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Abstract

Oral cancer (OC) surgery can cause impaired speech intelligibility by preventing the production of
articulatory targets required for sounds such as plosives and alveolar sibilants (Halpern et al., 2020a;
Halpern et al., 2022a; Halpern et al., 2022b). Various studies have already investigated OC speech
characteristics through phonetic approaches that calculate phoneme error rates from transcription-
based intelligibility assessments (Saravanan et al., 2016; Constantinescu et al., 2017), and acoustic
approaches that look at formants and vowel space area (Bruijn et al., 2009; Rieger et al., 2010).
Few studies, however, have looked into OC speech severity estimation (SE) and distinguishing OC
speech from healthy speech through machine learning (ML) (Halpern et al., 2020a). The difference
between ML and the phonetic/acoustic approaches is that ML models can automatically learn dis-
tinctions based on acoustic features and estimate quantities (e.g., severity scores), something which
standard significance testing cannot achieve. Using ML for OC detection could therefore broaden our
understanding of OC speech, in particular by showing us which speech features are important. Addi-
tionally, SE could assist with the tracking of speech therapy progress post-surgery (Suárez-Cunqueiro
et al., 2008).

Therefore, we explored OC detection and SE through four ML models: logistic regression (LR),
support vector machines (SVMs), multilayer perceptrons (MLPs) and one-dimensional convolutional
neural networks (1D-CNNs). Using these models, we investigated whether (1) we can distinguish
OC speech from healthy speech and (2) whether SE of OC speech based on acoustics is possible.
To avoid unwanted artifacts (Halpern et al., 2020a), we collected a dataset with 6 OC patients > 1
year post-surgery and 5 healthy controls. Additionally, we gathered data for a Dutch adaptation of
the Speech Handicap Index (Van den Steen et al., 2011) and used the scores as ground truth for SE.
Model performances were evaluated in terms of standard accuracy, area under curve, sensitivity and
specificity metrics. Our findings confirm that OC speech detection is possible with models trained on
long-term average spectrum (LTAS) features. The best performance on this task was achieved with the
1D-CNN (67.41% accuracy). We also found confirmation for reliable OC speech SE, in particular for
the SVM trained on Mel-frequency cepstral coefficient (MFCC) features (68.73% accuracy). These
outcomes suggest that model performance may depend on factors such as task, feature type and
several other factors that we address in our discussion.
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1 Introduction

1.1 Motivation

Oral cancer (OC) is one of the ten most common malignant diseases that affects roughly 529,500
people every year (Rivera, 2015; Shield et al., 2017). This makes OC one of the deadliest variants
of cancer. Therefore, improving the treatment of OC patients is urgent in order to increase their
survival. Despite the high mortality rates, OC survivors suffer from various side effects, which include
difficulties such as swallowing, speech, etc.. These side effects can have a negative and severely
disabling impact on a patient’s quality of life (Mathog, 1991; Epstein et al., 2001). Many of these
side effects are caused by the surgical treatment (ST) of OC. This treatment involves the excision of
the tumor and in some cases, crucial tissues required for oral functioning such as tongue muscles have
to be removed (Korpijaakko-Huuhka, 1999). The consequences of ST may, however, be compensated
for by the reconstruction of vital tissues. Nonetheless, reconstructions are not always able to fully
eliminate the brought about deficits (Mathog, 1991).

The speech-related side affects resulting from ST of OC often come in the form of speech im-
pairments that affect articulation and phonation, and are caused by the total or partial removal of the
tongue. The technical term for this is partial or total glossectomy. Glossectomy can thus affect a
patient’s speech characteristics or speech intelligibility (SI), i.e., the degree to which the speech can
be understood (Furia et al., 2001). Previous research that has investigated speech characteristics of
OC patients found evidence for reduced SI (Saravanan et al., 2016). The extent of reduced SI de-
pends on the location, size and stage of the tumor, the extent and type of surgical resection, and the
method of surgical reconstruction (Pace-balzan et al., 2011). In other words, speech thus depends on
the “quantity, quality and mobility of the residual oral” structures (Pace-balzan et al., 2011, p.102).
Several studies have already discovered sounds that are that are commonly affected by OC treatment
and thus distinct from sounds produced by healthy speakers. These include sounds such as plosives
(e.g., /k/), alveolar sibilants (e.g. /s/, /z/) (Halpern et al., 2020a; Halpern et al., 2022a; Halpern et al.,
2022b), palatals such as the rhotic /r/, the affricate /Ù/ (Nicoletti et al., 2004), the fricative /S/ and the
alveolar lateral /l/ (Saravanan et al., 2016).

One method that has been used to assess OC speech characteristics such as described here relates
to the phonetic aspects of OC speech. The phonetic aspect refers to the (human) perception of sounds,
from which implications about impaired SI can be made. Examples are Saravanan et al. (2016) and
Constantinescu et al. (2017), who investigated this by calculating phoneme and word error rates from
transcription-based intelligibility assessments on word and sentence level. Another method to assess
OC speech characteristics is through acoustic analysis, where the focus is on finding differences in
acoustic measures of OC speakers and control speakers. If such differences are found, this could
imply that specific sounds are affected. Examples of acoustic measures used for acoustic analysis
include formants and the vowel space area (Rieger et al., 2010; van Son et al., 2018). Additionally,
there is research that has used machine learning (ML) techniques. A key difference between the
acoustic and phonetic approaches and ML approaches is that models based on ML can automatically
learn distinctions between groups based on acoustic features. Moreover, standard significance testing
on the one hand, can only tell us that there is a significant difference between groups based on a
certain acoustic feature. Therefore, the choice of the acoustic feature makes the results fundamentally
biased. On the other hand, in ML, a large number of features (e.g., extracted from audio samples)
could be used to train a classifier that is able to determine automatically which features are important.
Contrary to standard significance testing outcomes, ML methods thus generate objective findings.
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Two recent examples demonstrating the success of ML methods for head and neck cancer speech
are Aicha (2020) and Kim et al. (2020). They were able to distinguish speech from laryngeal cancer
patients from speech of healthy controls using ML models. In contrast to this, despite the progress
made by previous studies on OC speech, so far only limited research has looked into OC speech
detection through ML methods. One worth mentioning, however, is Halpern et al. (2020a), who
used ML methods to successfully distinguish healthy speech from OC speech. Nonetheless, much
more research involving ML techniques is needed to broaden our understanding of OC speech, in
particular to provide professionals with suitable and unbiased tools that can assist with the detection
of (post-operative) changes in the speech of (oral) cancer patients (Kim et al., 2020). Additionally, it
could help plan appropriate rehabilitative speech measures to ensure successful future interpersonal
communication and well-being of OC patients Saravanan et al., 2016).

Another important aspect of OC speech pertains to the assessment thereof. When OC patients
undergo speech assessments, their speech is often assigned a severity score. This notion of severity
is related to the extent that speech can be understood by others and the presence of atypical voice
qualities that arise from surgical OC treatment (e.g., altered F0, pitch)(Zimmermann et al., 2003).
Given the social and functional impact impaired speech can bring about, severity estimation (SE)
of OC speech is a crucial element of the pre- and post-treatment phase of OC. Namely, it not only
enables professionals to inform patients about speech-related surgery consequences but also allows
for speech monitoring (Suárez-Cunqueiro et al., 2008; Woisard et al., 2021).

There are several well-known assessment instruments that are used for OC SE such as the Speech
Handicap Index (SHI) (Rinkel et al., 2008), an assessment tool that allows patients to evaluate their
own speech and the impact thereof on their lives (refer to Section 2.5 for more examples). Due to
the subjective element, however, such assessment tools have several disadvantages. One main issue is
that they lack reliability due to varying test conditions, e.g., ecological setting, reading vs spontaneous
speech. A second issue arises as a result of the different experiences among professionals with respect
to speech perception (Maier et al., 2007). Additionally, bringing on a group of professionals only
reduces the cost efficiency, because it takes time to assess the speech of every patient. Consequently,
these issues require solutions that involve more robust evaluation methods, but there are currently only
few objective tools available for OC speech SE (Woisard et al., 2021). Two examples of studies that
have looked into objective OC speech SE are Windrich et al. (2008) and Woisard et al. (2021). They
used a ML-based automatic speech recognition (ASR) system to estimate severity index scores of OC
speech automatically, after which they compared it to scores assigned by a panel of human experts. In
both cases, the automatic evaluation, which used the word recognition (WR) rate as an indication for
SI, correlated closely with that of the human experts. This emphasizes effectiveness of ML and the
need for more ML-based methods for the development of objective OC speech SE tools. As has been
previously mentioned, a trained classifier can generate unbiased outcomes by automatically assigning
importance to features derived from speech signals. Though the diagnosis of OC could never be
made on the basis of ML, SE could still benefit from objective methods since the speech severity of
OC patients needs to be tracked to know how speech therapy progresses, or whether speech therapy
is even needed.

Based on the arguments presented here, the current research therefore focuses on OC detection
and SE estimation through various ML methods. The next section mentions these methods briefly
and introduces our research questions (RQs).
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1.2 Research Questions
This thesis explores OC speech detection and OC speech SE from the ML perspective. The aim is
to broaden the general understanding of OC and provide aid to professionals in pre- and post-surgery
procedures. More specifically, we use four types of ML methods to tackle these issues:

• Logistic regression (LR);
• Support vector machine (SVM);
• Multilayer perceptron (MLP);
• Convolutional neural network (CNN).

This then leads to the first RQ that this thesis addresses:

RQ1. Is it possible to distinguish healthy speech from oral cancer speech with machine learning
methods?

Based on the findings of Kim et al. (2020) (laryngeal cancer) and Halpern et al. (2020a) (OC), both of
whom were were able to distinguish cancer speech from healthy speech through ML techniques, we
hypothesize that it is possible to distinguish Dutch OC speech from speech of healthy Dutch controls
through the above-mentioned ML methods.

Another RQ that this thesis addresses is the following:

RQ2. Is it possible to estimate severity of oral cancer speech based on acoustics with machine
learning methods?

Based on Windrich et al. (2008) and Woisard et al. (2021), who successfully estimated severity index
scores using ML-based ASR models, we hypothesize that it will be possible to estimate OC speech
severity of through our proposed ML methods.

Lastly, besides these main RQs we also explore a sub-RQ that relates to model performance:

Sub-RQ Which machine learning method is the most suitable for determining the presence and
severity of oral cancer speech in terms of performance?

Based on prior cancer research using ML methods such as Kim et al. (2020) and Halpern et al.
(2020a), both of whom found an advantage of Deep Neural Networks (DNNs) over more traditional
methods, we hypothesize that DNN-based models such as the CNN are most suitable for OC speech
detection and SE.

1.3 Thesis Outline
The rest of the thesis is organized as follows: Chapter 2 provides the background information to get
a better understanding of the topic and expands on relevant previous studies, Chapter 3 outlines our
methodology, Chapter 4 presents the findings, which will be discussed in more detail in Chapter 5,
together with directions for future research. We end with a conclusion in Chapter 6.
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2 Background

This chapter provides an overview of information that helps to further understand the motivation
behind this thesis. We start by explaining OC in Section 2.1, followed by an introduction of ML and
the four methods that this thesis employs in Sections 2.2 and 2.3. Next we discuss prior research into
OC speech detection and its limitations in Section 2.4, after which we continue with a similar type of
discussion for OC speech SE in Section 2.5.
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2.1 Oral Cancer

OC or oral squamous cell carcinoma can be defined as a malignant neoplasia, a type of abnormal and
excessive tissue growth that appears on the lip or in the oral cavity (Rivera, 2015). The two principal
etiological factors are generally considered the consumption of tobacco and alcohol abuse, both of
which have a mutual reinforcing effect and are present in about 90% of OC cases (Dhanuthai et al.,
2017; Dissanayaka et al., 2012).

To recommend suitable treatments and to better predict a patient’s prognosis, establishing the
stage of the OC is crucial (Rivera, 2015). This is known as staging, which is a way for professionals
to determine the location of the cancer and whether it has spread to other parts of the body through a
series of diagnostic tests. A common tool that professionals use to determine the cancer stage is the
Tumor Node Metastasis (TNM) classification system (Appendix A), which can be used to answer the
following questions (Cancernet, 2021):

• Tumor (T): How large is the primary tumor? Where is it located?
• Node (N): Has the tumor spread to the lymph nodes? If so, where and how many?
• Metastatis (M): Has the cancer spread to other parts of the body? If so, where and how much?

As far as treatment is concerned, the backbone of OC treatment is glossectomy, also known as surgical
resection (i.e., partial removal) or removal of the entire tongue (Kademani, 2007). The oral cavity
is essential for speech production, deglutition (swallowing) and mastication (chewing). Glossectomy
could therefore severely compromise the oral functions and the quality of a patient’s life. With respect
to speech production in particular, glossectomy affects the articulatory system. To produce speech,
we need to change the shape of the vocal tract and airflow (Ramoo, 2021). Our tongue plays a crucial
part in this process because the position of our tongue determines which sounds we produce. For
instance, the plosive /t/ is produced when our tongue touches our alveolar ridge, thereby obstruction
the flow of air before releasing it with a burst. In case a part or the entire tongue is missing, producing
this sound might become very difficult or impossible even (see again Halpern et al., 2020a; Halpern
et al., 2022a). Similar cases arise for the production of other plosives, certain palatals, affricates and
laterals that were listed in Section 1.1. Consequently, this can lead to (severe) loss of SI.

