experiment results of the language identification module
training.

4.1 Replication
FAME! with Kaldi: I was able to match the performance of the Kaldi systems
implemented by Bentum (2022) and Yılmaz et al. (2016) using the same recipes.
However, the codebases used by the researchers for these projects are not very struc-
tured. It was not immediately clear how researchers referencing these literatures can
easily replicate their results. One of the other interesting issues I ran into during
replication was that the Kaldi framework has certain characteristics that affect test-
ing the implementation on Peregrine, a High-performance Computing (HPC) cluster
available at the University of Groningen. I was able to overcome the problems with
certain drawbacks such as increased training time by leveraging the powerful dis-
crete GPUs and tuning the training scripts according to the recommendations by
the HPC staff.

ASCEND with wav2vec 2.0: After following the documentation provided by
Lovenia et al. (2022), I was able to match the performance metrics presented in
the paper. The codebase provided by the research team is easy to follow and well
structured. Table 4.1 compares the replication results with the original experimental
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results. 1

Replication experiment results
Pre-training Validation Test

language MER(%) CER(%) MER(%) CER(%)
Chinese 30.61 25.84 25.66 21.93
English 35.20 27.55 29.19 22.94

ASCEND original experiment results
Pre-training Validation Test

language MER(%) CER(%) MER(%) CER(%)
Chinese 30.37 25.72 27.05 22.69
English 35.77 28.07 28.72 22.78

Table 4.1: Result comparison between replication and the original paper.

While there are publicly available datasets and models for Frisian-Dutch bilin-
gual ASR systems, it is not trivial for a new researcher to replicate their findings due
to limited documentation. Some papers did provide a codebase hosted on GitHub.
But the codebase is rather unorganized and does not include clear instructions on
how a reader could easily reproduce the experiment. Even worse, several other con-
ference proceedings on ASR implementations cited in this thesis did not provide
any documentation or codebase for replication. For junior researchers in the field,
it takes us too much effort just to find relevant resources to replicate existing stud-
ies. These kinds of practices hinder the healthy development of the research field.
Replicability is crucial for any research project, especially for fields in computa-
tional technologies. Replicating the previous findings provides a concrete baseline
performance of the ASR system before testing the new implementations.

4.2 Experiments on wav2vec 2.0

4.2.1 Language Model Decoding

Applying language model decoding in conjunction with the wav2vec 2.0 CTC output
did not provide us with better performance. Instead, language model decoding de-
stroyed the normal performance achieved by the model only fine-tuned on Common
Voice Frisian data as shown in table 4.2.

The unexpected poor result is most likely caused by the extremely limited text
data provided by the Common Voice dataset and the FAME! corpus. With only
around 9000 utterances in Common Voice Frisian and similar amount of hours of

1The reproduced model can be found at https://huggingface.co/techsword/ASCEND-wav2vec2-
chinese-zh-cn.
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Model WER (%) CER (%)
Frisian wav2vec2 - No LM 15.91 4.17

Frisian wav2vec2 - With LM 100.86 83.46

Table 4.2: Comparison between direct decoding and language model decoding per-
formance using the monolingual wav2vec 2.0 Frisian model.

utterances in FAME!, there is simply not enough text data for a successful language
model. It is possible that training a language model on a combined dataset joining
FAME!, FCMC, Common Voice along with other text data sources could provide
real improvement. However, due to the time and resource constraints for this thesis
project, I leave that to future researchers to investigate further.

4.2.2 FAME! with wav2vec

Encouraged by the performance from the ASCEND baseline ASR systems, I adopted
the same methodology used by Lovenia et al. (2022) to fine-tune the wav2vec 2.0
models (the Frisian model, Dutch model, and the XLSR model) using the FAME!
corpus. However, I found several challenges that came with the corpus. First, due
to the multilingual nature, the corpus had many language tags surrounding code-
switched words. The corpus also occasionally includes code-switching outside of
Frisian and Dutch, e.g. switch to English. A simple text pre-processing script was
used to remove the extra information from the transcriptions. Second, the size of
the FAME! corpus is roughly on par with the size of the ASCEND corpus in terms
of hours of speech, the amount of Frisian speech and Dutch speech is not quite
balanced as mentioned in Chapter 3.

