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Abstract
Approximately 500.000 people are diagnosed with oral cancer yearly (Shield et al., 2016), and the
treatment of oral cancer often leads to impaired speech intelligibility (Lazarus et al., 2014). Automatic
speech recognition (ASR) systems could ameliorate oral cancer survivors’ quality of life since it could
ease their communication and it could also be applied clinically (Windrich et al., 2008). Therefore,
this study aims to investigate what phonemes cause higher recognition error rates in standard end-to-
end (E2E) ASR systems for oral cancer speech compared to healthy speech in Dutch, as well as the
influence of the surgical treatment on the ASR performance. We use the ESPnet E2E ASR system
that adopts a hybrid CTC-attention architecture in combination with a Conformer model that was
pre-trained on the CGN corpus containing healthy Dutch speech. After running our Dutch oral cancer
speech dataset through the ASR system, we perform an extensive error analysis on both the phoneme
and articulatory feature level. In agreement with the literature (e.g. Halpern et al., 2022), our results
reveal that the E2E ASR system performs significantly poorer for oral cancer speech than for healthy
speech. Especially the production of /k/ elicits higher recognition error rates in oral cancer speech,
which is in line with previous research (e.g. Borggreven et al., 2005; de Bruijn et al., 2009). Our
articulatory feature analysis supports these findings as it shows that velar consonants are the second
most challenging articulatory feature class to be recognized in oral cancer speech, and that plosives
are misrecognized most frequently by the ASR system in terms of manner of articulation. Although
previous studies report on sibilants being misrecognized in oral cancer speech (e.g. Laaksonen et al.,
2011), our results do not show sibilants to be more challenging for the ASR system to capture in oral
cancer speech, which is in accordance with the findings of Halpern et al. (2022). In addition, the
speech of oral cancer patients who underwent a mandibulectomy seems to obtain higher recognition
error rates than the speech of patients who underwent a (partial) glossectomy, although the difference
between WERs fails to reach significance. The findings of this study contribute to the development
of Dutch ASR systems for oral cancer speech.
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1 Introduction
Over the last couple of years automatic speech recognition (ASR) has significantly improved, and
its numerous applications to make people’s lives more convenient range from voice assistants (such
as Siri and Alexa) to voice interaction systems in banks and hospitals. The improved performance
of ASR systems is the result of the introduction of deep learning (Graves and Jaitly, 2014). Conse-
quently, current ASR systems need large amounts of input data to be trained on, as the systems learn
how to recognize speech from this data (Alzubaidi et al., 2021). State-of-the-art ASR systems work
very well for speech that is similar to the training data, which usually comprises native speech of adult
speakers who have a standardized dialect, without a speech impairment. However, ASR systems do
not work well for people whose speech diverges from standard speech (e.g. Muhammad et al., 2011;
Tatman and Kasten, 2017; Koenecke et al., 2020), even though these people could arguably benefit the
most from ASR systems (e.g. Windrich et al., 2008). The speech of people who have been diagnosed
with and treated for oral cancer falls within this group.

Globally, approximately 529.500 people have to battle oral cancer every year (Shield et al., 2016).
Survivors of this disease can have problems affecting several basic functions such as swallowing
(Lazarus et al., 2014; Kreeft et al., 2009) and chewing (Epstein et al., 1999). Furthermore, oral cancer
treatment can lead to reduced tongue mobility (Kappert et al., 2019), and impaired speech intelligi-
bility (Lazarus et al., 2014; van der Molen et al., 2012). The oral cancer survivors who have impaired
speech have more difficulty communicating with other people, which may negatively affect their
quality of life (Epstein et al., 1999). Such communication problems could be alleviated with ASR
systems, as they make it easier for oral cancer patients to communicate with others despite of their
speech impairment.

Although the research interest on ASR performance for oral cancer patients is increasing, oral cancer
speech data is difficult to collect and, therefore, studies on the subject are still limited. However,
recently a new oral cancer database has been collected which enables assessing ASR performance on
oral cancer speech. The current study aims to fill the gap in the literature on ASR performance on
oral cancer speech in Dutch by comparing the ASR performance on oral cancer speech and healthy
speech. In order to be able to answer our research questions, we conducted extensive error analyses
on the phoneme and articulatory feature level in addition to the word error rate. This serves multiple
goals:

• First, comparing the results of this analysis for both the healthy and oral cancer speech can
reveal what phonemes are difficult to capture for ASR systems in both healthy and oral cancer
speech, and what phonemes are hard to capture in oral cancer speech only.

• Second, in order to develop ASR systems that are trained on oral cancer speech, it is essential
to know more about the kind of errors that are made, and specifically what types of phonemes
in oral cancer speech cause difficulties for ASR systems that are trained on healthy speech. In
addition, it is important to investigate whether these sounds correspond to the phonemes that
are mentioned in the literature.

• Third, it would be beneficial for the future development of ASR systems for oral cancer speech
to look into what phonemes are misrecognized for patients with different types of surgical
treatments. This could contribute to either a more inclusive ASR system for oral cancer patients,
or to ASR systems that are developed for an even more specific target population.
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The outcomes of this study contribute to the development of ASR systems specifically for oral cancer
speech in Dutch, which could improve the quality of life of oral cancer survivors.

1.1 Research questions and hypotheses
The present study aims to gain insights into what type of articulatory aspect(s) of oral cancer speech
are particularly difficult for standard ASR systems to recognize compared to healthy speech in Dutch.
In addition, we aim to investigate the influence of the surgical treatment on the ASR performance on
oral cancer speech. This study thus seeks to answer the following research questions:

RQ1. ‘What phonemes in oral cancer speech cause higher recognition error rates in a standard
ASR system compared to healthy speech in Dutch?’

RQ2. ‘Does the surgical treatment of oral cancer patients influence the ASR performance on
oral cancer speech?’

Following previous research (e.g. Borggreven et al., 2005; Laaksonen et al., 2011; Halpern et al.,
2020, 2022), it is hypothesized that the answer to the first research question is that plosives (mainly
/k/, /p/, /t/, and /d/) and alveolar sibilants cause higher recognition error rates in oral cancer speech
than in healthy speech in Dutch. In addition, it is expected that certain vowels, especially /a/ and /u/,
cause difficulties for the ASR system as well (Halpern et al., 2022).