Aside from glossectomy, there are alternative common OC treatments that could affect speech
aspects other than articulation. One such treatments is radiotherapy, which is a type of cancer treat-
ment that destroys cancer cells or slows down their growth with the goal to preserve vital tissues.
Previous research that has investigated the speech of (OC) patients pre- and post-surgery found that
radiotherapy can cause speech impairments besides articulation issues. Namely, radiotherapy can
lead to patients demonstrating dysphonia, which is often associated with hoarseness and voice quality
changes, phonation issues in the form of unstable vocal fold vibrations (e.g., uncontrollable pitch),
and abnormalities in acoustic measures such as jitter and shimmer (Lazarus et al., 2014). Another
common treatment is chemotherapy, in which anti-cancer drugs are administered to cure cancer or
reduce symptoms in an attempt to prolong life. Similar to radiotherapy, it has the goal to preserve
the articulatory organs. Additionally, it is often combined with radiotherapy, which is also referred to
as chemoradiotherapy. Much like the speech impairments arising from radiation therapy, chemora-
diotherapy has reported similar results (for more details see Barrett et al., 2004; Mowry et al., 2006).
While glossectomy thus primarily gives rise to articulation issues, radiotherapy and chemoradiother-
apy can also affect voice in the form of phonation problems. Section 2.5 discusses the assessment
tests commonly used to assess the affects of these treatments.
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2.2 Machine Learning
Voice assistants such as Siri, Alexa and Cortana are based on ML methods that enable them to interpret
and learn from human speech (Hoy, 2018). For instance, every time we use Alexa to ask about the
weather or request a song to be played, Alexa learns more about our voice characteristics and speaking
habits as a result of its built-in ML methods. Because of this automatic learning ability, systems
based on ML can thus perform a given task automatically without there being a need for explicitly
programmed instructions (Mahesh, 2018). Additionally, ML also teaches machines how to extract
information from large amounts of data automatically.

ML models require robust and discriminatory features to learn distinctions between items ac-
curately and quickly (Sharma et al., 2020). The performances of traditional ML models depend on
the (type of) features in the training and test set, which is why feature extraction is a crucial part
of the ML process (Sharma et al., 2020). This statement does not fully apply to end-to-end (E2E)
ML approaches since these require no or only minimal feature extraction: either the raw waveform
(Ravanelli and Bengio, 2018) or Mel spectrograms (e.g., Li et al., 2019) are used as input. For the
purpose of this thesis, however, we will not focus on E2E approaches. If we thus assume that feature
extraction is crucial for the development and final performance of a ML model, we need to under-
stand the notion of feature extraction. Since an entire dataset is often too complex, both time-wise and
computationally, they are generally not compatible with ML models. To solve this problem, feature
extraction can be used to compress the original audio signal into features. This reduces the com-
putational complexity of training while highlighting the most important characteristics of the audio.
Consequently, it should result in a reliable model that can predict with high accuracy.

We have demonstrated that feature extraction is an important part of ML. However, it is important
to mention that there are different ML methods for different tasks. The following section describes
one such task which is also the focus of this thesis, classification.

2.3 Classification
The main goal in a classification task is to assign an input vector X to either of the K discrete classes
Ck. Here, k = 1, ....,K. Generally speaking, the classes within a classification task are considered
to be completely separate from each other. An example of this is the case of object detection for
self-driving cars, in which we deal with a multi-class classification paradigm (i.e., 3 or more classes).
Here, the goal is to detect different objects in a single image such as a zebra crossing, a pedestrian,
road signs, etc., and put them into their corresponding class. Each object is different and can only
be assigned to one single class (e.g., pedestrian or road sign), which implies that the classes are
mutually exclusive. Contrary to the multi-class paradigm, if K = 2, the classification becomes binary.
To then help determine which input belongs to which class, decision regions, of which the boundaries
are referred to as decision boundaries, divide up the feature space (Bishop, 2007). To achieve this
type of classification, various ML methods can be used. The next few sections describe four of these
methods: LRs, SVMs, MLPs and CNNs.

2.3.1 Logistic Regression

LR is a parametric classification method (Bishop, 2007). In other words, models based on LR have
a fixed number of parameters that rely on the number of input features. These input features are
independent variables that predict a binary outcome, i.e., LR outputs a categorical prediction. In
theory, LR is very similar to linear regression (LiR) but instead of predicting a categorical variable
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(e.g., male or female), LiR predicts numeric variable (e.g., the F0 of each speaker). Additionally,
rather than fitting a straight line (i.e., LiR) to our observed data, an S-shaped curve is fitted to our
observed data (Figure 1). This S-shaped curve is a Sigmoid, which transforms the output into values
ranging between 0 and 1 and therefore makes it easy to interpret.

Fig. 1: Sigmoid function represented as an S-shaped curve – reproduced from Zai (2021).

The Sigmoid function (SF) has the following notation1:

σ(η) = 1
1+e−η . (1)

As we briefly mentioned, LR outputs a binary categorical prediction. Figure 1 demonstrates that the
observed data has two types of observations, with the Y-axis ranging from 0 to 1. This 0-1 range
stems from LiR, but rather with an added SF that allows for the compression of observed values into
[0, 1]. Moreover, the SF provides us with a value that can be interpreted as a probability, and since it is
differentiable (i.e., continuous), it can be used for Gradient Descent (GD) optimization (see Phillips,
2021).

If we thus want to predict sex based on acoustic features extracted from speech signals, the first
step is to calculate the weighted sum of all inputs, where Θ, z and b represent the coefficient, acoustic
features and bias:

σ = Θ · z+b. (2)

This is followed by a calculation of the probability of sex through the SF. In order to use LR to
train a ML model for this classification problem, however, we need an additional step to obtain the
model parameters (i.e., the weights). Therefore, we need an iterative optimization method such as

1e represents the Number of Euler and η represents the output. Please refer to Bishop (2007) for more details.
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GD or stochastic GD (SGD) (Dokuz and Tufekci, 2021). Once the model has been trained, and the
parameters have been obtained, it is then possible to make predictions about the sex of the speakers.

2.3.2 Support Vector Machine

A second ML method is the SVM, which is an easy-to-interpret method that is able to generalize well
in many cases, even when there is limited data available (Hernandez et al., 2020). The idea behind
SVMs for binary classification is that it seeks the most optimal decision boundary to minimize the
misclassification error (Figure 2).

Fig. 2: General illustration of decision boundaries for SVMs. The black and yellow lines represent
examples of decision boundaries – reproduced from Zhang (2019).

In contrast to LR, the SVM is a type of decision machine that does not output posterior probabilities
(Bishop, 2007). Instead, SVMs output a set of weights w based on input features x, of which the com-
bination can predict y. More specifically, the SVM seeks the smallest distance between the observed
data and the decision boundary, which needs to be as large as possible to reduce the misclassification
error (Figure 3). This is referred to as the margin or street width (see more in Bishop, 2007).

Similar to the ML approach for LR, it is important to train the SVM for the binary classification
task. In this case, the SVM uses a loss function that has a regularization coefficient C. Depending
on the value of C, the SVM is either hard-margin (i.e., C = 0) or soft-margin (large value C). In
other words, the lower the value of C, the stricter the SVM is when it comes to assigning penalties to
violations (i.e., misclassification) and vice versa. The loss function can then be defined as follows:

(3)

where the λ parameter (i.e., C) controls the complexity of the SVM, while w represents the errors,
i.e., the distance from the decision boundary. A large enough λ will thus increase the margin size and
create a line separator, whereas a smaller λ will result in a plane or hyperplane as presented in Figure
3. Refer to Dibike et al. (2001) and Burbidge and Buxton (2022) for more details.
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Fig. 3: An example of a separable problem in a 2 dimensional space. The support vectors, marked
with grey squares, define the margin of largest separation between the two classes – reproduced from
Cortes and Vapnik (1995).

Another important parameter is the kernel, which can be used to describe linearly non-separable data
points. For instance, points inside and outside of a circle are not linearly separable and cannot be
separated with a linear decision boundary. Instead, the optimal way to describe this data is through a
circular decision boundary, something which only a kernel can do. The kernel function transforms the
input features into the required form. Namely, it returns the inner product between two data points in
a suitable feature space or window, which is the set of all possible values for a chosen set of features
from the data (Amari and Wu, 2001). Furthermore, it performs a two-dimensional (2D) classification
for a set of data that was originally one-dimensional (1D) (Prajapati and Patle, 2010). This increases
the chance of separating them in a hyperplane. With respect to kernel type, there are several functions
such as the linear or the (non-linear) polynomial kernel (Prajapati and Patle, 2010) as demonstrated
in Figure 4.

Fig. 4: The effect of the degree of a polynomial kernel. The polynomial kernel of degree 1 leads to a
linear separation (A). Higher-degree polynomial kernels allow a more flexible decision boundary (B)
– reproduced from Ben-Hur et al. (2008).
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The SVM thus tries to find a balance between the number of data misclassifications and the margin of
the decision boundary by using a kernel function. If we relate this back to our speech example, using
a kernel function on the features results in output weights w, which can help us predict the sex of the
speakers.

2.3.3 Multilayer Perceptron

A MLP is a type of artificial neural network (ANN) that can learn the relationship between linear and
non-linear data. Additionally, is one of the most successful models in the context of pattern recogni-
tion (Bishop, 2007). The original perceptron developed by Rosenblatt is based on the functioning of
neurons in the human brain (Rosenblatt, 1960). The idea is that input features are combined through a
weighted sum and if that sum exceeds the predetermined threshold T , the perceptron is activated and
outputs the weights to predict classes. Threshold T represents this in the form of an activation func-
tion (AF) such as Rectified Linear Unit (ReLU), Sigmoid, etc.. A downside of a single perceptron,
however, is that it cannot deal with nonlinear data (Minsky and Papert, 1969). The MLP, however,
consists of multiple layers of LR models that include continuous non-linearities in the hidden units,
which makes it suitable for nonlinear data. The MLP also uses an AF but in the form of a feed-forward
NN that performs forward propagation. Namely, each layer feeds the output of the current layer to
the next layer until it reaches the output layer (Figure 5). The output is then a mean squared error.

Fig. 5: Example of a feedforward structure in a MLP – reproduced from Bento (2021).

Moreover, backpropagation is needed for the MLP to learn weights that are required for cost min-
imization. Backpropagation is a type of algorithm that provides feedback about which weights are
most optimal for cost minimization and computes a gradient (see Lillicrap et al., 2020).

To train a MLP-based model, we thus need an AF to compute the weights for the cost function
and an optimization function such as Adaptive Moment Estimation (Adam) (Kingma and Ba, 2014)
or SGD to update the cost function. Additionally, a learning rate needs to be defined to control the
extent to which the weights can be adjusted for each iteration. For our binary classification example,
the acoustic features are fed into the MLP. Next, the AF pushes the information through various LR
layers to learn which features belong to which class (i.e., male or female), all the way until the final
layer is reached. With the help of forward propagation and backpropagation, the MLP can then keep
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updating the cost function to improve the model and predict the sex of the speaker.

2.3.4 Convolutional Neural Network

A CNN is a specific class of deep neural networks (DNNs) that specializes in processing data with a
grid-like topology (Bishop, 2007). Examples include an array with features represented as numeric
values or an image such as the one presented in Figure 6.

Fig. 6: Illustration of an image as a grid of pixels represented in binary form – reproduced from
Mishra (2020).

In the human brain, every neuron has its own receptive field and together with the other neurons,
they can account for the entire receptive field. Similarly, each neuron in a CNN has its own receptive
field (Murugan, 2020), with the layers arranged in a way that is suitable for pattern recognition, e.g.,
recognizing which features characterize female and male speech.

The typical CNN consists of three distinct layers (Figure 7). The first layer type is the convo-
lutional layer (CL), which is one of the core building blocks of a CNN. This layer performs a dot
product between two matrices, with one matrix consisting of the learnable parameters (i.e., kernel)
and the other matrix containing the portion of the receptive field that is restricted. Since the kernel is
smaller than the original input data, the kernel needs to slide (i.e., stride) across the height and width
of the input data to produce a 2D feature map2. The generated feature maps can be forwarded to a
nonlinear AF, usually ReLU. Similar to what we described for MLPs, this AF generates output and
enables a CNN to learn data that is non-linear and more complex. The second layer type in a CNN is
the pooling layer. This layer slides a kernel over each channel of the feature map and compresses the
output from the CL to reduce the computational complexity and number of weights needed (Albawi
et al., 2017). Additionally, it ensures that the CNN can handle any variance in feature position. The
final layer type of a CNN is the fully connected (FC) layer, which has the same structure as the hidden
layer from the feed forward NN presented in Figure 5. The final output, i.e., the probabilities for the
class predictions, can be generated through a softmax AF in the final layer of the FC layer.

With respect to training a CNN for our binary classification example, the acoustic features that
were extracted from the speech signal serve as input. Consequently, through a kernel with a predefined
stride and size in the CLs, the model learns important information from these features, i.e., patterns
for male and female speech. Following this, the computational load and dimensionality is reduced

2Refer to Bishop (2007) and Albawi et al. (2017) for more details on input, output dimensions and additional model
parameters
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Fig. 7: Illustration of a typical CNN structure – reproduced from Clickreader (2021).

by the pooling layers, after which everything comes together in the FC layer. Here, a softmax AF
translates the output into probabilities that represent either the male or female speaker class.