Initially, the logs produced by the training script showed some peculiar behaviors
of the neural network during fine-tuning the XLSR directly with the FAME! corpus.
The WER and validation loss from each training small batch decreased at first,
showing a promising trend just like the ASCEND baseline. But, after only 10
epochs, both the WER and validation loss started ramping back up and finally
stabilized at very high numbers. This could be the result of training hyperparameters
not being optimized.I observed a similar trend in the training loss during the fine-
tuning of the Frisian model, but the evaluation for the checkpoint around 7000 steps
produced good WER results. Fine-tuning the Dutch ASR models did not produce
similar results, instead, the loss and error rate followed a nice downward curve
like the results in Lovenia et al. (2022).2 ultimately the Frisian and Dutch models
successfully completed training and produced sensible evaluation metrics otherwise,
I believe the issue with the XLSR model was because the hyperparameters inherited

2The loss graphs can be found in the appendix.

31



Gaofei Shen Chapter 4. Results & Discussion

from the XLSR were not optimal for fine-tuning with the present dataset. Due
to various constraints, I did not test fine-tuning the XLSR model with different
hyperparameters. But since fine-tuning XLSR directly with code-switching data
produced worse performance compared to the models already fine-tuned for ASR
tasks as shown in Lovenia et al. (2022), we can assume the same also holds for
other language pairs. Even if the XLSR model was fine-tuned successfully, the ASR
performance of the model would not be on par with the other two.

In sharp contrast to the language model decoding results, fine-tuning the Frisian
and Dutch wav2vec 2.0 models with FAME! directly yielded great results.3 As shown
in table 4.3, the ASR model trained on FAME! data (wav2vec2-Frisian-FAME!)
achieved significantly better performance compared to the other two monolingual
models on the FAME! dataset. While its Dutch ASR performance is worse com-
pared to the Dutch monolingual model, the Frisian monolingual performance only
decreased slightly compared to the Frisian monolingual model. The WER metrics
are comparable with the Mandarin-English code-switching ASR model trained in
Lovenia et al. (2022). The encouraging result confirms the fist hypothesis and an-
swers the first research question. With more training data and more sophisticated
end-to-end models, I believe that the performance of code-switching ASR could
improve significantly even without the aid of a LID module.

wav2vec2-Frisian wav2vec2-Dutch wav2vec2-Frisian-FAME!
CV-Frisian 15.91 N/A 20.38
CV-Dutch N/A 16.71 38.61
FAME!-CS 50.13 75.45 30.82

Table 4.3: WER performance comparison between the three fine-tuned wav2vec 2.0
models on three different datasets.

While I scrapped initial plans to use the FCMC corpus to fine-tune wav2vec 2.0
models due to the noisy data and the amount of pre-processing needed, using the
corpus to pre-train the wav2vec 2.0 model instead of using it to fine-tune for down-
stream ASR tasks could potentially benefit the code-switching ASR performance
of Frisian-Dutch speech. On the other hand, the same methodology used in this
thesis and Lovenia et al. (2022) could still benefit from larger dataset size. If fu-
ture researchers with more time and resources can better prepare the FCMC corpus
for ASR training, the same methodology could bring on even better code-switching
ASR performance.

3The fine-tuned models can be found respectively at https://huggingface.co/techsword/wav2vec-
fame-frisian and https://huggingface.co/techsword/wav2vec-fame-dutch
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4.3 Language Identification
To speed up the feature extraction and model training, only 5000 utterances from
each language were used to train the language identification module. Trained on
Common Voice Frisian and Dutch datasets, the model achieved only 49% accuracy
after 80 epochs. The training only took 80 epochs because the training loss sta-
bilized at a constant after 60 epochs after an upward trend. With no indications
of training loss reducing, it does not make sense for me to continue spending more
computational resources on training the model. Due to the poor performance in
plain non-code-switching language identifications, testing the performance of the
LID module on a word level using the FAME! corpus does not seem necessary at
this point. If the LID model is not able to properly identify longer utterances such
as full sentences in the Common Voice dataset, it is unlikely that it would get any
reasonable results trying to conduct LID on the word level. This result suggests
that the hypothesis for the second research question in this thesis is flawed. There
are several possible explanations for the poor performance. Firstly, there may be
simply not that many phonetic differences between Frisian and Dutch speech for
the model to recognize that these are two different languages. Tseng et al. (2022)
was able to get great LID performance for Mandarin and English because of the
huge differences in the speech features of Mandarin and English. An alternative
explanation is that layer 10 of the XLSR pre-trained model does not extract enough
phonetic information for the LID task, or it encodes features that are illsuited for
the LID task. At the same time, the training data size may have played a role as
well: the size of the training data (5000 utterances per language in total) used to
train this LID model is significantly smaller than the SEAME corpus used by Tseng
et al. (2022).