Furthermore, regarding the second research question it is expected that the type of surgery impacts
the ASR performance, as previous research has suggested that the speech intelligibility of oral cancer
patients is influenced by the site of resection (Logemann et al., 1993; Borggreven et al., 2005). In
addition, a mandibulectomy affects more articulators than a glossectomy (Matsui et al., 2007), which
leads us to hypothesize that the ASR performance for these patients is worse than for patients who
underwent a (partial) glossectomy. Regarding specific phonemes, research has shown that the jaw
is important for the production of vowels (Mooshammer et al., 2007), and we therefore believe that
vowels are more impaired in the speech of oral cancer patients with mandibular surgery, resulting in
higher recognition error rates.

1.2 Thesis Outline
This thesis contains six chapters. Chapter 1 has given a short introduction to the research topic and the
aims and relevance of this research. The second chapter presents an overview of the existing theory
in this field in order to create a context and to acquire a better understanding of the results. In Chapter
3, the methods used in this study are described, followed by an overview of the findings in Chapter 4.
Then Chapter 5 provides a discussion of the results, which also acknowledges the limitations of this
research. Lastly, the sixth and final chapter summarises the findings and draws conclusions.
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2 Background Literature

This chapter discusses the literature and concepts related to this study. It is divided into five main
topics: Failure of speech production (Section 2.1), Oral cancer speech (Section 2.2), Deep Learning
(Section 2.3), Automatic Speech Recognition (ASR) (Section 2.4), and finally, this chapter ends with
a review of previous research on ASR for pathological speech (Section 2.5).

2.1 Failure of speech production

Figure 1: A simple visualisation of the source-filter theory of
speech production.

When we are talking about patholog-
ical speech, we mean speech that is
impaired due to a malfunction in the
human speech production system. In
order to understand how speech pro-
duction can fail, it is important to have
an understanding of how speech is
generally produced. There are sev-
eral theories on how speech is pro-
duced, but one that is widely accepted
is the source-filter theory (e.g. Fant,
1981). This theory states that the vo-
cal folds in the larynx generate an
acoustic source, which is the acous-
tic energy that serves as the input for
the speech production system. This
acoustic source is then modulated (‘fil-
tered’) by the flexible articulators in
the vocal tract called ‘filters’, resulting
in the output sound. The flexible articulators are constantly moving, and the specific shape and con-
figuration of the articulators determine the formants, or resonant frequencies of the vocal tract (Seikel
et al., 2019). Formants can be defined as the frequencies of a sound that resonate the most in the oral
cavity given the shape and position of the articulators, and these formants in turn determine the output
sound. Figure 1 gives a simple visualisation of the source-filter theory we have briefly described.

The human speech production system can fail in various ways involving either the source, the filter
or both, and this leads to several different speech pathologies. For instance, in pathologies such as
dysphonia (e.g. Bender et al., 2004) and dysarthria (e.g. Enderby, 2013) there are issues with voicing
or phonation, which means that the source is involved. It must be mentioned however, that in the case
of dysarthria these issues are the result of neuromuscular damage (Enderby, 2013). Dysarthria can
therefore also affect the articulation, meaning the issues involve the filter of the speech production
system as well. Other pathologies that (mainly) affect the filter are for example cleft lip (e.g. Safaiean
et al., 2017), cleft palate (e.g. Rullo et al., 2009), and oral cancer speech (e.g. van der Molen et al.,
2008), although the latter can also be affected on the phonation level. In addition, besides dysarthria
there are other pathologies with a neurological origin that affect aspects of speech, such as Alzheimer
(e.g. Lindsay et al., 2021) and aphasia (e.g. Qin et al., 2020). For the purpose of this research, however,
we focus on the speech of oral cancer patients who have undergone surgical treatment. This treatment
has inflicted trauma to their articulators, and thus causes articulatory difficulties for the oral cancer
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patients, due to tissue loss. The next section elaborates on the characteristics of the speech of oral
cancer patients.

2.2 Oral cancer speech

Multiple studies have found that treatment for oral cancer can negatively affect speech intelligibility
of oral cancer patients (e.g. Lazarus et al., 2014; van der Molen et al., 2012). This is mainly the case
when patients have undergone a total or partial glossectomy, in which the entire tongue or parts of
the tongue are removed. In addition, research has also shown that oral cancer patients who have had
a mandibulectomy, in which a part of the mandible is removed, suffered from significantly impacted
speech (e.g. Logemann et al., 1993; Matsui et al., 2007). Sufficient control of the articulators is crit-
ical for the production of speech. When any of the articulators are impaired in terms of movement,
strength, or adaptability this impacts a speaker’s ability to make the articulatory movements that are
required to produce speech (Saravanan et al., 2016). In order to limit the extent to which speech
organs are affected, different methods of oral cancer treatment have arisen over the past couple of
decades, such as reconstruction of the damaged tissue (e.g. free flaps) and organ preservation (e.g.
chemoradiation). Nevertheless, in a literature review van der Molen et al. (2008) found that both oral
cancer treatments, i.e., reconstruction and organ preservation, often cause speech impairments. More
recent approaches to treat oral cancer are radiation delivery techniques and speech rehabilitation, in
which the articulatory organs are spared (de Bruijn et al., 2009).

In previous studies, it has been suggested that the amount of removed tissue (e.g. Rentschler and
Mann, 1980), the site of the resection (e.g. Logemann et al., 1993), and the technique of reconstruc-
tion (e.g. Konstantinović and Dimić, 1998) might be a strong indicator of the resulting speech intel-
ligibility of patients. More recently, Borggreven et al. (2005) also found that the size and location of
the tumour appear to highly influence the quality of speech after treatment. For example, patients who
were treated for larger tumours experienced more difficulty with their speech compared to patients
who were treated for smaller tumours. Furthermore, even though speech is mainly impaired on the
articulatory level, Lazarus et al. (2014) found that patients who also underwent radiation therapy ex-
perienced issues with phonation as well. In addition, a number of studies found that both swallowing
and speech functions worsened over time in patients who underwent both surgery and radiotherapy
(e.g. Shin et al., 2012; Lazarus et al., 2013).