2.4 Relevant Research on OC Speech Detection
Section 1.1 briefly mentioned that research on OC detection using ML methods is limited. So far,
only Halpern et al. (2020a) has investigated this in depth. More specifically, they collected 3 hours
of spontaneous OC speech data from YouTube and compared that with roughly 4.5 hours of healthy
speech data. As for the method, they used the preprocessing frontends of Kaldi (Povey et al., 2011)
to calculate five different features: Mel-frequency cepstral coefficients (MFCCs), long-term average
spectrum (LTAS), perceptual linear predictive coefficients (PLPs) and Pitch and phonetic posterior-
grams (PPG). Additionally, they decided on two backends. The first was a Gaussian Mixture Model
(GMM) due to its widespread use in pathological speech detection (Dibazar et al., 2002; Bocklet et
al., 2008) and the second was a least absolute shrinkage and selection operator (LASSO). The latter
is a LiR method that allows for easy interpretation. Furthermore, they tested a Dilated Residual Net-
work (ResNet), a type of DNN classifier that takes spectrograms as input (for achitecture details see
Halpern et al., 2020a). Based on findings from previous spoofing detection studies (Lai et al., 2019;
Halpern et al., 2020b), they expected it to be beneficial for pathological voice detection as well. Their
overall findings for OC speech detection demonstrate that OC speech can reliably be distinguished
from healthy speech using ML methods. The ResNet classifier in particular performed well, with an
accuracy of 88.37% and a 57.82% chance-level baseline (for more details see Halpern et al., 2020a).
Aside from that, they found that plosives and sibilants are crucial indicators for OC speech detection.

Despite this success, however, Halpern et al. (2020a) has several shortcomings. The first is con-
cerned with source of the dataset. Namely, all OC speech data was collected from various YouTube
videos. A disadvantage of this approach is that the use of YouTube data can bring about artifacts that
can affect the final outcome. Examples of such artifacts are background or microphone noise, effects
of different recording devices, etc.. A second shortcoming is related to the data inclusion procedure.
To determine whether a video could be considered OC speech, Halpern et al. (2020a) analyzed the
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content of each video and relied on the authors’ experience with OC speech. As we have seen, expe-
riences with regard to speech perception vary depending on the person and are thus very subjective
(Maier et al., 2007). It is therefore possible that videos that should have been considered OC speech
were disregarded and vice versa. A final limitation of pertains to the choice of development language.
Previous studies have shown that English is often the focus language of automatic detection prob-
lems (Lavrentyeva et al., 2019; Plaza-del-Arco et al., 2021). However, OC is a worldwide concern
and automatic detection of OC speech should therefore include languages other than English as well.
More specifically, pronunciations of consonants such as stops, sibilants, etc., pitch and other acoustic
features vary across languages (Hanley et al., 1966). In addition to this, English (language) systems
typically outperform non-Enlgish systems (Korayem et al., 2016). OC speech detection that uses sim-
ilar methods may therefore generate different and less favorable outcomes when the dataset consists
of non-English languages. To counter all these shortcomings, it is important to consider several as-
pects. First, speech should be collected in a controlled setting to avoid unwanted noise and recording
artifacts. If this is the case, every participant can be recorded with the same devices and noise can,
for instance, be accounted for by recording in a sound-proof room. Second, OC patients should be
recruited on the basis of an official OC diagnosis. This ensures that the OC speech dataset consists
exclusively of OC speech and does not rely on the expertise of researchers. Third, it is important
to use datasets containing non-English data to make OC speech detection methods suitable for all
languages.

Another aspect to consider relates to the choice of method. Namely, it is worth exploring differ-
ent ML methods for automatic OC speech detection, especially since the techniques used in Halpern
et al. (2020a) are still baselines and might not be the most optimal for this task. Various research has
shown that LR (Huang et al., 2016 – various speech pathologies), SVMs (Hernandez et al., 2020 –
dysarthria), ANNs and 1D-CNNs (Kim et al., 2020 – laryngeal cancer) are successful in the auto-
matic detection of pathological speech with performances well-above chance-level. For that reason,
we believe that the use of these four methods could also be useful for OC speech detection.

2.5 Relevant Research on OC Speech SE
Although SE plays a crucial role in clinical practice and the methods of various research on patholog-
ical speech, there is no universally accepted definition of speech severity (Stipancic et al., 2021). In
the pathological speech literature, speech severity is often determined by SI, i.e., how well speech can
be understood by others (Maier et al., 2007; Windrich et al., 2008; Sussman and Tjaden, 2012; Tjaden
et al., 2014). Additionally, there is a small number of studies that have used voice-based metrics such
as speaking rate and duration as indicators for speech severity (Shellikeri et al., 2016; Hernandez et
al., 2020). Although it is a much less prevalent proxy for severity, the use of self-reported outcomes
to group the speech of pathological speakers has shown to be successful as well (Allison et al., 2017;
Yunusova et al., 2016). With respect to OC speech SE, however, this type of approach is limited
(Woisard et al., 2021), which is why we explore this further. Below we address such an approach,
together with other common OC speech SE tools and relevant work.

Section 1.1 and 2.1 described how OC patients often suffer from speech impairments after (sur-
gical) treatment. This in turn affects the degree with which they are able to pronounce certain sounds.
There are several common assessment tests used to estimate the severity of OC speech. One tool used
by clinicians and researchers worldwide is the grade, roughness, breathiness, asthenia, strain (GR-
BAS) scale, which assesses the voice of patients in terms of roughness, degree of dysphonia, breath-
iness, etc. (Nemr et al., 2012). More specifically, it considers the severity of a vocal disorder using
a scale with constant intervals. The Consensus Auditory Perceptual Evaluation—Voice (CAPE-V) is
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similar to the GRBAS scale but it also looks at pitch and loudness (Nemr et al., 2012). Additionally,
rather than a severity scale with regular intervals, the CAPE-V scale represents the severity level (i.e.,
mild, moderate,severe) through an asymmetric scale. The SHI is also one of such assessment tools,
but as we have briefly seen in Chapter 1.1, it assesses the speech rather than the voice of OC patients.
The questionnaire was originally developed by Rinkel et al. (2008) to assess speech problems spe-
cific to OC and oropharyngeal cancer patients (Appendix B). The SHI consists of 30 items that are
modelled based on the Voice Handicap Index (Jacobson et al., 1997). Furthermore, different from
the GRBAS and CAPE-V scale outcomes, the outcomes of the SHI are all reported by the patients
themselves rather than assessed by a professional. The general idea behind the SHI is that a patient’s
self-view of their speech might be more reflective of their quality of life than an external view (i.e., a
professional). Aside from the English SHI questionnaire, Van den Steen et al. (2011) created a Dutch
validated version of the original SHI to make it more accessible to non-English speakers (Appendix
C and D).

Although the assessment tools described above allow for OC speech assessment, they are sub-
jective in nature and prone to errors that result from subjective methods. This can generate biased
speech severity scores that do not represent all the facts and are thus not in the best interest of the OC
patients. To track the speech (progress) of OC patients pre- and/or post-surgery (Kim et al., 2020),
objective speech SE tools could be useful. From Section 1.1 and 2.1, however, we know that research
on this topic is limited. To the best of our knowledge, there are three studies that have attempted
speech SE for OC patients through ASR-based approaches. The first is Maier et al. (2007), who
investigated speech severity by looking at the SI of OC patients post-surgery. They used an ASR
system based on semi-continuous Hidden Markov Models (HMMs), which is a statistical approach
used to model acoustic signals (see Riedhammer et al., 2012; Maier et al., 2007). Based on a reading
task, the ASR system was then able to calculate a word recognition (WR) rate that represents the
patient’s intelligibility score. This was compared to the intelligibility scores from a panel of experts
that had been asked to do a speech assessment of the OC patients. Results from a Pearson correlation
test showed a strong negative correlation (r = −0.92; p < 0.01) between the experts’ rating and the
automatic speech assessment. Additionally, the ASR system showed less variance when compared to
the human experts, the latter of which had higher variance within their own group. Therefore, Maier
et al. (2007) concluded that the performance of the ASR system was better and more reliable. This
implies a superiority of objective over subjective tools. Similarly, Windrich et al. (2008) investigated
the SI of OC patients post-surgery using similar experiments. Namely, they also used an ASR system
based on HMMs (see Stemmer, 2005) to recognize read OC speech. Additionally, they used WR
rate to calculate SI. A Pearson correlation test demonstrated a strong negative correlation (r = –0.93;
p < 0.01) between the perceptually judged intelligibility scores (i.e., from a panel of experts) and
those calculated by the ASR system. Based on these outcomes, they therefore emphasize the benefit
and need for more objective speech SE tools. The final study that investigated SE for OC speech is
Woisard et al. (2021). Contrary to Maier et al. (2007) and Windrich et al. (2008), they focused on
voice characteristics (i.e., phonation) and SI to estimate severity scores. This would allow them to
classify French OC patients into three categories: mild, moderate and severe. They also used an ASR
system but based on LiR. The method consisted of five speech production tasks (see Woisard et al.,
2021), among which were a reading task and a task where patients were asked to produce several
pseudowords. These are non-existent words that follow an expected pattern depending on the cho-
sen language. Aside from the production tasks, they also collected data from the SHI and Phonation
Handicap Index, which is another self-assessment tool that is similar in structure to the SHI but as-
sesses voice rather than speech (Fichaux-Bourin et al., 2009). The scores from these questionnaires
were compared to the outcomes of the ASR system. A comparison of the automatically obtained
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severity scores with the perceptual severity scores resulted in a strong positive correlation (r = 0.87;
p < 0.001). Additionally, they found that ASR-based (voice) measures contributed the most to speech
SE and classification, in particular the automatic average normalized likelihood scores (see Woisard
et al., 2021). This again stresses the importance of ML-based speech SE assessment over subjective
speech SE assessment.

Although methods for OC speech SE have thus proven to be successful, there are some short-
comings that need to be mentioned. First, the three studies described above have mainly focused on
ML methods such as LiR (Woisard et al., 2021) and HMMs (Maier et al., 2007; Windrich et al., 2008).
However, current state-of-the-art pathological speech SE methods also include (D)NNs that have been
shown to outperform models based on traditional methods (Hernandez et al., 2020; Joshy and Rajan,
2022). Second, none of the research involving OC speech SE has addressed the effects of different
ML methods on the SE such as Halpern et al. (2020a) did for OC speech detection. Therefore, we
believe that it is important to test OC speech SE through a variety of traditional and state-of-the-art
ML methods. Based on previous research that has been successful for pathological speech detection
with LR (Huang et al., 2016 – various speech pathologies), ANNs and 1D-CNNs (Kim et al., 2020 –
laryngeal cancer), and pathological speech SE with SVMs (Hernandez et al., 2020 – dysarthria), we
then expect that these ML methods will also be useful for OC speech SE.
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3 Method

In this chapter we describe the methods used to conduct experiments for our proposed RQs. In section
3.1 we elaborate on the methodology conducted prior to this research, which includes a description
and motivation for the dataset (Sections 3.1.1 and 3.1.2), followed by a description of the data collec-
tion procedure (Section 3.1.3).

Section 3.2 presents the methods that enable us to answer the RQs from Section 1.2. To conduct
our experiments, we first discuss the data preprocessing and feature extraction process (Section 3.2.1),
after which we motivate our data selection approaches (Section 3.2.2). Next, we provide information
on model parameters and architecture of our four chosen ML methods: LR, SVM, MLP and CNN
(Section 3.2.3). Lastly, since we established that there is a need for models that can recognize and
estimate OC speech (severity), it is important to evaluate overall model performances through various
standardized metrics. Section 3.3 expands on this topic.
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3.1 Methodology Prior to This Study

The method described in this section is part of a larger project called Articulation and coordination
of speech after treatment for oral cancer and received ethical clearance (NL76137.042.20) (Halpern
et al., 2022b). The participant recruitment and data collection procedures were completed prior to
this research in collaboration with the hospital staff at the Universitair Medisch Centrum (UMC)
Groningen. However, more data has been collected since then. The following sections discuss the
main components of this process.

3.1.1 Dataset: Participants

Halpern et al. (2022b) collected a speech corpus with voice recordings from eleven native Dutch
speakers (Table 1 and Appendix E), with ages ranging from 47 to 77. Six of the speakers, three male
and three female, were previously diagnosed with OC. Additionally, each of the OC speakers was at
least one year post-surgery before partaking in the research. A total of three OC patients underwent
jaw surgery while the remaining group received tongue surgery to excise the tumor. Among the
group that underwent tongue surgery, one patient also underwent reconstructive surgery. To allow
for comparison with the oral cancer group, five healthy controls, three females and two males, were
recruited as well.

Table 1: OC and control (CON) participants as collected by Halpern et al. (2022b).

Sex OC CON
Male 3 2
Female 3 3
Total 6 5

3.1.2 Dataset: Stimuli and The SHI

The stimuli used to collect speech recordings consist of a series of Dutch sentences from three sources
(Appendix F). The first is the Wablieft newspaper corpus (Vandeghinste et al., 2019), which is an
open-source text corpus that contains two million words from an easy-to-read Belgian newspaper,
written entirely in Dutch. Halpern et al. (2022b) selected sentences so that all Dutch phonemes
were included, in particular those containing plosives. A reason for this was that prior research has
demonstrated that OC patients struggle to produce these sounds (Halpern et al., 2020a; Halpern et
al., 2022a). The second source is a set of sentences from six Dutch texts that are often used for the
assessment of speech impairments. The length of the texts differ, but they are all considered within
the reading level of the speaker3. Lastly, since Halpern et al. (2022b) investigated the “phoneme-
level manipulation capability of” an “articulatory synthesis framework”, they also incorporated a set
of custom sentences that contained 5 different target words in the carrier phrase, a common tool in
speech therapy (Shelton and Garves, 1985). Carrier phrases are phrases where all the words of a
phrase, except for one, are similar. Halpern et al. (2022b) designed the sentences in such a way that
they had an identical CVC structure. Together with these custom sentences, the entire dataset contains
a total of 227 sentences (Table 2).