4.4 Summary
This chapter discussed the results and the implications thereof from replicating
previous findings and conducting original experiments. Some takeaway points are
summarized here. Some datasets used in this thesis were not specifically made for
ASR training purposes. Apart from the ASCEND corpus and the Common Voice
corpus, the other datasets needed significant restructuring to be used for wav2vec2
training. During the restructuring process, and as also mentioned in Bentum (2022),
it was clear that some of these datasets needed significant preprocessing and clean-
ing. Due to the time-consuming process in pre-processing FAME! and FCMC for
training the LID model, I only chose to use the limited data of 5000 utterances
per each language training set adapted from Common Voice. Given more time and
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resources it may be possible to extend this training set further. The same situation
holds for further fine-tuning the end-to-end ASR model, too.

In light of the results presented, several discussion topics touched on different
perspectives of the research project. As defined in the earlier chapters, a true mul-
tilingual ASR system should be able to handle code-switched utterances in addition
to achieving great performance for monolingual utterances. The problem with the
current deep learning techniques relies on large datasets to achieve state-of-the-art
performance. Especially in the case of lower-resourced languages, for Frisian and
Dutch, the language identification model suffers from a lack of data. However,
reasonable code-switching ASR performance is achievable by fine-tuning a great
performing monolingual wav2vec 2.0 model with a limited code-switching dataset.
With the continuous development of end-to-end speech recognition models, it may
not even be necessary for the future to use a LID module in conjunction with the
speech recognition framework to achieve great ASR performance as shown in Love-
nia et al. (2022) and the results presented in this chapter. The LID approach may
lose its performance advantages for more language pairs soon. However, from a
theoretical linguistics standpoint, having a LID model to test and confirm theories
in sociolinguistics and multilingualism research may continue to be an interesting
topic. Hence it may be worthwhile for future researchers to develop and test more
robust LID approaches using different feature embeddings from different model ar-
chitectures.
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Chapter 5

Conclusion

This project explored using several techniques in improving code-switching speech
recognition performance proven successful in dissimilar language pairs: language
model decoding, and fine-tuning end-to-end speech recognition models with code-
switching corpora for lower-resourced languages. At the same time, the thesis also
investigated the possibility of using hidden layer representations from end-to-end
ASR model as feature input to train a language identification model for a pair
of very similar languages. The language model decoding approach proved inef-
fective due to the small size of text data available. The code-switching corpora
fine-tuning approach achieved similar levels of performance as seen in dissimilar and
high-resourced language pairs. The experiment on the language identification model
revealed significant room for improvements for future researchers.

As language model decoding for wav2vec 2.0 models is generally successful for
other higher-resourced languages, it is reasonable for us to believe that Frisian ASR
with language model decoding can also improve given more text data. The wav2vec
2.0 fine-tuning technique using code-switching corpora is successful for both higher-
resourced and lower-resourced language pairs. The success shows a promising future
direction for developing true multilingual and code-switching capable ASR. Looking
ahead, with more researchers laying their eyes on improving ASR system usabil-
ity for a wider audience (multilingual speakers), more specialized code-switching
datasets may become available for computational linguistic research. There is great
prospect in further fine-tuning newer and more sophisticated end-to-end models with
fresh datasets for multilingual and code-switching capable ASR. At the same time,
while we have seen successes brought on by LID modules in improving multilingual
and code-switching ASR performance for drastically different language pairs such
as Mandarin and English, it may not be the ideal approach for closely related lan-
guages such as Frisian and Dutch. This is not to say that the experiment result in
this thesis is discouraging. Rather, it opened up new pathways and brought new re-
search topics to light. The difficulty in language identification for the two languages
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warrants significant future research in both computational linguistics and phonetics,
for similar and dissimilar language pairs alike, in finding out the features that help
human listeners differentiate between different dialects and languages. Testing al-
ternative hidden layer outputs in end-to-end ASR neural networks for different tasks
may also help fuel future developments in this area. Where words come from may
not be relevant for building code-switching automatic speech recognition systems,
but it does matter for other linguistic research.

36



37



Gaofei Shen Appendix

Appendix

Training visualizations
Attached below are training visulization graphs for fine-tuning wav2vec 2.0 models.
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