There are several characteristics of speech impairment that previous studies have found to be a con-
sequence of oral cancer treatment. The common findings are that primarily plosives (e.g. Bressmann
et al., 2004, 2009; de Bruijn et al., 2009) and alveolar sibilants (e.g. Logemann et al., 1993; Laakso-
nen et al., 2011; Halpern et al., 2020) are affected. Additionally, certain vowels such as the /i/, have
been found to be affected as well as the vowel space area (e.g. Whitehill et al., 2006; Takatsu et al.,
2017). The following sections further elaborate on each of these affected speech sounds.

2.2.1 Plosives

In a study with German glossectomy patients, Bressmann et al. (2004) found a moderate but signifi-
cant correlation between tongue motility and consonant intelligibility, which, according to the authors,
supports the assumption that better tongue motility indicates better articulation after a glossectomy.
Furthermore, the study of Borggreven et al. (2005) with Dutch participants showed that when patients
with different kinds of oral cancer produced the velar /k/ sound, this was often perceived as /x/ instead.
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de Bruijn et al. (2009) also found that the production of /k/ and /x/ was a good predictor of oral cancer
speech in Dutch. They point out that the production of these speech sounds ‘require a posterior move
of the tongue towards the oropharyngeal region and an adequate motility of the velum’ (de Bruijn
et al., 2009, p. 184), and that better tongue motility corresponds with better consonant intelligibility
(Bressmann et al., 2004). Moreover, in the study of Borggreven et al. (2005) study, it was difficult
for oral cancer patients to produce the alveolar /d/ and /t/ as well, as these speech sounds were often
nasalized or retracted: /d/ was confused with /n/ (in patients treated for oropharyngeal tumours), and
/t/ with /tS/ (in patients treated for tongue tumours).

All of the aforementioned studies used human listeners to evaluate the intelligibility of oral cancer
speech. However, even though ASR systems could be both faster and cheaper to evaluate the speech
intelligibility of oral cancer patients in clinical practices (e.g. Windrich et al., 2008), research on
the use of ASR systems to evaluate speech intelligibility of oral cancer patients is still quite limited.
Nevertheless, two recent studies have been conducted using ASR systems to evaluate which phonemes
are affected most in oral cancer speech. The findings of Halpern et al. (2020) reveal that plosives are
among the phonemes that are the most important indicators for oral cancer speech in English. In
addition, Halpern et al. (2022) found that when the ASR system is trained on healthy English speech,
the /g/ and /p/ have phoneme error rates (PERs) that exceed 60%, and are therefore among the most
difficult phonemes to be captured by ASR systems.

2.2.2 (Alveolar) sibilants

Besides the plosives mentioned in the previous section, Borggreven et al. (2005) also found that pa-
tients who were treated for tongue tumours had difficulty producing the alveolar sibilant /s/. They
tended to retract the consonant and confuse it with /S/. Furthermore, Laaksonen et al. (2011) inves-
tigated the effects of reconstructive surgery on the sibilants that were produced by Canadian-English
tongue cancer patients. Their results showed that even one year after their surgical treatment, the pa-
tients were unable to articulate /s/ and /z/ in a manner similar to their pre-operative speech. However,
it is important to keep in mind that these findings concern spectral and temporal acoustic measures,
which does not necessarily mean that the intelligibility of these phonemes was affected. Moreover,
the analysis of /S/ did not show any significant results and the authors hypothesize that this might be
due to the tolerance of /S/ regarding articulatory deviation compared to /s/ and /z/. In addition, they
found that shortly after the treatment the acoustic distance between these three sounds was reduced,
although this reduction could no longer be observed one year after the reconstruction (Laaksonen
et al., 2011).

Besides the plosives, Halpern et al. (2020) found that sibilant frequencies are important indicators for
the detection of oral cancer, which is in accordance with previous literature. In contrast with this,
however, Halpern et al. (2022) found that /s/ and /z/ were captured relatively well by two ASR archi-
tectures trained on healthy English speech. They suggest that due to the fact that sibilants are consid-
ered to be noise, the ASR performance is less impacted by loss of information of these phonemes.

2.2.3 Vowels

Whitehill et al. (2006) investigated the acoustic characteristics of vowels of Cantonese oral cancer pa-
tients who had undergone a glossectomy. In addition to an intelligibility test conducted with speech
and hearing science students, the authors performed an acoustic analysis by measuring the formant



14 Chapter 2 BACKGROUND LITERATURE

frequencies of the four vowels /i/, /e/, /a/, and /u/. They found that, as a result of reduced tongue
movement after a partial glossectomy, the production of the vowel /i/ was the most affected vowel in
oral cancer speech. This was due to the fact that it had a significantly reduced F2 value compared to
the speech of the control speakers and it was reportedly the least intelligible vowel as well. However,
it was not just the production of the /i/ that was affected, as Whitehill et al. (2006) found that the en-
tire vowel space area was compressed following the glossectomy. In accordance with these findings,
de Bruijn et al. (2009) found similar results in the case of Dutch oral cancer speech, i.e. compressed
vowel space area and affected production of /i/.

Takatsu et al. (2017) carried out a similar study on vowel production with Japanese speakers. In com-
parison with the study of Whitehill et al. (2006) and de Bruijn et al. (2009), (some) speakers had also
received reconstructive surgery in Takatsu’s study. Nevertheless, Takatsu et al. (2017) found that the
vowel space area and the diphthongs were still influenced by the surgical treatments, albeit to different
extents. However, Takatsu et al. (2017) also show that patients who received reconstructive surgery
had a larger vowel space area compared to patients who did not.

In contrast to these studies, the findings of Halpern et al. (2020) do not support the significance of
vowels and diphthongs when they performed an oral cancer speech detection task. Although, when
Halpern et al. (2022) performed an error analysis on two ASR architectures trained on healthy speech,
the analysis did reveal that certain vowels were hard to capture for these systems. The hybrid model
had difficulties capturing the /a/ and /u/, and the end-to-end architecture had issues recognizing the
/a/, /EI/ and /u/. Nevertheless, the authors mention that, apart from the /a/ and /u/, the vowels were
recognized comparatively well.

2.3 Deep Learning (DL)

The field of deep learning concerns the development of machine learning (ML) techniques using
mutli-layered neural networks for various tasks (Alzubaidi et al., 2021). Deep learning algorithms
are inspired by the way human brains process information, and the neural networks involved in deep
learning thus have a similar structure (Sugomori et al., 2017). Therefore, as the human brain is able
to perform tasks based on learned knowledge, in order to find the relationship between the input and
output data of a system, rather large amounts of input data are required for the deep learning algo-
rithm to learn from (Alzubaidi et al., 2021). Figure 2a is a simplified representation of a multilayer
perceptron which is the simplest deep neural network (DNN), although state-of-the-art neural net-
works (e.g. transformers) typically consist of more than two hidden layers as well as various other
complex components (e.g. Zhang et al., 2020).