3More information on the motivation for the chosen texts can be found here.

https://www.fon.hum.uva.nl/rob/SpeakableTexts.html
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Table 2: An overview of the total number of stimuli utterances (Utt.) per category as presented in
Halpern et al. (2022b).

Source Utt.
Wablieft 76
Papa en Marloes 8
Man uit Finland 14
Noordenwind 8
Els gaat naar markt 10
Meneer van Dam 6
Jorinde en Joringel 80
Custom (repeated 5x) 25
Total 227

3.1.3 Data Collection

To record the speech corpus, Halpern et al. (2022b) used a Sennheiser ME66 microphone at a sam-
pling frequency of 22,050 Hz that was set up in a sound-proof recording booth. Before starting
the recording session, each participant was attached to an NDI-VOX electromagnetic articulograph.
Consequently, they were asked to read all 227 stimuli out loud (Appendix F). To accommodate the
participants to the sensors before the official recording session, Halpern et al. (2022b) also recorded
some spontaneous speech where participants talked about their day. In addition to this, OC patients
filled out a Dutch adaptation of the SHI to evaluate their speech and the impact thereof on their lives
before the start of the recording session. This SHI is based on the adaptation of Van den Steen et al.
(2011), but it contains an additional question related to the impact of the speech impairment on the
patient’s daily life. They could rate this either none, slightly, average or a lot (Figure 8). Table 3
reports the outcomes of the SHI for every participant on a scale of 0 to 60. Please note, however, that
the score for PT2 is followed by a ? as this patient left question E4 empty.

Table 3: SHI scores of 6 OC patients collected by Halpern et al. (2022b).

Patient Score
PT1 24
PT2 17?
PT3 29
PT4 6
PT5 13
PT6 31

In total, Halpern et al. (2022b) collected around 330 minutes of read speech data from the eleven
participants, with roughly 30 minutes per participant. Of those voice recordings, the majority had a
duration shorter than 10 seconds. Moreover, all recordings were stored in .wav format and assigned
with an identifier that made it easy to recognize which recording belongs to which source.
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Fig. 8: Dutch adaptation of the Speech Handicap Index (SHI) used by Halpern et al. (2022b)

3.2 Approach of The Current Study

The current section reports the methods we used to explore OC speech detection and OC speech SE4.

3.2.1 Data Preprocessing and Feature Extraction

All audio files were converted from stereo to mono and downsampled to 16,000 Hz. For research
purposes, we used only the newspaper and text stimuli (i.e. 202 recordings). For feature extraction,
we chose to explore two types of features based on Halpern et al. (2020a). First we extracted our
chosen baseline features, MFCCs, which are features that generally represent vocal-tract information.

4Once the source code is available it can be accessed here under the name OC-Classification.

https://github.com/Janay-M
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The second feature we extracted is LTAS, which is a type of voice quality measurement that is used
in the early stages of pathological speech detection (Master et al., 2006; Smith and Goberman, 2014),
and to track the impact of surgical treatment or speech therapy on a patient’s voice quality (Tanner
et al., 2005). Both features were extracted with the librosa package (McFee et al., 2015a) in Python
(version 3.9.12). For MFCC feature extraction, all recordings were reflection padded to the size of
the longest recording in the dataset (i.e., 15 seconds). More specifically, if an audio file was shorter
than 15 seconds, we calculated the remaining samples (i.e., missing seconds) and reflected the time
series on both sides of the signal to create an audio file with the correct size (duration*sampling
rate). Additionally, we used window length 1024, stride 512 and 20 MFCC coefficients to extract the
MFCCs. The LTAS features, however, were extracted by calculating the mean and standard deviation
(SD) of librosa spectrograms and concatenating these (window length 512; stride 256). After feature
extraction, the last step was to store each of the feature matrices into a flattened vector to make them
suitable for model training. Consequently, the MFCC extraction resulted in a set of 2D features with
dimension length (DL) 9380. For the LTAS features, this resulted in a set of 2D features with DL
2050.

3.2.2 Data Selection: Training and Test Sets

We used two approaches to answer RQ1 and RQ2. For OC speech detection (RQ1), we included data
from the Dutch control and OC speakers. Moreover, to ensure that there was an equal number of OC
and control speakers in the training and test sets, we applied leave-two-speaker-out (LTSO). This is an
approach where two speakers are left out of the training set and are instead used for the test set. Due to
the uneven number of control and OC speakers, however, we could not pair up every OC patient with
a control speaker. Therefore, we chose to leave out OC patient 4 due to the low self-reported severity
score (6 out of 60 points). Additionally, for an accurate model validation, we combined LTSO with
5-fold cross validation (5FCV) to increase the reliability of the results. This divided the entire dataset
into five subsets (Figure 9).

Fig. 9: Illustration of five-fold cross validation. A given data set is split into five subsections where
each fold is used as a testing set, a useful method to use all data where data is limited – reproduced
from Kim et al. (2020).

In our case, the test set for each fold thus consisted of a different OC-control speaker pair, with the
remaining participants serving as the training set. Since the data set is small, we also looked at the
effect of speaker severity on model performance. As we have seen in Table 3, the OC patients have
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varying SHI scores, something which can potentially impact model performance even if we apply
5FCV. Therefore, instead of one 5FCV, we created four more 5FCV experiments that were designed
in such a way that all speakers were paired up at least once as shown in Table 4.

Table 4: Overview of healthy control-patient (HC-PT) speaker partitioning per fold for OC speech
detection. The training and test set for each of the five experiments are provided.

EXP1 Test set Training set EXP2 Test set Training set

Fold1
HC1
PT5

HC2, HC3, HC4, HC5
PT1, PT2, PT3, PT6

Fold1
HC1
PT2

HC2, HC3, HC4, HC5
PT1, PT3, PT5, PT6

Fold2
HC2
PT6

HC1, HC3, HC4, HC5
PT1, PT2, PT3, PT5

Fold2
HC2
PT1

HC1, HC3, HC4, HC5
PT2, PT3, PT5, PT6

Fold3
HC3
PT1

HC1, HC2, HC4, HC5
PT2, PT3, PT4, PT6

Fold3
HC3
PT3

HC1, HC2, HC4, HC5
PT1, PT2, PT5, PT6

Fold4
HC4
PT3

HC1, HC2, HC3, HC5
PT1, PT2, PT5, PT6

Fold4
HC4
PT6

HC1, HC2, HC3, HC5
PT1, PT2, PT3, PT5

Fold5
HC5
PT2

HC1, HC2, HC3, HC4
PT1, PT3, PT5, PT6

Fold5
HC5
PT5

HC1, HC2, HC3, HC4
PT1, PT2, PT3, PT6

EXP3 Test set Training set EXP4 Test set Training set

Fold1
HC1
PT6

HC2, HC3, HC4, HC5
PT1, PT2, PT3, PT5

Fold1
HC1
PT1

HC2, HC3, HC4, HC5
PT2, PT3, PT5, PT6

Fold2
HC2
PT3

HC1, HC3, HC4, HC5
PT1, PT2, PT5, PT6

Fold2
HC2
PT5

HC1, HC3, HC4, HC5
PT1, PT2, PT3, PT6

Fold3
HC3
PT2

HC2, HC3, HC4, HC5
PT1, PT3, PT5, PT6

Fold3
HC3
PT6

HC1, HC2, HC4, HC5
PT1, PT3, PT5, PT6

Fold4
HC4
PT5

HC1, HC2, HC3, HC5
PT1, PT2, PT3, PT6

Fold4
HC4
PT2

HC1, HC2, HC3, HC5
PT1, PT3, PT5, PT6

Fold5
HC5
PT1

HC1, HC2, HC3, HC4
PT2, PT3, PT5, PT6

Fold5
HC5
PT3

HC1, HC2, HC3, HC4
PT1, PT2, PT5, PT6

EXP5 Test set Training set

Fold1
HC1
PT3

HC2, HC3, HC4, HC5
PT1, PT2, PT5, PT6

Fold2
HC2
PT2

HC1, HC3, HC4, HC5
PT1, PT3, PT5, PT6

Fold3
HC3
PT5

HC1, HC2, HC4, HC5
PT1, PT2, PT3, PT6

Fold4
HC4
PT1

HC1, HC2, HC3, HC5
PT2, PT3, PT5, PT6

Fold5
HC5
PT6

HC1, HC2, HC3, HC4
PT1, PT2, PT3, PT5



30 Chapter 3 METHOD

For instance, as Table 4 shows, HC1 is paired up with every PT at least once: PT5 in EXP1, PT2 in
EXP2, PT6 in EXP3, PT1 in EXP4 and PT3 in EXP5.

Contrary to the above-mentioned approach, we only trained and tested our models on OC speech
for OC speech SE (RQ2). Since we chose to base speech severity on the outcomes from the SHI
(Table 3), and the control speakers did not complete the questionnaire, we excluded their speech data.
Furthermore, because our focus is on classification and the SHI scores range from 0 to 31, we trans-
formed the scores in such a way that they would be suitable for binary classification. We attempted a
multiclass approach in a preliminary experiment but this resulted in very poor performance due to the
lack of speakers. In addition to that, an increase in classes would have led to uneven class distributions
whereas a two-class approach did not. As Table 5 illustrates, OC patients with an SHI score ranging
between 0 and 20 received severity label 1 and severity label 2 if their score ranged between 21 and
31 (this was the highest score). Due to one missing SHI response (E4) from PT2, however, we chose
to impute the score for this patient: all items from the E section were scored either 0 or 1, which is
why we imputed +1 for the original score (17). Consequently, this allowed for a partitioning approach
similar to that for RQ1. Namely, we also applied LTSO CV but for only one single experiment with
3 folds that have one level 1 and one level 2 patient in the test set (Table 6).

Table 5: Overview of the severity labels (L) assigned to OC patients (PT) based on their SHI scores.

Patient Score L
PT1 24 2
PT2 18 1
PT3 29 2
PT4 6 1
PT5 13 1
PT6 31 2

Table 6: Overview of patient-patient (PT-PT) speaker partitioning per fold for OC speech SE. The
training and test sets for one experiment are provided.

Fold Test set Training set
Fold1 PT1-PT5 PT2, PT3, PT4, PT6
Fold2 PT2-PT3 PT1, PT4, PT5, PT6
Fold3 PT4-PT6 PT1, PT2, PT3, PT5

3.2.3 ML Methods

The current section presents information regarding the ML methods and the corresponding parameters
that we selected. It should be noted, however, that we did not perform any grid search to optimize the
hyperparameters. Due to our small dataset, creating a development (dev) set from the dataset would
have removed crucial train data and could have deteriorated model performances. The other option
was to tune on the test sets, but this increases the chances of the model overfitting on the test set.
Therefore, we chose not to tune any parameters. Instead, we chose the parameters either randomly or
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based on suggestions found in Scikit-learn (version 1.0.2) for LR, SVM and MLP (Pedregosa et al.,
2011) and Keras (version 2.8.0) for CNN (Chollet et al., 2015).

As we will present in the next few sections, the model parameters may differ slightly depending
on the classification task (i.e., OC speech detection or OC speech SE) but not feature type, because
we expect that any differences in model performance can be attributed to the type of acoustic feature.
With regards to the experimental setup for RQ1, however, it is also important to clarify that each
model was run five times with identical parameters using LTSO 5FCV, once for each experiment. On
the contrary, we ran the models only once for the 3FCV method (RQ2).

3.2.3.1 LR

The LR classification model was adopted from the Scikit-learn library (source), of which the docu-
mentation can be found here. For both RQ1 and RQ2, we selected max number of iterations 10000,
solver liblinear and penalty l2. For the C parameter, however, we chose C = 0.009 for RQ1 and
C = 100 for RQ2.

3.2.3.2 SVM

Similar to the LR classifier, we also adopted our SVM classification model from the Scikit-learn
library (source). Relevant documentation can be found here. For both RQ1 and RQ2, we selected
max number of iterations 10000 and kernel poly. For the C parameter, however, we chose C = 0.009
for RQ1 and C = 85 for RQ2.

3.2.3.3 MLP

The last Scikit-learn classification model we adopted was the MLP (source), of which relevant docu-
mentation can be found here. For both RQ1 and RQ2, we selected max number of iterations 10000
and learning rate adaptive. For RQ1, however, we added some additional parameters: batch size 64,
α = 0.0009 and early stopping (no improvement after 3 iterations).

3.2.3.4 CNN

Following Kim et al. (2020), we built a simple 1D-CNN with the Keras library (Chollet et al., 2015).

CNN architecture and parameters for RQ1
The 1D-CNN classification model for RQ1 consists of four Convolution1D layers with ReLU activa-
tion. The input shape for the first layer, however, depends on the feature type. For MFCC features
this was (9380,1) and (2050,1) for LTAS features. Moreover, the first two and last two layers each
have a different kernel size (width x height) and number of output channels: (3x3) and 32 for layer
1, (3x3) and 64 for layer 2, (2x2) and 128 for layer 3 and (2x2) and 256 for layer 4. This is fol-
lowed by a MaxPooling1D layer with pool size 2 and two FC layers: the first layer has 128 units and
ReLU activation, and the second layer has 10 units with softmax activation. Additionally, we applied
dropout to reduce overfitting, once after the MaxPooling1D layer (0.25) and once after the first FC
layer (0.5). For the loss function, we used sparse categorical crossentropy (refer here) and optimizer

https://github.com/scikit-learn/scikit-learn/blob/baf0ea25d/sklearn/linear_model/_logistic.py#L754
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://github.com/scikit-learn/scikit-learn/blob/baf0ea25d/sklearn/svm/_classes.py#L525
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://github.com/scikit-learn/scikit-learn/blob/baf0ea25d/sklearn/neural_network/_multilayer_perceptron.py#L793
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://www.tensorflow.org/api_docs/python/tf/keras/losses/SparseCategoricalCrossentropy
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Adam. Batch size was set to 64 and the number of epochs was 10. Similar to the approach for the
MLP model, we also applied early stopping if there was no improvement after 3 epochs.

The 1D-CNN classification model for RQ2 is nearly identical to the model used for RQ1. How-
ever, we used a dropout rate of 0.25 after the first FC layer. Additionally, we changed the number of
units for the second FC to 10 and the number of epochs to 7. Lastly, we applied early stopping if there
was no improvement after 1 epoch.

3.3 Evaluation and Analysis
With the Scikit-learn toolkit (Pedregosa et al., 2011), we evaluated model performances on both
classification tasks through the accuracy, area under curve (AUC), specificity and sensitivity metrics.
The first metric, accuracy, refers to the accuracy of the classification in %. To gain insight into how
each model performed, we calculated the mean accuracy and standard deviation (SD) for each fold.
Consequently, this enabled us to compute an overall mean accuracy for each model. For task 1, which
consisted of five experiments per model, this was achieved by taking the mean accuracy of 25 folds.

The second metric, AUC score, represents the diagnostic accuracy and predictive ability of the
model. For both tasks, we calculated this score per fold and created receiver operating characteristic
(ROC) curves for further evaluation. Aside from the ROC curves, we also calculated the overall
sensitivity and specificity (%) per model. These two metrics provide an overview of the overall
performance of these models and can be calculated in the following manner5:

Sensitivity = T P
T P+FN (4)

Speci f icity = T N
T N+FP . (5)

Lastly, we performed a Pearson correlation test for task 1 to investigate whether there is a significant
negative or positive correlation between the test accuracy scores of the models and the SHI scores of
OC patients in the test set. A significant correlation could potentially indicate that speaker severity is
an important variable for overall model performance.

5Abbreviations: TP – true positive, FN – false negative, TN – true negative; FP – false positive.
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4 Results

This chapter presents the performances of the models and corresponding experiments as described
in Chapter 3. We first provide the outcomes of the OC speech detection task in Section 4.1. These
include the model performances of the LTSO 5FCV approach for five experiments and results from
a Pearson correlation test. Following these findings, we report the outcomes of one OC speech SE
experiment in Section 4.2. All results are illustrated through standard accuracy, AUC, sensitivity and
specificity metrics.
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4.1 Task 1: OC Speech Detection
Table 7 reports the accuracies of the models for 5FCV OC speech detection. Table 8 presents a
simplified version that contains the overall model means, AUC scores and sensitivity and specificity
levels. The latter three are discussed in later sections. The results presented in Table 7 seem to indicate
that the chosen features and speaker severity, i.e., the severity of the OC patient in a test fold, affect the
accuracy of the models. From the model means (vertical), it becomes clear that on average, models
trained on LTAS features outperformed models trained on MFCCs. More specifically, if we look at
the mean accuracies for each model, we can conclude that the models with LTAS features always
performed above the 50% chance-level baseline, whereas the models with MFCC features did not
perform above chance-level in any instance. With respect to model performance per fold, however,
Table 7 shows that the mean accuracy of a fold (horizontal) varies considerably. Namely, although
the LTAS experiments demonstrate overall higher accuracies for each fold, there are several folds for
which the models performed below chance-level. Similarly, contrary to the overall findings, some
folds in the MFCC experiments did obtain accuracies above chance-level. In the next two sections,
we expand further on these findings and the other evaluation metrics for each feature type.

4.1.1 Detection with MFCC Features

As we have briefly mentioned, Table 7 (vertical means) indicates that the MFCC experiments gener-
ally performed below chance-level. This suggests that averaged over 25 folds, no model could reliably
detect OC speech and distinguish it from healthy speech. Interestingly, the SVM did outperform the
other three models (49.62%) and is closely followed by the 1D-CNN (49.31%). Aside from the over-
all model accuracies, Table 7 also displays the mean accuracies for 25 individual folds (horizontal)
and their corresponding control-patient pairs. Contrary to the overall findings, it becomes evident that
for 4 of the 25 test folds, the models were on average able to assign the correct labels to speech of OC
and control speakers: 1-F5 (55.99%), 2-F3 (62.81%), 3-F3 (70.79%) and 4-F5 with the highest ob-
tained accuracy (78.65%). Additionally, this fold (4-F5) also contains the overall best classifier, i.e.,
the 1D-CNN (96.53%). As Chapter 3 described, we performed a Pearson correlation to potentially
account for the discrepancies in accuracy among folds. Though the overall correlation in Table 9 is
positive (r(23) = 0.14)6, i.e., a higher severity score should result in a higher test accuracy and vice
versa, it is a very weak correlation and not significant (p = 0.49). This suggests that the reason behind
the considerable differences in test accuracy cannot be fully attributed to the severity level of the OC
speaker. Instead, there may be other factors that affect the test accuracy (see Chapter 5 for more).

The other evaluation metrics and ROC curves for the OC speech detection task are demonstrated
in Table 8 and Figure 10. In support of Table 7, among the models with MFCC features, the 1D-CNN
(AUC=0.52) and SVM (AUC=0.50) were on average best able to differentiate between classes (Figure
10). In terms of sensitivity levels, however, the LR scored higher (64.85%). This indicates that if the
model encountered speech of an OC patient in the test set, it also classified said speaker as such with
better accuracy than the other models. For sensitivity, i.e., classifying a control speaker as a control,
the SVM obtained the highest accuracy (87.62%).

6d f refers to degrees of freedom.
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Table 8: Evaluation metrics table for the OC speech detection task. All values represent the mean of
each model across 25 folds. The chance-level baseline for accuracy, sensitivity and specificity is 50%
and AUC scores are on a scale of 0 to 1.

MFCCs LR SVM MLP 1D-CNN
Accuracy 36.11% 49.62% 37.31% 49.31%
Accuracy SD 19.88 1.05 18.66 20.05
AUC 0.29 0.50 0.31 0.52
Sensitivity 64.85% 11.58% 35.15% 44.06%
Specificity 52.97% 87.62% 38.12% 54.46%
LTAS LR SVM MLP 1D-CNN
Accuracy 59.00% 57.22% 64.72% 67.41%
Accuracy SD 15.72 11.49 18.95 18.76
AUC 0.62 0.47 0.69 0.72
Sensitivity 64.85% 14.85% 67.82% 62.89%
Specificity 52.97% 99.01% 60.39% 71.29%

Table 9: Reported Pearson correlation (r) and significance levels (p) for the MFCC experiments,
where p = 0.005 is significant and d f = 23.

MFCCs r(23) p
Mean 0.14 0.49
LR 0.11 0.61
SVM -0.05 0.80
MLP 0.06 0.77
1D-CNN 0.27 0.19

4.1.2 Detection with LTAS Features

Contrary to the MFCC experiments, the mean accuracies (vertical) for the LTAS experiments in Table
7 demonstrate that the models generally scored above the 50% chance-level baseline. This implies
that averaged over 25 folds, all models were able to reliably detect OC speech and distinguish it
from healthy speech. Out of the four models, the 1D-CNN obtained the highest accuracy (67.41%),
followed closely by the MLP (64.72%).

With regard to the mean accuracies of the individual folds (horizontal), 3-F3 obtained the highest
accuracy (80.67%). The overall best classifier, however, can be found in 4-F5: the 1D-CNN (92.82%).
In contrast to this above chance-level performance, there are four folds that contradict the implication
that models trained on LTAS features can reliably detect OC speech: 3-F1 (20.06%), 1-F1 (37.81%),
5-F5 (45.74%) and 2-F4 (49.51%). Again, we performed a Pearson correlation to see whether the test
set accuracy correlates with the severity of the OC patient in the test set. Rather than than the weak
positive correlation that was found for the MFCC experiments, the results from Table 10 demonstrate
a negative correlation (r(23) = −0.29). This should imply that a lower severity score will result in
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Fig. 10: ROC curve analysis of the different models for the classification of OC speech. The positive
class refers to the OC patients and the negative class refers to the healthy controls.

a higher test accuracy and vice versa, which is quite interesting. Nonetheless, the correlation is not
significant (p = 0.16) so we cannot conclude that the sole reason behind the discrepancies in accuracy
is the severity level of the OC patient in the test set (see again Chapter 5).

Table 10: Reported Pearson correlation (r) and significance levels (p) for the LTAS experiments,
where p = 0.005 is significant and d f = 23.

LTAS r(23) p
Mean -0.29 0.16
LR -0.31 0.13
SVM -0.24 0.25
MLP -0.29 0.77
1D-CNN -0.15 0.47

With respect to the outcomes of the other evaluation metrics in in Figure 10 and Table 8, we can
conclude that the 1D-CNN (AUC=0.72) was on average best able to differentiate between classes,
followed closely by the MLP (AUC=0.69) and LR (AUC=0.62). In terms of sensitivity levels, how-
ever, the MLP scored higher than the 1D-CNN (67.82%), whereas for specificity the SVM obtained
the highest levels (99.01%). This suggests that the MLP on the one hand, performed best with respect
to the correct classification of OC speech. The SVM on the other hand, outscored the other models in
the correct classification of healthy speech.
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4.2 Task 2: OC Speech SE

Table 11 reports the accuracies of the models for 3FCV OC speech SE. Table 12 presents a simplified
version that contains the overall model means, AUC scores and sensitivity and specificity levels.
The latter three are again discussed in later sections. The findings reported in Table 11 suggest that
accuracy depends on the feature type, model and potentially the speaker severity. Contrary to findings
reported for OC speech detection, it becomes clear from Table 11 that the MFCC rather than the
LTAS experiment obtained higher mean accuracies (vertical). Whereas the LTAS experiments never
reached above chance-level (50%) performance, the MFCC experiments did in several instances.
Interestingly, however, the accuracies of the individual folds indicate that there was an instance where
the classification was successful for the LTAS experiment, as well as an unsuccessful instance for the
MFCC experiment. The following two sections will discuss each of these outcomes.

Table 11: Test set accuracies of the OC speech SE classifiers reported per Fold (F) with two different
features (MFCC and LTAS). The chance-level baseline is 50%. Best accuracy scores are emphasized
in bold whereas worst accuracy scores are underlined. Patient (PT) pairs have also been provided,
together with the SHI score and severity level (L) assigned to each patient.

MFCCs F3 F1 F2 Mean model SD
LR 78.71% 50.74% 44.06% 57.84% 0.18
SVM 77.23% 90.84% 38.12% 68.73% 0.27
MLP 53.22% 50.00% 39.36% 47.52% 0.07
1D-CNN 46.04% 50.00% 43.07% 46.37% 0.03
Mean fold 63.80% 60.40% 41.15%
SD 14.41 17.58 2.48
Test PT1 PT4 PT1 PT2
SHI/Severity PT1 6 (L1) 24 (L2) 17 (L1)
Test PT2 PT6 PT5 PT3
SHI/Severity PT2 31 (L2) 13 (L1) 29 (L2)
LTAS F1 F3 F2 Mean model SD
LR 50.00% 49.26% 7.67% 35.64% 0.24
SVM 52.97% 42.33% 0.99% 32.10% 0.27
MLP 50.00% 50.25% 47.03% 49.09% 0.02
1D-CNN 50.00% 45.30% 50.00% 48.43% 0.03
Mean fold 50.74% 46.79% 26.22%
SD 1.29 3.17 22.24
Test PT1 PT1 PT4 PT2
SHI/Severity PT1 24 (L2) 6 (L1) 17 (L1)
Test PT2 PT5 PT6 PT3
SHI/Severity PT2 13 (L1) 31 (L2) 29 (L2)
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Table 12: Evaluation metrics table for the OC speech SE task. All values represent the mean of each
model across three folds. The chance-level baseline for accuracy, sensitivity and specificity is 50%
and AUC scores are on a scale of 0 to 1.

MFCCs LR SVM MLP 1D-CNN
Accuracy 57.84% 68.73% 47.52% 46.37%
Accuracy SD 15.00 22.35 5.92 2.84
AUC 0.64 0.68 0.54 0.60
Sensitivity 50.0.0% 71.29% 48.02% 29.70%
Specificity 65.35% 65.84% 46.53% 95.54%
LTAS LR SVM MLP 1D-CNN
Accuracy 35.64% 32.10% 49.09% 48.43%
Accuracy SD 19.78 22.42 2.22 1.46
AUC 0.23 0.21 0.31 0.35
Sensitivity 5.45% 6.93% 33.17% 33.17%
Specificity 65.35% 56.93% 64.85% 66.34%

4.2.1 SE with MFCC Features

As Table 11 illustrates, the SVM (68.73%), followed by the LR (57.84%) were the only models that
performed above chance-level (vertical means). This suggests that these models were overall able to
assign the correct severity label (1 or 2) to the OC speech. The other two models, the MLP (47.52%)
and 1D-CNN (46.37%) were not able to do this reliably. Additionally, as Chapter 3 has explained,
each fold had a different patient pair in the test set for this task, one level 1 and one level 2 OC patient.
Based on the fold means presented in 11, the findings indicate that F1 (60.40%) and F3 (63.80%) both
obtained above chance-level accuracies, whereas fold F2 (41.15%) failed to do so. Unfortunately, due
to the small sample size, we were not able to calculate a Pearson correlation to investigate the effect of
severity on test accuracy. However, these findings do seem to suggest that patient pair PT4-PT6 (F3)
was the most optimal pairing, followed by PT1-PT5 (F1). Patient pair PT2-PT3, however, resulted in
a rather poor accuracy (41.15%). A further interesting point that arises from Table 11 pertains to the
accuracy the SVM from F1. Though F3 was on average the most optimal, the SVM in F1 obtained
the highest classification accuracy (90.84%). This seems to suggest that the patient pair from fold F1
in the test set with a SVM results in the most reliable classifier for OC speech SE. Contrary to this,
Table 11 also seems to suggest that if we were to use the patient pair from F2 in the test set, the same
model would achieve the lowest accuracy score out of all four models (i.e., 38.12%).