In simple terms, the input layer stores the input, which is processed by the hidden layers and then
the output layer provides the desired output. In more technical terms, neural networks aim to learn
a function that maps the input to the output. The function that is being learnt by the neural network
is determined by the manner in which the network is structured as well as by the weights inside the
network, which can either amplify or attenuate the inputs (Sugomori et al., 2017; Zhang, 2022). Fur-
thermore, neural networks have a loss function that indicates how closely the learnt mapping function
approximates the optimal mapping. Therefore, the training of a neural network can be described as
an optimization process, which means that the network weights are repeatedly updated in order to
minimize the loss function (Alzubaidi et al., 2021; Zhang, 2022).
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(a) A simple visualization of a neural network.
(b) A visualization of a hidden unit. (Note.
Reprinted from ’Deep Learning’ by Sugo-
mori et al., 2017, p. 466)

Figure 2: A simplified representation of how a neural network is structured.

Neural networks thus contain hidden layers and these hidden layers in turn consist of small hidden
units. Each hidden unit calculates a weighted sum of the previous layer (see Figure 2b; Sugomori
et al. (2017)). The weights of this weighted are learnt during an optimization process. Then, the
hidden unit mathematically adds non-linearity by using an activation function that fires the output
(Sugomori et al., 2017). There are many different activation functions, though the most commonly
used activation functions are Sigmoid, Tanh (Hyperbolic Tangent) and ReLU (Rectified Linear Unit)
for hidden layers, and Linear or Softmax for the output layer. The activation function fires the out-
put based on the weighted sum and the bias, which is an independent parameter that acts like input,
although it is stimulated by a fixed value that is multiplied by an associated weight (Sugomori et al.,
2017). Finally, the output of every hidden unit in the hidden layer serves as input for the following
neural network layer.

Deep learning can be applied in many different situations, and it sometimes even outperforms human
experts (Alzubaidi et al., 2021). Some examples of the use of deep learning across industries are
self-driving cars, biometrics, fraud detection, and of course automatic speech recognition. Although
ASR is usually associated with voice assistants, it has a much wider application. For example, ASR
systems can be employed in clinical practices to estimate speech intelligibility for example, and these
tests would be both cheaper and faster than using human listeners. The next section dives deeper into
automatic speech recognition and the role deep learning plays in it.

2.4 Automatic Speech Recognition (ASR)

Automatic speech recognition (ASR) can simply be defined as the process of converting speech into
text, i.e. Speech-to-Text (STT), where the ASR system processes human speech as input, recognizes
it, and then gives the corresponding word sequence as output. In other words, an ASR system aligns
speech and text by identifying and classifying the input data, which means that we can consider ASR
to be a classification task. Thus, given the speech signal X and its transcriptions Y = (y1,y2, . . . ,yL)
(where the elements are the words within the text sequence), ASR systems learn how to model the
conditional probability distribution P(Y|X) (Jurafsky and Martin, 2020). The ASR system obtains
the predicted transcription Y* with the following formula:



16 Chapter 2 BACKGROUND LITERATURE

Y* = argmax
Y

P(Y|X*)

There are two main approaches to ASR, namely the traditional approach and the end-to-end deep
learning approach. The traditional approach dominated the field of ASR before deep learning was
introduced. Figure 3 gives a simplified representation of the pipeline of a traditional ASR system,
which consists of separate components. First, acoustic features are extracted from the speech signal,
which thus contain information of the speech signal within a specific time frame (Zhang, 2022). These
feature vectors serve as input for the decoder, which aims to efficiently find the optimal text sequence
given the feature vectors. The decoder consists of the acoustic model, a pronunciation dictionary or
lexicon, and a language model. First, the acoustic model models the likelihood of a sequence of sound
units based on the given feature vectors. Then, the pronunciation dictionary maps the given sound
units into text, and the language model assigns the probability of this text sequence occurring in the
language. The decoder then outputs the optimal text sequence matching the input speech.

Figure 3: A simple visualization of a traditional ASR pipeline.

The introduction of deep learning has significantly benefited the field of ASR (Graves and Jaitly,
2014). Initially, deep neural networks were only used for acoustic modelling. ASR developers be-
lieved that simplifying the different components of the ASR pipeline into a single neural network
could improve the ASR performance (Watanabe et al., 2017). These simplified systems are called
end-to-end ASR, and the next section discusses these end-to-end ASR systems in more detail.

2.4.1 End-to-end ASR

The goal of an end-to-end (E2E) ASR system is to directly map sequences of feature vectors into word
or sub-word sequences, rather than using several modules to achieve this (Watanabe et al., 2017). In
order to deal with vocabulary related issues and to improve generalization, E2E ASR models gener-
ally use character representations for the output sequence instead of word representations (Watanabe
et al., 2017). Although a disadvantage of E2E ASR systems is that, in contrast to traditional ASR
systems, they require large amounts of data (Watanabe et al., 2017). Nevertheless, the simplicity and
high recognition accuracy of E2E ASR systems has increased their popularity over the past couple of
years (Deng et al., 2022). The current state-of-the-art ASR is a variant of a Transformer architecture,
called Conformer (see Gulati et al. (2020)).
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Within the E2E ASR approach, a commonly used loss function is the Connectionist Temporal Classi-
fication (CTC). Since neural networks in ASR are typically trained to classify the frame-level feature
vectors (see Section 2.4), this indirectly requires an alignment between the audio and the transcrip-
tion sequences (Graves and Jaitly, 2014). However, this alignment would only be reliable after the
classifier, i.e. the neural network, is trained (Graves and Jaitly, 2014). This is where CTC comes
into play, as the dynamic programming in CTC allows for an efficient calculation of both the log
probability and its gradient, which can be propagated for learning recurrent neural network (RNN)
parameters (Watanabe et al., 2017). In other words, CTC is a loss function that allows the training of
neural networks for sequence-level transcription tasks without the requirement of prior alignment of
the input and output sequences (Graves and Jaitly, 2014).