Table 12 and Figure 11 present the other evaluation metrics and ROC curves for the OC speech
SE task. These results support the findings reported in Table 11. Namely, the SVM (AUC=0.68) and
LR (AUC=0.64) were overall best able to differentiate between severity classes. Regarding the sensi-
tivity levels, i.e., classifying a level 2 patient as level 2, the SVM obtained the best results (71.29%).
However, for specificity, i.e., classifying a level 1 patient as level 1, the 1D-CNN (95.54%) outscored
the other models.
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4.2.2 SE with LTAS Features

Contrary to the outcomes of the MFCC experiment, not a single LTAS model could reliably estimate
the severity level based on the OC speech (Table 11). Additionally, the best-performing models were
the MLP (49.09%) and 1D-CNN (48.43%) rather than the LR (35.64%) and SVM (32.10%). This
is the opposite of what we found for the MFCC experiment and it suggests that the type of feature
input can affect the model performance considerably. Though these findings cannot be supported by
a Pearson correlation test either, a closer look at the folds suggests that test set patient pair PT1-PT5
from F1 results in above-chance level accuracy (50.74%). The other pairings failed to do so: F3,
PT4-PT6 (46.79%) and F2, PT2-PT3 (26.22%). The poor accuracy of F2 is in agreement with the
MFCC findings. Another noteworthy finding is that not the MLP but the SVM from F1 obtained
the overall highest accuracy (52.97%). This implies that the patient pair from F1 results in the most
reliably LTAS classifier for OC speech SE. Interestingly, the same model, but with the F2 patient pair,
also obtains the worst possible accuracy (0.99%). Both of these findings are in agreement with the
findings from the MFCC experiment.

Table 12 and Figure 11, however, demonstrate that the 1D-CNN obtained the highest sensitivity
levels (66.34%) and was overall best able to differentiate between OC severity levels (AUC=0.35),
followed by the MLP (AUC=0.31). Additionally, the 1D-CNN and MLP also had the best specificity
levels (33.17%). These findings suggest that the 1D-CNN was better at identifying level 2 OC patients
as level 2, whereas both the 1D-CNN and MLP models outscored other models in terms of identifying
level 1 patients as level 1.

Fig. 11: ROC curve analysis of the different models for the SE of OC speech. The positive class refers
to the level 2 patients and the negative class refers to the level 1 patients.



Chapter 5 DISCUSSION 41

5 Discussion

The current chapter discusses the results reported in Chapter 4 in detail. We start by answering and
discussing our first RQ: Is it possible to distinguish healthy speech from oral cancer speech with
machine learning models? in Section 5.1. This is followed by Section 5.2, which provides an answer
to our second RQ: Is it possible to estimate severity of oral cancer speech based on acoustics with
machine learning models?. Finally, we end with a discussion of our limitations and suggestions for
future research in Section 5.3.
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5.1 OC Speech Detection

5.1.1 Is OC Speech Detection Possible Using ML Methods?

One of our main aims was to assess whether it is possible for different ML methods to successfully
distinguish healthy speech from OC speech. In concurrence with previous research that has investi-
gated OC speech with computational models (Halpern et al., 2020a), our findings suggest that it is
possible to detect OC speech using various ML methods. However, these findings only extend to
the experiments with LTAS feature input. Among the models used for this task, the LTAS 1D-CNN
obtained the best mean accuracy across five experiments (67.41%). Additionally, our results are in
line with previous studies that have demonstrated an advantage of DNNs (e.g., CNNs) and ANNs
(e.g., MLPs) on certain datasets over SVMs for pathological speech detection (Godino-Llorente and
Gomez-Vilda, 2004; Chuang et al., 2018). Although a 1D-CNN is more difficult to optimize, it has
a high resolution and can deal with complex non-linear data (Kim et al., 2020). Additionally, it can
understand spatial relations because of the tensor input. This allows for a higher learning capacity
than models based on LR and SVMs (Akkaya and Çolakoğlu, 2019). Furthermore, MLPs have also
shown high learning capacities, but in contrast to the 1D-CNN, they take vector input which limits
the spatial awareness (Godino-Llorente and Gomez-Vilda, 2004). Since we used sequential data, i.e.,
acoustic (LTAS) features, this could therefore potentially explain why the 1D-CNN also outperformed
the MLP. Nonetheless, our MLP achieved the highest sensitivity level (67.85%). To create assistive
screening tools that can detect changes in (OC) speech, high sensitivity levels are a must (Kim et al.,
2020). For this reason, MLPs may also be useful for OC speech detection. However, both the MLP
and 1D-CNN models are more difficult to interpret than LR and SVM models. Therefore, it is nec-
essary to use more explainable ML approaches such as layer-wise relevance propagation (Montavon
et al., 2019) and Gradient-weighted Class Activation Mapping (Grad-CAM) (Choi et al., 2020) to
visualize and understand the contributions of each element in the ML methods we used.

Nonetheless, to the best of our knowledge, this is one of the first studies that has attempted
to detect OC speech with CNNs. Previous research on OC speech has already looked into various
methods such as DNNs and LASSO regression in Halpern et al. (2020a). Furthermore, although
there are works that have successfully adopted CNN approaches for voice pathology detection such
as Kim et al. (2020) (laryngeal cancer) and Chuang et al. (2018) (dysphonia and reflux laryngitis),
no research has yet bridged the gap between CNNs and OC speech detection. With support from our
findings, we therefore believe that the use of 1D-CNNs for future OC speech detection devices should
be considered.

5.1.2 The Effect of Speaker Severity on OC Speech Detection

An interesting finding is that the accuracies from the individual folds of each feature type vary con-
siderably, regardless of mean (model) accuracy (Table 7). We have seen in Table 9 and 10 that these
discrepancies in test accuracy do not significantly correlate with the severity of the OC speaker in
the test set. Nonetheless, the two features that we used do present contrasting findings: the MFCC
experiments report nearly exclusively (weak) positive correlations and the LTAS experiments report
only (weak) negative correlations. This might still reveal something about the possibility that test set
speaker severity is indeed a factor in model performance. Namely, especially the folds that contained
either PT2 or PT3 in the test set obtained the best accuracy, regardless of feature type. Conversely, the
presence of PT5 or PT6 in the test set generally resulted in poor performance. One cause of this may
be attributed to speech severity. The general trend shows that low severity OC speech (PT5) is more
difficult to detect than high severity OC speech (PT2 and PT3), with the exception of PT6 (highest
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severity score). Whereas we would expect the best performance to result from a test set with PT6, our
results demonstrate the exact opposite. For some folds, the test sets with PT6 performed even worse
than those containing PT5. Listening to the original recordings, however, supports the given SHI
scores: PT5 has good SI whereas the SI of PT6 is severely affected. It may thus be very well possible
that rather than the OC speech severity, the healthiness of the control speech could have caused the
discrepancies. Control speakers did not have to undergo a speech assessment, so the models may
have identified features in their speech signal as features typical of OC speech. In addition to this,
we believe that the small size of our dataset has could have played a large role as well. In particular
because there was only data of six patients, there was not enough variety in terms of severity to train
all the models accurately and account for all possible types of OC speech. A larger dataset could
therefore improve the overall classification accuracy.

5.1.3 Comparison with Halpern et al. (2020a)

For a comparison with Halpern et al. (2020a), we need to focus on their LASSO and our LR models.
The overall findings indicate that their LASSO-MFCC (80.88%) and LASSO-LTAS (87.37%) out-
performed our LR models (MFCC: 36.11%; LTAS: 59.00%). Since there are many reasons that could
explain these discrepancies, we discuss what we believe are the most important reasons below. A first
reason is that our dataset consisted of self-collected speech data whereas Halpern et al. (2020a) col-
lected an OC speech corpus from YouTube. Consequently, our sources were limited, so we collected
data from whichever patient was available regardless of the severity. Conversely, because Halpern
et al. (2020a) collected their data from the Internet, they were able to select whichever type of OC
speech they wanted. Though the severity of the patients is not presented, this could have allowed
them to include a wider variety of speaker severity and could have made the models more sensitive to
the different severity levels. The second reason relates to language of choice. Namely, Halpern et al.
(2020a) used English data whereas we used Dutch data. According to Hanley et al. (1966), varia-
tions in pronunciations across languages may generate different acoustic features. Consequently, the
extracted acoustic features that resulted from Halpern et al. (2020a) and our study could in fact be
language-dependent and focus on different aspects of OC speech. Therefore, future research should
look into the effect of language on model performance, e.g., a comparison of English and Dutch
OC speech. A third and more general reason is related to the model choice. Rather than using the
same models as Halpern et al. (2020a), we chose to explore ML methods such as SVMs and CNNs
that have been successfully applied to other pathological speech (Hernandez et al., 2020; Kim et al.,
2020) but not yet to OC speech. This could then suggest that our models (minus the 1D-CNN) are
less suitable for OC detection than methods presented in Halpern et al. (2020a). However, we believe
that it is more likely that the discrepancies were caused by difference in the dataset (i.e., variety) and
data preprocessing. This brings us to the final reason that we will address, which is related to feature
extraction.

5.1.4 Poor Performance of The MFCC Features

Contrary to previous findings (Halpern et al., 2020a), our MFCC experiments generally resulted in
below chance-level performance whereas LTAS experiments obtained accuracies that were signifi-
cantly higher. Moreover, our results seem to suggest that MFCCs are not appropriate for OC speech
detection. Kitzing (1986) demonstrates that LTAS features are better for the detection of pathological
speech as they assess voice quality, whereas MFCC assess vocal tract information. Based on this
argument we could then conclude that LTAS features are better for OC speech detection. However,
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there are several other reasons that could potentially explain the discrepancies between the two feature
types.

The first explanation concerns the feature dimensionality. Namely, since the DL of our MFCCs
was relatively high (i.e., 9380) compared to the DL of the LTAS features (i.e., 2050), the poor perfor-
mance could have been caused by the inability of our models to handle the high DL of the MFCCs.
DL is an important parameter and should suit the (classification) problem for a model to perform well
(Faris et al., 2020). We therefore suggest future research to explore the effect of DL of MFCCs on
model performance. This brings us to a second possible explanation, the feature extraction step. In
our case, the duration parameter determined the DL of our features. Whereas we chose a duration
of 15 seconds, Halpern et al. (2020a) used 5-second speech chunks and managed to obtain good ac-
curacies with MFCC and LTAS features. Consequently, this difference in duration could also have
caused the discrepancies between their and our results. For the purpose of comparison with the LTAS
features, however, we chose not to test other durations for our MFCC experiments. Another important
step during feature extraction was the padding function. To obtain the final MFCCs, all voice samples
went through a padding function (see Section 3.2.1). As a result, this excessive padding generated
large amounts of silence for the model input. This should not be a problem for LTAS features as
they are non-variable in length, but it could pose a problem for the MFCCs – they do vary in length.
Another point worth mentioning is that Halpern et al. (2020a) used the Kaldi frontend (Povey et al.,
2011) to calculate their features. Contrary to this, we used the Librosa package (McFee et al., 2015b)
for feature extraction, something which could have caused discrepancies in terms of feature quality
and consequently, final model performance.

Nonetheless, it remains unclear what the exact reason behind the poor performance of the
MFCCs is. Therefore, we suggest that in addition to exploring DLs, durations and feature extrac-
tion libraries/frontends, future research regarding MFCCs should also investigate different padding
techniques with our OC dataset. This is especially important since since the wrong padding function
may deteriorate model performance (Qian et al., 2016).

5.2 OC Speech SE

5.2.1 Is OC Speech SE Possible using ML Methods?

Our second main aim was to assess whether different ML methods can successfully estimate the
severity of OC speech. The findings are in accordance with Maier et al. (2007), Windrich et al.
(2008) and Woisard et al. (2021), all of whom used ML-based methods in the form of ASR models
to estimate severity scores for OC speech. Namely, our results suggest that it is possible to perform
reliable speech SE for OC speech. Contrary to the findings for OC speech detection, however, these
results only extend to the LR and SVM models from the MFCC experiment. Among these two
models, the SVM demonstrated the best performance (68.73%). This implies that the use of these
easy-to-interpret methods, as opposed to the more advanced methods such as 1D-CNN and MLP,
are the most suitable for objective OC speech tracking. Moreover, this pertains in particular to the
SVM as this model obtained the highest sensitivity levels (71.29%). Additionally, these findings also
indicate that while LTAS features seem to be more crucial for OC speech detection due to their focus
on voice qualities (Kitzing, 1986), MFCCs seem more relevant for OC speech SE. This implies that
SE is more concerned with speech characteristics related to vocal tract information.