CTC uses an output layer that has the intermediate label representation that allows repetitions of
transcription labels (e.g. characters, phonemes, words) as well as the occurrence of a ‘blank’ (‘ ’),
which is a special emission without labels (Graves and Jaitly, 2014). Given an input sequence X =
(x1,x2, . . . ,xT ), the probability P(π|X) of a CTC alignment π = (π1,π2, . . . ,πT ) where the elements
represent the intermediate label representations, is the product of the emission probabilities at every
time step (Graves and Jaitly, 2014):

P(π|X) =
T

∏
t=1

P(πt , t|X)

The ‘blank’ in CTC explicitly represents the boundary of a transcription label in order to deal with
the repetition of these labels (Watanabe et al., 2017). Moreover, when a label is repeated in two or
more successive time frames in alignments, the repetitions of the label are deleted (Graves and Jaitly,
2014). For instance, ‘hhheeeeeell’ could be decoded as either ‘hell’ or ‘heel’ in CTC. However, with
the introduction of the ‘blank’ we can separate the two transcriptions with ‘ hheeeel lll’ mapping
to ‘hell’, while ‘hhhee eeeellll’ maps to ‘heel’. Thus, the introduction of ‘blank’ labels additionally
allows us to distinguish between different time-alignments, i.e. the short and long ‘e’ in our example.
We can formulate the probability P(Y|X) of an output transcription Y = (y1,y2, . . . ,yL) when we use
an operator Φ that removes the repeated labels and then the blanks:

P(Y|X) = ∑
π∈Φ−1(Y)

P(π|X)

We can observe that the probability of Y equals the sum of probabilities of the corresponding align-
ments. The idea behind this is that since it is unknown where the labels will occur in a particular
transcription, we sum over every possible place of occurrence (Graves and Jaitly, 2014). Using dy-
namic programming, we can then train a network to minimize the CTC loss function for a given target
transcription Y*:

CTC(X) =− logP(Y*|X)

Attention-based E2E ASR In contrast to other deep neural networks that deal with fixed-length
inputs and outputs, recurrent neural networks (RNNs) are structured to exploit important contextual
information and are therefore powerful models to process sequential data (Graves et al., 2013). This is
useful in dealing with speech data, since knowing previously uttered words can be helpful for recog-
nizing currently spoken words. RNNs operate with a hidden state vector, which means that the hidden
layers of RNNs do not only forward their output to the following neural network layer, but back to
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the hidden layer itself as well (see Figure 4). Loops like this allow the hidden layers to iteratively
store contextual information through previous temporal steps, and the hidden layers can therefore be
considered to be short-term memory units (Zhang, 2022).

Figure 4: A visualization of a recurrent neural
network (RNN).

However, RNNs deal with the problem of van-
ishing or exploding gradients (e.g. Chung et al.,
2014). This issue was alleviated with long short-
term memories (LSTMs; Hochreiter and Schmid-
huber (1997)) and gated recurrent units (GRUs;
Cho et al. (2014)) by implementing so called ‘gat-
ing mechanisms’ that bypass many temporal steps
and control the flow of error (Chung et al., 2014).
This was mainly inspired by neurological pro-
cesses, although it also had some mathematical ad-
vantage (Chung et al., 2014). Nevertheless, these
solutions still required alignments. This problem

was in turn alleviated by bidirectional LSTMs (BLSTMs; e.g. Graves et al. (2013)) and light GRUs
(Li-GRUs; Ravanelli et al. (2018)), which are non-causal counterparts of LSTMs. This means that,
for example, the LSTM could not utilize its fifth input to make decisions at output 1 as it was not
able to ‘see’ it, whereas BLSTM is able to access long-range context in both directions (Graves et al.,
2013). Unfortunately, even though BLSTMs and Li-GRUs did not require alignments, their time de-
pendency was non-ideal. This is when attention-based architectures were introduced.

Figure 5: Alignments between character out-
puts and audio signal produced by the Listen,
Attend and Spell (LAS) model for the utterance
“how much would a woodchuck chuck”. (Note.
Reprinted from ’Listen, Attend and Spell’ by
Chen et al., 2016, p. 4963)

When an ASR architecture is attention-based,
this means that an attention mechanism is im-
plemented to align the acoustic frames and
the recognized labels, and there are no condi-
tional independence assumptions required (Watan-
abe et al., 2017). In simple terms, atten-
tion mechanisms ‘learn to focus their “atten-
tion” to specific parts of their input’ (Bah-
danau et al., 2016, p. 4945). At ev-
ery time step i, attention mechanisms gener-
ate a context vector ci, which captures the
information in the acoustic signal that is re-
quired to generate the following character (Chan
et al., 2016). This allows the attention
mechanism to achieve larger time dependen-
cies, which is essential as contextual infor-
mation is crucial to perform numerous tasks
such as speech recognition and translation (e.g.
Graves et al., 2013). Additionally, the la-
bel synchronous prediction is what character-
izes attention mechanisms (Miao et al., 2019),
and this prediction is derived from ‘attend-
ing’ to segments of the input (see Figure
5).
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Currently, E2E ASR architectures that rely on both attention and CTC are very popular, since these
architectures exploit the best properties of both (Deng et al., 2022). In this study, we adopt such an
E2E ASR system, namely ESPnet. Figure 6 gives an overview of the standard recipe flow in ESPnet,
which is relatively simple due to the benefits of E2E ASR. The six stages that a standard recipe follows
are the following (Watanabe et al., 2018):

• Stage 0 - Data preparation: the data is prepared by adopting the Kaldi-style data directory
format. In addition, the Kaldi data preparation script can be used as well.

• Stage 1 - Feature extraction: acoustic features are extracted using Kaldi. The majority of the
recipes extract the 80-dimensional log Mel feature and the pitch feature, which results in a total
of 83 dimensions.

• Stage 2 - Data preparation for ESPnet: in this stage all of the information (including the
information in the Kaldi data directory) is converted into a single JSON file, with the exception
of the input features.

• Stage 3 - Language model training: this is the only optional stage and therefore there are
multiple recipes that do not have it. This stage trains the character-based RNNLM with either
the Chainer or the PyTorch backend.

• Stage 4 - E2E ASR training: the Chainer or PyTorch backend is used to train the hybrid
CTC-attention-based encoder-decoder.

• Stage 5 - Recognition: in case the RNNLM was obtained in stage 3, it will be used together
with the E2E ASR model obtained in stage 4 in order to perform speech recognition.

Figure 6: Experimental flow of standard ESPnet recipe. (Note. Reprinted from ’ESPnet: End-to-End
Speech Processing Toolkit’ by Watanabe et al., 2018, p. 2209)



20 Chapter 2 BACKGROUND LITERATURE

2.5 ASR for pathological speech
Oral cancer speech is not the only type of pathological speech that has sparked interest in the field of
automatic speech recognition. Pathological speech in general has challenged researchers for years,
as it poses extra difficulties for the development of ASR systems, due to the impaired speech intel-
ligibility and the lack of training data (low-resource). Nevertheless, in recent years there has been
an increase in the research and development of ASR systems specifically for pathological speech.
Pathological ASR research includes research on dysarthric ASR systems (e.g. Sharma and Hasegawa-
Johnson, 2013; Calvo et al., 2020; Hermann and Doss, 2020), as well as research on ASR systems
developed for aphasia (e.g. Qin et al., 2018), and oral cancer speech (e.g. Maier et al., 2010).

For dysarthric speech, Christensen et al. (2013) found that by using healthy speech instead of dysarthric
speech to train the feature-generating neural network they were able to improve the acoustic modelling
of their ASR system. In addition, the results of Hermann and Doss (2020) revealed that after training
their acoustic models using the lattice-free loss function, the recognition performance of their ASR
system had improved compared to conventional training methods. Furthermore, Yilmaz et al. (2017)
employed a multi-stage DNN training in order to develop acoustic models for pathological speech that
are more robust, in which they initially trained the model on more general data (i.e. healthy speech)
and then retrained it on dysarthric speech to develop a domain-specific model. They found that their
multi-stage training approach obtained a better recognition performance than their baseline systems
that were trained on either healthy or dysarthric speech. For aphasic speech, Qin et al. (2018) found
improvement in performance as well when they adopted a TDNN-BLSTM architecture for acoustic
modelling and employed a multi-task learning technique in which they used a large amount of healthy
speech data.

It must be kept in mind, however, that most of the aforementioned studies investigated hybrid ASR
models rather than E2E ASR systems. Even though there are some studies on E2E ASR systems for
pathological speech (e.g. Harvill et al., 2021; Qin et al., 2020), the amount of literature on this topic
is still relatively limited. Moreover, the transformer-based ASR system used by Harvill et al. (2021)
even yielded higher WERs than the state-of-the-art ASR described by Hermann and Doss (2020).
Although, in his recent study Shahamiri (2021) found that when they converted the word utterances
into visual feature representations and then attempted to recognize the visual representations rather
than phonemes, this improved the recognition accuracy of an E2E ASR system for mild and severe
dysarthric speech. In addition to the conversion to visual representations, Shahamiri (2021) applied
transfer learning by using healthy speech to learn the visual representations for the dysarthric speech.

2.5.1 ASR for oral cancer speech

As mentioned above, the amount of research on ASR systems for different kinds of pathological
speech has increased in the past couple of decades, including oral cancer speech. For example, Win-
drich et al. (2008) investigated the word recognition rates of an ASR system for oral cancer speech
and healthy speech. They compared the ASR performance to the perceptual evaluation of experts in
order to find out whether an ASR system would be a valuable tool to objectively and quantitatively
evaluate the speech of patients after they have received treatment for oral cancer, which would serve
both clinical and research purposes. Their results revealed that the ASR system recognized between
8% and 82% of the oral cancer speech, and that the performance of the ASR system correlated closely
with the perceptual intelligibility evaluation of the experts (r=-0.93). Similarly, Maier et al. (2010)
investigated how applicable ASR systems were to speech disorders that were caused by head and neck
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cancers. Their findings confirmed those of Windrich et al. (2008), as they found that the speech of the
oral cancer patients yielded significantly higher WERs than the speech of the healthy controls, and
that these results correlated highly with the evaluation of experts.

More recently, Halpern et al. (2022) investigated two ASR architectures and the effect of three dif-
ferent AM approaches on an oral cancer ASR task. Their baseline systems consisted of one hybrid
deep neural network-hidden Markov model (DNN-HMM) and one E2E ASR model that follows a
transformer architecture, and both of these systems were trained on healthy English speech only.
The approaches that the authors investigated were a retraining approach for both architectures, and
a speaker adaptation and disentangled representation learning approach for the hybrid architecture
only. Their results revealed that the speaker adaptation approach outperformed the other approaches
and achieved the biggest improvement compared to the baseline system trained on healthy speech,
followed by the retraining approach using the E2E architecture. The speaker adaptation approach
achieved a WER of 62.8% on oral cancer speech, which is a 7.8% absolute word error rate (WER)
reduction in comparison to the baseline system. The E2E retraining approach obtained a WER of
63% and this was a 7.5% absolute improvement over the baseline E2E ASR.
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3 Methodology
In this chapter, the dataset (Section 3.1) as well as the model (Section 3.2) used in this study is
described, followed by an overview of the error analyses that were performed on the phoneme and
articulatory feature level (Section 3.3).

3.1 Dataset
For this research, two datasets were used: the NKI-UMCG-RUG corpus containing Dutch oral cancer
speech as well as healthy speech, and the CGN corpus, consisting of typical Dutch speech. The latter
was used as training data for the ASR system and the former as test data.

3.1.1 Oral cancer speech dataset

We used the NKI-UMCG-RUG oral cancer speech corpus, which was created within the project ‘Ar-
ticulation and coordination of speech after treatment for oral cancer’. This project is a collaboration
between the Netherlands Cancer Institute (Dutch: Nederlands Kanker Instituut (NKI)), the Univer-
sity Medical Center Groningen (UMCG), and the University of Groningen (Dutch: Rijksuniversiteit
Groningen (RUG)). In order to ensure that the data was treated with the utmost care by the researcher
and the privacy of the participants would thus not be violated, a data agreement was signed (see Ap-
pendix A).

The dataset contains eleven Dutch speakers: six speakers who have been treated for oral cancer (i.e.
post-treatment) and five control speakers. All of the speakers come from northern regions of the
Netherlands. Table 1 gives an overview of the age and gender of the participants per condition and in
total.

Table 1: Overview of the participant characteristics per condition and overall.