With respect to the model performances of the MFCC experiment, it is interesting to note that
only the LR and SVM models performed above chance-level for OC speech SE. This contrasts with
the superiority of the 1D-CNN in the OC speech detection task. The size of the dataset could poten-
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tially explain this discrepancy. Namely, our current OC speech dataset was relatively small, i.e., 330
minutes of recorded speech. Previous research involving pathological speech (SE) has demonstrated
that LR (Xue et al., 2021) and SVMs (Orozco et al., 2016; Hernandez et al., 2020; Tripathi et al.,
2020) in particular consistently perform well, even if the dataset is small. So far, all previous research
regarding OC speech SE used data of at least 35 OC patients (Maier et al., 2007; Windrich et al.,
2008; Woisard et al., 2021), a number that is quite large compared to our six OC patients. In contrast
to less advanced ML methods, (D)NNs generally require a larger amount of training data to perform
well consistently (Iannizzotto et al., 2021). As we have seen for OC speech detection, the lack of a
large dataset still allowed the 1D-CNN to outperform the other models. However, for OC speech SE
a larger dataset might be necessary for a more robust performance.

5.2.2 The Effect of Speaker Severity on OC Speech SE

Similar to the findings that resulted from the OC speech detection task, the accuracies from the in-
dividual folds of each feature type vary considerably (Table 11). As we did not perform a Pearson
correlation test, we cannot conclude whether the variety of severity levels in the test set of a fold
significantly affected the accuracy. Nonetheless, our findings do seem to suggest a pattern that points
in this direction. A first indication is that regardless of feature type, F2 with patient pair PT2-PT3
obtained the lowest accuracy. Based on reasons that were discussed in Section 3.2.2, we imputed the
SHI score for PT2 and assigned them a severity level of 1. However, if we listen to this patient’s orig-
inal recordings, their speech is considerably impaired compared to that of PT4 and PT5. Moreover,
it is perhaps closer to that of a level 2 speaker than a level 1 speaker. Therefore, it is very possible
that the obtained accuracies for F2 were rather poor because of this methodological decision. This
suggests that using self-assessed SHI scores to determine speech severity might thus not be the most
ideal predictor for OC speech SE, especially since this score might not even represent the patient’s
actual speech severity. Contrary to the poor accuracies resulting from F2, we can conclude that F3
with patient pair PT4-PT6 obtained the overall highest accuracy in the MFCC experiment (63.80%).
This is a result that we would expect since we paired a very low level 1 with a very high level 2
severity. Nonetheless, it is interesting since for OC speech detection, test folds containing patient
PT6 generally did not perform well. However, taking a closer look at the type of information that the
different features types represent could potentially explain these discrepancies. Namely, if we assume
that MFCCs are better than LTAS features for OC speech SE, this implies that information about a
person’s vocal tract activity is more important than voice quality information. It is therefore possible
that speech samples from PT6 contain vocal tract information that was not relevant for OC speech
detection but is indeed relevant for OC speech SE.

On the contrary, these findings do not extend to the experiment with LTAS features because here,
patient pair PT4-PT6 did not perform above-chance level. If we assume that LTAS features are not
suitable for OC speech SE, we can expect such results. Nonetheless, there was one test fold that
scored slightly above chance-level: F1 with patient pair PT1-PT5 (50.74%). This implies that OC
speech SE could be possible with LTAS features. As of now, however, the reason behind this finding
is unclear. Future studies will therefore have to explore which OC speech characteristics are crucial
for SE.

5.2.3 Poor Performance of The MFCC and LTAS Features

In contrast to what was discussed in Section 5.1.4, the findings for OC speech SE show quite the
opposite effect. More specifically, the performance of all models in the LTAS experiment was below
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chance-level. Additionally, the MFCC experiment outperformed the LTAS experiment, with two
models (i.e., the LR and SVM) even demonstrating above chance-level accuracies. As we mentioned
in Section 5.1.4, we can attribute the poor performance of the MFCCs to duration, DL or the choice
of padding function. While this can account for accuracy resulting from the MLP and the 1D-CNN,
it does not explain why the LR and SVM obtained accuracies above 50%. Therefore, we believe that
a possible reason could be the lack of data. Namely, we emphasized that (D)NNs generally require
larger amounts of data to perform well consistently as opposed to models based on LR and SVM
methods. If we make this assumption, it is then reasonable to assume that only the LR and SVM
performed well. We can attribute this same explanation to the poor performance of the LTAS features
as well. However, models trained on LTAS features all performed below chance-level. Nonetheless,
the SVM in F1 demonstrated that above chance-level accuracy can be obtained (Table 11). If we then
build on the assumption that LTAS features are less important for OC speech SE, it is possible all
LTAS models, rather than just the 1D-CNN and the MLP, require more training data for OC speech
SE. Other reasons behind the poor LTAS performance may also be due to the duration or DL. Our
MFCCs had a high DL (i.e., 9380) compared to the LTAS features (i.e., 2050). In the case of OC
speech SE, the models might thus perform better if the features have a higher DL. Based on these
possible explanations, we therefore encourage future research to explore the use of MFCCs and LTAS
features for OC speech SE, in particular with a larger dataset.

5.3 Limitations and Future Research
It is important to mention several limitations of this research, with the main limitation being the lack
of sufficient data. In particular, the OC speech SE task could have benefited from more data. Since
speaker severity seems to be an important factor, an in increase speakers that have a wider variety of
severity levels, i.e., ranging from low SHI scores (e.g., 0-20) to extremely high SHI scores (e.g., 40-
60), could perhaps improve overall model performance. Furthermore, since the speech of the control
speakers had not been assessed beforehand, their speech could have been affected in some way that
was not accounted for in our study. For that reason, future research should take both of these matters
into account when selecting a dataset for OC speech SE. Another limitation related to our small dataset
is that it prevented us from tuning model hyperparameters efficiently. Tuning on the test set was not
ideal since the models ended up overfitting on the test set. Additionally, the creation of a development
(dev) set would have forced us to remove crucial train data from the already small train set, something
which would have deteriorated overall model performances. Future research should therefore focus
on data collection and implement grid searches to optimize the four ML methods for the OC speech
detection and speech SE tasks. A third limitation pertains to the feature extraction techniques used
to conduct the experiments. As has been illustrated in Chapter 4 and discussed in Sections 5.1.4 and
5.2.3, MFCCs and LTAS features showed considerable differences depending on the task. Though
we would have expected these features to perform well based on prior research (e.g., Halpern et
al., 2020a; Hernandez et al., 2020; Kim et al., 2020), our outcomes contradict previous findings.
Therefore, future studies that wish to expand on our research could look into more sophisticated
feature extraction techniques (i.e., padding, duration, DL, toolkits) to improve model performances.
Additionally, implementing feature ranking techniques should be explored to determine which feature
types are most optimal for OC speech detection and OC speech SE.

Aside from these suggestions, there are several other directions that we did not explore. One is
related to the sex of the speakers. In particular for OC speech detection, we had an uneven distribution
of male-female speakers in both the OC (3 male, 2 female) and control (2 male, 3 female) set. Kim
et al. (2020) and Fang et al. (2018) point out that the exclusion of female data from the test and
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training set can significantly affect model performance. Female speakers generally have a cepstral
domain with broader distributions than male speakers (Fraile et al., 2009). In some of our folds for
the OC speech detection task, we paired up a female OC patient with a male control. A possibility is
that for these folds, the models actually focused on the male vs female aspect of the features rather
than the OC speech features. However, it is unlikely that this is the main factor that affects our model
performances as the folds that only consisted of only male-male and female-female pairs performed
in a similar manner (Table 7). For the OC speech SE task however, only F2 consisted of a male-male
pair whereas the other folds consisted of male-female pairs, which could explain why F2 performed
consistently poor (Table 11). Other than the speaker severity, the effect of sex could therefore have
had an effect on the SE task. Future studies should thus be mindful of these distributions. A last
recommendation from our side is to explore the effect of type of ST on model accuracy. Due to our
small sample, we were not able to detect any obvious patterns that demonstrate higher accuracies for
tongue, jaw surgery and/or resection. However, if there is indeed such a pattern, this may become
clear with the use of a larger dataset.
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6 Conclusion

The current research investigated automatic detection and speech SE of Dutch OC speech. The find-
ings suggest that it is indeed possible to detect OC speech and thus distinguish healthy speakers from
OC speakers using ML methods. The model that performed best on this task was the 1D-CNN trained
on LTAS features (67.41%). Models trained on MFCC features, however, generally failed to perform
above chance-level, which suggests that LTAS features are more important for OC speech detection.
With regards to OC speech SE, our results demonstrate that it is possible to estimate the speech sever-
ity of OC patients with ML methods. The best score was obtained by the SVM model trained on
MFCC features (68.73%). Contrary to these findings, we did not find any confirmation that it is pos-
sible to reliably estimate severity scores for the models from the LTAS experiment or the MLP and
1D-CNN models from the MFCC experiment. This implies that these methods did not succeed in
assigning the correct severity labels to OC speech.

Though many questions remain with regards to which factors affect final model performance, it
has become evident that factors such as feature type and the (lack of) variety in severity levels can play
a role. This study has thereby introduced an alternative approach to automatic speech detection for
OC in an attempt to provide better insights into OC speech characteristics post-surgery. Additionally,
we presented objective speech SE techniques that could potentially be used to monitor OC speech
and develop further speech treatment plans. Consequently, this newly presented evidence should
encourage future research to expand on the growing body of studies on OC speech.
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Appendices

A Overview of OC TNM Staging

Table 13: TNM staging for OC as presented by Cancernet (2021) and Kademani (2007). PT refers to
the primary tumor, T refers to tumor, NS refers to the nodal status, N refers to node, LN refers to the
lymph nodes, M refers to metastasis and DM refers to distant metastasis. Please be aware that there
are different types of TNM staging depending on the type of cancer. In this case, we only presented
the staging for OC.

PT Explanation NS Explanation
TX PT cannot be evaluated NX Regional LN cannot be evaluated
T1 PT <2 cm N1 M to single ipsilateral LN; <3cm
T2 PT 2-4cm N2a M to single ipsilateral LN; 3-6cm
T3 PT 4-10cm N2b M to various ipsilateral LN; <6cm
T4 PT >10cm N2c M to bilateral/contralateral LN; <6cm

Staging Explanation N3 M to any LN; >6cm
Stage 1 T1, N0, M0 DM Explanation
Stage 2 T2, N0, M0 Mx M cannot be evaluated
Stage 3 T3N0M0; T1N1M0; T2N1M0; T3N1M0 M0 No spreading of cancer to other body parts
Stage 4 Any T4, N2, N3 or M1 lesion M1 Spreading of cancer to other body parts
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B SHI: Original Version by Rinkel et al. (2008)
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C SHI: Dutch Adaptation by Van den Steen et al. (2011)

Abbreviations: Questions with indicator P refer to the physical impact, those with indicator F refer
to the functional impact and those with indicator E refer to the emotional impact of a patient’s speech
on their quality of life.
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D Translated SHI Questions from Van den Steen et al. (2011)
1. P1: The speed with which I speak has changed.
2. P2: I find it difficult to express my emotions through my voice.
3. P3: I have difficulty articulating well when I speak.
4. P4: I have to put in a lot of effort when I speak.
5. P5: I am out of breath when I speak.
6. F1: I find it hard to express orally what I need [food, drinks, bathroom, ...].
7. F2: The thought of expressing my thoughts and ideas embarrasses me.
8. F3: I find it difficult to communicate with people whom I don’t know well.
9. F4: Due to my speech impairment people often ask me to repeat something.

10. F5: I avoid conversations with my family, friends, neighbors.
11. E1: I suffer because of the manner in which I speak.
12. E2: My speech impairments restrict me in my personal and social life.
13. E3: I feel like others don’t understand my speech impairments.
14. E4: People seem irritated by my speech impairments.
15. E5: I feel disabled as a result of my speech difficulties.
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E Overview of All Participants with Their Corresponding Speaker ID, Group
and Sex

Table 14: Overview of the participants included in the speech dataset. Sex of speaker is indicated
either male (M) or female (F). Healthy controls (HC) and OC patients (PT) all received a speaker ID
based on their group (CON for control speaker and OC for oral cancer speaker).

ID Group Sex
HC1 CON M
HC2 CON M
HC3 CON F
HC4 CON F
HC5 CON F
PT1 OC M
PT2 OC M
PT3 OC M
PT4 OC F
PT5 OC F
PT6 OC F
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F Complete Stimuli Set without Repetitions
Custom sentences (excluded)

1. Hij heeft tamme shock gezegd.
2. Hij heeft tamme sock gezegd.
3. Hij heeft tamme biet gezegd.
4. Hij heeft tamme boet gezegd.
5. Hij heeft tamme baat gezegd.

Papa en Marloes
1. Papa en Marloes staan op het station.
2. Ze wachten op de trein.
3. Eerst hebben ze een kaartje gekocht.
4. Er stond een hele lange rij, dus dat duurde wel even.
5. Nu wachten ze tot de trein eraan komt.
6. Het is al vijf over drie, dus het duurt nog vier minuten.
7. Er staan nog veel meer mensen te wachten.
8. Marloes kijkt naar links, in de verte ziet ze de trein al aankomen.

Man uit Finland
1. Er was eens een man uit Finland.
2. Hij had veel geld gespaard.
3. Dat was voor de auto van zijn dromen.
4. Hij nam de trein om de auto te gaan kopen.
5. Maar de man was bang voor dieven.
6. Hij bewaarde het geld in zijn onderbroek.
7. Hij droomde al van de eerste rit in de nieuwe wagen.
8. Plots moest hij naar het toilet.
9. De man dacht niet meer aan het geld.