Healthy Patient Overall
(n = 5) (n = 6) (n = 11)

Age
Mean 61.6 59.5 60.45
Range 56-77 47-75 47-77
Gender
Female 3 (60%) 3 (50%) 6 (54.55%)
Male 2 (40%) 3 (50%) 5 (45.45%)

Within the patient group, three of the participants had undergone a mandibulectomy, and the other
three had undergone a glossectomy. Of those three patients who had tongue surgery, only one had a
tongue reconstruction. Moreover, all of the patients except for one had received either chemotherapy
or post-operative radiation therapy.

The recordings contain approximately 30 minutes of speech for every speaker, consisting of 207
sentences that were read out loud. There were three types of sentences: literary sentences, news sen-
tences, and masking noise sentences. The literary sentences were taken from five different stories
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of varying lengths and the news sentences were retrieved from several Dutch news articles (see Ap-
pendix B). The masking noise sentences (i.e. MASK1, MASK2, MASK3, MASK4N, MASK5N, and
MASK6N), however, were not included in this study, since these sentences were relatively unnatural
compared to the other types of sentences. Moreover, the latter half was produced under masking
noise, and this data therefore differs acoustically from the rest of the data. In addition, in case a sen-
tences was rerecorded, the original audio file was omitted from the data as well, and the rerecorded
file was used instead. Therefore, a total of 202 utterances per participant was used, resulting in a final
dataset of 2222 utterances.

Data pre-processing Before running the data through ESPnet, the oral cancer speech data was pre-
processed1 using librosa Python library (McFee et al., 2015). The original corpus has a sampling
rate of 44.1 kHz, but since the model was trained on data with a sampling of 16 kHz, the dataset
was resampled to 16 kHz as well. Then the wav-files were mixed from stereo to mono, by taking
the average of the two channels. Following this, the loudness of the data was also normalized using
librosa. This pre-processed data then served as input data for the ASR system of ESPnet.

3.1.2 CGN corpus

The CGN corpus (Dutch: Corpus Gesproken Nederlands (CGN)) is a dataset that contains non-
pathological spoken standard Dutch from the Netherlands and Flanders (Nederlandse Taalunie, 2004).
The corpus consists of approximately 900 hours of both read and spontaneous speech, of which
around one third is data from Flanders and two thirds from the Netherlands. For this study, only
speakers from the Netherlands were included, resulting in around 600 hours of speech data.

3.2 Model
In this study, we ran the oral cancer speech dataset through a standard end-to-end ASR system that
was pre-trained on the CGN corpus. Then extensive error analyses were performed to gain more
insights into the type of errors that are made by a standard E2E ASR system for Dutch oral cancer
speech.

3.2.1 End-to-end ASR: ESPnet

We used the ESPnet ASR system, which adopts a hybrid CTC-attention E2E ASR architecture
(Watanabe et al., 2017; Miao et al., 2019), and by doing this it fully benefits from the advantages
of both implementations in training as well as decoding. In the training process a multi-objective
learning framework is used in order to obtain irregular alignments that are more robust and to reach
fast convergence (Watanabe et al., 2018). Furthermore, during decoding both the attention-based and
the CTC scores are combined in a one-pass beam search algorithm with the intention of further elim-
inating the occurrence of irregular alignments (Watanabe et al., 2018). In addition, ESPnet uses the
dynamic neural network toolkits Chainer (Tokui et al., 2015) and Pytorch (Paszke et al., 2017) as
its main deep learning engine, and for the processing of data, the feature extraction and the recipes,
ESPnet adopts the style of the Kaldi toolkit (Povey et al., 2011).

In combination with ESPnet, we used a model that was pre-trained on the CGN dataset only. This pre-
trained model is a variant of the Transformer architecture, called Conformer (Gulati et al., 2020). The

1All the code written for the purpose of this study will be made available here under the name ‘DOC-error analyses’.
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conformer model parameters are as follows: 12 encoder layers, and 6 decoder layers, all with 2048
units. Furthermore, the attention dimension is 256 and there are 4 attention heads. The conformer
architecture has a convolutional module with 15 kernels, and has ‘two macaron-like feed-forward
layers with half-step residual connections sandwiching the multi-headed self-attention and convolu-
tion modules’ (Gulati et al., 2020, p. 1). The model is trained with 20 epochs. Lastly, we created
Kaldi-style recipes for the oral cancer speech dataset in order to be able to run the data through the
model.

3.3 ASR evaluation: error analyses

In order to evaluate the ASR performance, error analyses were conducted. First, the word error rate
(WER) of the oral cancer speech was compared to the WER of the healthy speech, and then extensive
error analyses on the phoneme and articulatory feature level were performed. As we previously men-
tioned in the introduction, this was done in order to find out (a) what phonemes are difficult to capture
for E2E ASR systems in both healthy and oral cancer speech, (b) what types of phonemes are chal-
lenging for standard ASR system in oral cancer speech specifically, and lastly (c) what influence the
surgical treatment has on the recognition errors that are made for oral cancer speech. Thus, besides
the WER, the recognition performance of the ASR system was measured by using the phoneme error
rate (PER) and articulatory feature error rate (AFER) as well.

For the first goal, we compared the results of the healthy speech with the results of the oral cancer
speech and reflected on the similarities between the two types of speech. The outcomes of the analysis
provide important information on which phonemes are hard to recognize in both healthy and oral
cancer speech. For the second goal, we looked into the differences between healthy and oral cancer
speech, and we therefore focused on the recognition errors made for the oral cancer speech and
see whether our findings correspond to the existing literature. For the third and last goal, the ASR
performance was compared for the speech of the patients who underwent a glossectomy and the
speech of patients who had undergone a mandibulectomy. The analysis reveals which (types of)
phonemes were consistently mis-recognized for each patient group.