10. Het zakje met geld viel recht in de pot.
11. En de man spoelde door.
12. Daar ging zijn fraaie plan!
13. Gelukkig was de politie in de buurt.
14. Die vond het zakje terug op het spoor.

Noordenwind en de zon
1. De noordenwind en de zon waren erover aan het redetwisten wie de sterkste was van hen beiden.
2. Juist op dat moment kwam er een reiziger aan, die gehuld was in een warme mantel.
3. Ze waren het erover eens dat degene die er als eerste in slaagde de reiziger zijn mantel uit te

doen, als sterker moest worden beschouwd dan de ander.
4. De noordenwind begon toen uit alle macht te blazen.
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5. Maar hoe harder hij blies, des te dichter trok de reiziger zijn mantel om zich heen.
6. Ten lange leste gaf de noordenwind het op.
7. Daarna begon de zon krachtig te stralen, en hierop trok de reiziger onmiddellijk zijn mantel uit.
8. De noordenwind moest dus wel bekennen dat de zon van hen beiden de sterkste was.

Els gaat naar markt
1. Het is zaterdag.
2. Els heeft vrij.
3. Ze loopt door de stad.
4. Het is prachtig weer, de lucht is blauw.
5. Op straat ziet ze Bart op de fiets.
6. Hij wacht voor het rode licht.
7. Als Bart haar ziet, zwaait hij.
8. Els loopt weer verder.
9. Bij de bakker koopt ze brood, bij de slager koopt ze vlees.

10. Als het vijf uur is gaat ze terug, zodat ze op tijd weer thuis is.

Meneer van Dam
1. Vanmorgen ging meneer van Dam naar de groenteman.
2. Namelijk om een mand mandarijnen te kopen.
3. Aan zijn arm nam hij een mand mee om de mandarijnen in te doen.
4. Na een minuut of tien stond meneer van Dam in de winkel.
5. En hij nam een mand mandarijnen mee en ook maar meteen negen bananen en een mooie

ananas.
6. Met zijn mand aan zijn arm ging hij toen snel naar huis.

Jorinde en Joringel
1. Er was eens een oud kasteel midden in een diep en donker bos.
2. Daarin woonde een oude heks helemaal alleen.
3. Overdag veranderde ze zich in een kat of een uil, maar ‘s avonds werd ze weer een mens.
4. Ze kon dieren en vogels naar zich toe lokken.
5. Die dieren slachtte, kookte en braadde ze dan.
6. Wanneer iemand binnen honderd meter van het kasteel kwam, moest hij stilstaan en kon zich

niet meer verroeren.
7. Dit duurde totdat de heks hem met een spreuk verloste.
8. Wanneer er echter een onschuldig meisje te dicht bij haar kasteel kwam, veranderde de heks

haar in een vogel en sloot haar op in een kooitje.
9. Dat kooitje bracht ze dan naar een zaal van haar kasteel.

10. Ze had wel zevenduizend kooien met zulke bijzondere vogels in haar kasteel.
11. Nu was er eens een meisje dat Jorinde heette.
12. Ze was mooier dan alle andere meisjes en was verloofd met de knappe Joringel.
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13. Ze zouden over een paar dagen gaan trouwen en ze hadden veel plezier met elkaar.
14. Om eens rustig samen te kunnen praten, gingen ze in het bos wandelen.
15. ‘Pas op’, zei Joringel, ‘dat je niet te dicht bij het kasteel komt’.
16. Het was een mooie avond.
17. Het heldere zonlicht scheen tussen de boomstammen door in het donkere groen van het bos.
18. De tortelduif zong klagelijk in de oude beuk.
19. Jorinde huilde een beetje.
20. Ze ging in de zon zitten en klaagde.
21. Joringel klaagde ook.
22. Ze waren verdrietig, alsof ze moesten sterven.
23. Ze keken om zich heen en waren verdwaald.
24. Ze wisten niet meer hoe ze thuis moesten komen.
25. De zon stond nog maar half boven de berg en voor de helft was ze al onder.
26. Joringel keek door de struiken en zag vlakbij de oude muur van het kasteel.
27. Hij schrok en werd doodsbang.
28. Jorinde zong:
29. Mijn vogeltje met het rode ringetje
30. Zingt lijden, lijden, lijden:
31. Het zingt voor het duifje, zingt voor zijn dood,
32. Zingt lijden, lij, twiet, twiet, twiet.
33. Joringel keek naar Jorinde.
34. Jorinde was in een nachtegaal veranderd die twiet, twiet zong.
35. Een uil met gloeiende ogen vloog drie keer om hen heen en schreeuwde drie keer oehoe, oehoe,

oehoe.
36. Joringel kon zich niet meer bewegen.
37. Hij stond erbij als van steen, kon niet huilen, niet praten, geen hand of voet bewegen.
38. Nu was de zon ondergegaan.
39. De uil vloog in een struik en direct kwam er een kromme, oude vrouw tevoorschijn.
40. Ze was geel en mager.
41. Ze had grote rode ogen en een kromme neus die met de punt tot aan haar kin kwam.
42. Ze mompelde wat, ving de nachtegaal en droeg die in haar hand weg.
43. Joringel kon niets zeggen, niet van z’n plaats komen.
44. De nachtegaal was weg.
45. Eindelijk kwam de oude vrouw terug en zei met een doffe stem:
46. ‘Gegroet Zachiël’
47. Maak los, op het juiste moment, wanneer het maantje in het kooitje schijnt.
48. Toen was Joringel verlost.
49. Hij viel voor de oude vrouw op de knieën en smeekte haar om hem Jorinde terug te geven.
50. Maar ze zei dat hij Jorinde nooit meer terug zou krijgen en ging weg.
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51. Hij riep, hij huilde, hij jammerde, maar het was allemaal voor niets.
52. ‘Oh, wat moet er van mij worden?’ Joringel ging weg en kwam uiteindelijk in een vreemd dorp.
53. Daar hoedde hij lange tijd de schapen.
54. Vaak liep hij rond het kasteel, maar hij kwam nooit te dichtbij.
55. Een keer droomde hij ‘s nachts dat hij een bloedrode bloem vond met in het midden een

prachtige grote parel.
56. Hij plukte de bloem en ging ermee naar het kasteel.
57. Alles wat hij met de bloem aanraakte werd van de betovering bevrijd.
58. Ook droomde hij dat hij daardoor zijn Jorinde teruggekregen had.
59. ‘s Morgens, nadat hij wakker werd, begon hij door berg en dal naar zo’n bloem te zoeken.
60. Hij zocht tot aan de negende dag.
61. Toen vond hij de bloem in de vroege ochtend.
62. In het midden lag een grote dauwdruppel, zo groot als de mooiste parel.
63. Joringel liep dag en nacht en droeg de bloem naar het kasteel.
64. Toen hij dichtbij het kasteel gekomen was, verstijfde hij niet, maar hij liep door tot aan de deur.
65. Joringel werd heel blij, raakte de deur aan met de bloem en de deur sprong open.
66. Joringel ging naar binnen, liep over de binnenplaats en luisterde goed of hij de vele vogels kon

horen.
67. Toen hoorde hij ze fluiten.
68. Hij liep in de richting van het gefluit en vond de zaal.
69. Daar was de heks bezig de vogels in hun zevenduizend kooien te voeren.
70. Toen ze Joringel zag werd ze kwaad, heel erg kwaad.
71. Ze schold, tierde en spuwde gif en gal naar hem.
72. Maar ze kon niet bij hem in de buurt komen.
73. Joringel lette niet op haar en bekeek de kooien met de vogels.
74. Er waren vele honderden nachtegalen, hoe moest hij nou Jorinde terugvinden?
75. Toen hij zo rondkeek, merkte hij, dat de oude vrouw stiekem een vogelkooitje wegpakte en

daarmee naar de deur liep.
76. Snel sprong hij erheen en raakte het kooitje en de oude vrouw aan met de bloem.
77. Nu kon de heks niet meer toveren, en Jorinde stond weer voor hem.
78. Ze vloog hem om de hals en was zo mooi als vroeger.
79. Daarna veranderde hij ook alle andere vogels weer in meisjes en ging met zijn Jorinde naar

huis.
80. En ze leefden nog lang en gelukkig met elkaar.

Wablieft (news source)
1. Het concert mocht doorgaan, maar zonder licht of decor!
2. Lachgas is gevaarlijk.
3. Voor beide surfers stuurden de hulpdiensten ziekenwagens en reddingsboten uit.
4. Een e-boek is altijd goedkoper dan hetzelfde boek op papier.
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5. Op dinsdag 10 oktober voetbalt België in Brussel tegen Cyprus.
6. Sindsdien vond de tocht al 15 keer plaats.
7. Op zondag 8 september is het feest.
8. Kenners noemen Messi de beste voetballer ter wereld.
9. Samba is de meest bekende muzieksoort uit Brazilië.

10. Die vond plaats op woensdag 30 oktober.
11. Ik ben Hank, steward voor de passagiers in de tweede klasse.
12. De pikante hamburger uit Bristol kost 30 euro.
13. PepsiCo is het bedrijf achter frisdrank Pepsi.
14. Bangkok is de hoofdstad van Thailand in Azië.
15. De Nederlandse burgers kiezen op 12 september een nieuwe regering.
16. Door haar bekendheid kreeg Moeder Teresa miljoenen euro’s van schenkers.
17. Alle Cyprioten zouden een hoge taks betalen op hun spaargeld.
18. Facebook onthoudt welke websites de gebruikers nog bezoeken.
19. De cursisten spraken op vrijdag 7 september met de politici.
20. Hij bezat de Europese titel sinds de zomer van 2014.
21. Dat is de belangrijkste rechtbank van het land.
22. Sterke lopers onder de veldrijders zagen hun kans.
23. De officiële resultaten zijn waarschijnlijk morgen, donderdag, bekend.
24. Arbeiders sloopten stukken van de tempel met bulldozers.
25. De Warmathon hoopt duizenden mensen op straat te krijgen.
26. De ziekenfondsen betalen sinds 2016 het remgeld terug voor kinderen.
27. De meeste pastoors zijn niet tevreden over aartsbisschop Léonard.
28. Vele tienduizenden mensen bekijken hun filmpjes op de website YouTube.
29. Met Pasen was minder dan één op vijf hotelkamers bezet.
30. De chefs bij Noma koken met producten uit de streek.
31. Dat vindt plaats op 25 september in Kopenhagen in Denemarken.
32. De pakjes brengt hij pas op 6 december.
33. Er zijn wedstrijden voor de best verklede bezoekers.
34. Op 6 december komt Sinterklaas langs.
35. Behalve in Brazilië, daar spreken mensen Portugees.
36. Voor de quizploeg probeert hij alles te onthouden.
37. De capsule in Boston zat er sinds 1914.
38. Eén straat heeft bijzondere parkeermeters.
39. Je hebt ook de sociale netwerken op internet, zoals Facebook.
40. Uiteindelijk bleken de toeschouwers toch in ‘veilige’ zones te staan.
41. Twee bedrijven uit Italië maken samen pasta.
42. Enkel president Obama kan de pijplijn nog tegenhouden.
43. In Groot-Brittannië vond het wereldkampioenschap darts plaats.
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44. Na het wereldkampioenschap in Brazilië wilden ze snel naar huis.
45. Dit betekent net hetzelfde als keuze 2.
46. Die bleek 18 keer sterker dan eerst gedacht.
47. Haar tegenstanders blijven steken op 24 zetels.
48. Toen vond in Brazilië het wereldkampioenschap voetbal plaats.
49. De bibliotheek heeft 20 jaar lang cd’s gekocht.
50. Moeder Teresa wordt op 4 september heilig verklaard.
51. Australië lijdt onder de zwaarste bosbranden sinds jaren.
52. Hij was 35 jaar sportjournalist op de radio.
53. In België is dat verboden op tijdelijke plaatsen.
54. Je kan dat tijdelijk gratis beluisteren op iTunes.
55. Dat zei de Amerikaanse president Obama op tv.
56. Tijdens het bezoek was er protest tegen Obama.
57. Dat jaar kwamen de eerste 600 bezoekers naar het park.
58. Elektronische maaltijdcheques kosten veel minder dan papieren cheques.
59. In 2013 stopt hij ook als president van China.
60. Dat was de zesde rally voor het Belgisch kampioenschap.
61. Op dit moment zijn er 800 strips beschikbaar.
62. Zondag kwamen de Europese ministers van Financiën samen in Luxemburg.
63. Belgische organisaties gebruikten 6 miljoen voor noodhulp.
64. Tanken langs de snelweg blijft heel duur.
65. Het decor drijft op het Bodenmeer.
66. Dat is dé auto in Oost-Duitsland.
67. De Turkse president Erdogan sprak het land toe.
68. De onderzoekers zetten nu aardbeiplantjes op duizend vensterbanken.
69. De spelers hadden achteraf kritiek op trainer Weiler.
70. Ook België heeft redders en dokters ter plaatse.
71. De eerste voorstelling vindt plaats op zondag 20 september.
72. De Britse zangeres Adele is met succes geopereerd.
73. De rechtbank bestaat sinds 2002.
74. Zodra de index 2 procent stijgt, helpt de overheid.
75. Bijvoorbeeld de presidenten van Rusland, China en Syrië.
76. Het gaat bijvoorbeeld om kwetsende opmerkingen op Facebook.
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