3.3.1 Word error rate (WER)

The word error rate (WER) is one of the most widely used automatic evaluation measures to evaluate
the performance of an ASR system. It is defined as follows:

WER =
S+ I+D

N
,

Where S stands for substitutions, I for insertions, D for deletions, and where N is the total number
of words in the reference sentence. The alignment between the reference and hypothesised sentences
is done using the Levenshtein distance, also called the Levenshtein alignments. The Levenshtein
alignments output the number of insertions, deletions and substitutions that have to take place in
order to obtain the hypothesised sentence from the reference sentence (Berger et al., 2021). The
WERs were automatically calculated by Kaldi.
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3.3.2 Phoneme error analysis and articulatory feature error analysis

Following Halpern et al. (2022), we conducted a phoneme and articulatory feature error analysis in
this study. In order to be able to obtain the PERs and AFERs, we performed a grapheme to phoneme
conversion, using the phonemizer developed by Bernard and Titeux (2021). Then we aligned the
reference and hypothesised sentences with SCTK’s program sclite. Once we had these alignments,
we were able to calculate the phoneme error rates (PERs) as described in Halpern et al. (2022). The
most common definition of the PER is very similar to that of the WER, as it is defined as the sum
of insertions, substitutions and deletions divided by the total number of phonemes in the reference
sentence:

PER =
insertion+ substitution+deletion

N

The PER was calculated for every individual phoneme in order to gain insights into what specific
phonemes are difficult to capture for the ASR system.

The articulatory feature error rate (AFER) was calculated in a similar manner as the PER and WER,
except that we converted the aligned phoneme sequences to feature sequences based on place of artic-
ulation (PoA) and manner of articulation (MoA) before we calculated the error rates (Halpern et al.,
2022). The PoA and MoA feature sequences can be found in Table 2. Additionally, the AFERs were
calculated for every individual articulatory feature as well, e.g. for the fricatives:

AFER f ricatives =
insertion f ricatives + substitution f ricatives +deletion f ricatives

N f ricatives

In this study, we present the means and standard deviations of both the PER and AFER.

Table 2: Overview of the phonemes in Dutch. Abbreviations (left to right): Bilabial, Labiodental,
Alveolar, Post-alveolar, Palatal, Velar, Glottal.

MoA
PoA

B LD A P PAL V G
Plosive p b t d k g P

Nasal m n N

Trill r
Fricative f v s z S Z x G h
Affricate tS dZ

Approximant w V l j
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4 Results
This chapter presents the WER results (Section 4.1) of the E2E ASR system on the NKI-UMCG-RUG
oral cancer speech corpus, as well as the findings of the phoneme error analysis (Section 4.2), and the
articulatory feature error analysis (Section 4.3).

4.1 Word Error Rate

The WERs (%) achieved by the baseline E2E ASR system on the oral cancer speech dataset are
shown in Table 3. For every participant the percentage of correctly recognized words is listed as well
as the percentage of substitutions, deletions, insertions and the WERs. In addition, the average WER
results are given for the two speaker groups, i.e. healthy and patient, and overall. As expected, the
ASR system performed much better on the healthy speech in comparison to the oral cancer speech.
For the healthy speakers the WER ranged from 14.9% to 22.4%, and for the oral cancer speakers it
ranged from 37.9% to 93.6%, which means that the highest WER for the healthy speakers is lower
than the lowest WER of the oral cancer patients. A non-parametric Mann Whitney U test was con-
ducted in order to find out whether the difference between the WERs of the healthy speakers and oral
cancer patients was significant. The statistical test revealed that the average WER of healthy patients
(M=17.4) was indeed significantly lower (W=0, p=0.0043) than the WER of the oral cancer patients
(M=62.3). This shows that there is a serious performance gap of standard ASR systems on healthy
and oral cancer speech.

4.1.1 Effect of surgical treatment on the WER

Figure 7: WER (%) results for oral cancer pa-
tients grouped by surgical treatment.

In order to get more detailed insights into the
errors that the ASR system made for oral can-
cer speech and to find out to what extent the
type of surgical treatment influenced the ASR
performance, we took a closer look at the re-
sults of the oral cancer patients. We divided
the oral cancer patients into two groups of three,
where one group had undergone a mandibulectomy
and the other had undergone a (partial) glossec-
tomy.

Figure 7 shows the WERs of patients who have un-
dergone mandibular surgery and tongue surgery. We
observe that the speech of patients who have had
tongue surgery was better recognised than that of pa-
tients who have had mandibular surgery. For the pa-
tients with tongue surgery the ASR system achieved a
WER of 52.1% (SD=16.1), while it obtained a WER
of 72.5% (SD=30.2) for the patients who underwent
a mandibulectomy. Even though these WERs might
seem to differ greatly, an independent samples t-test revealed that the difference between the two pa-
tient groups failed to reach significance (t (4) = 1.03, p = 0.36), 95% CI [-34.44, 75.18].
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Table 3: Overview of the word recognition errors in percentages. Blue bold numbers indicate for
which participant in each speaker group the ASR system achieved the best performance per column.
Orange bold numbers represent the worst ASR performance per column for both speaker groups.

Correct Substitutions Deletions Insertions WER
Healthy (n = 5)
01 87.8 10.9 1.2 2.8 15
07 87.1 11.6 1.3 3.7 16.7
08 85.9 12.8 1.3 3.9 18
09 84.7 14 1.3 7.1 22.4
12 89.5 9.3 1.2 4.4 14.9
Mean 87 11.7 1.3 4.4 17.4
SD 1.8 1.8 0.1 1.6 3.1
Patient (n = 6)
02 33.8 62.7 3.5 27.4 93.6
03 66.3 30.5 3.3 11.9 45.6
04 44 51.9 4.1 14.4 70.4
05 70.3 27 2.7 8.2 37.9
06 72.7 26.1 1.2 13 40.3
11 32.8 59 8.2 18.7 85.9
Mean 53.3 42.9 3.8 15.6 62.3
SD 18.6 16.9 2.4 6.7 24.3
Overall (n = 11)
Mean 68.6 28.7 2.7 10.5 41.9
SD 22 20.2 2.1 7.6 29.2

4.2 Phoneme error analysis

In our study, only the phonemes that had a total number of occurrences higher than 100 for both
speaker groups, i.e. the healthy speakers and the oral cancer patients, were included in the analysis.
This resulted in a total of eight phonemes being omitted from the error analysis. Figure 8 presents
the results of the error analysis on the phoneme level, with the y-axis showing the phoneme error rate
(PER) and the x-axis indicating the phonemes included in our analysis, grouped by their manner of
articulation. The figure shows that for healthy speech, the E2E ASR system achieved PERs between
0% and 10% for the majority of the phonemes. Therefore, we consider phonemes with a PER over
10% to be poorly recognized for healthy speech. Phonemes that have a PER higher than the 10%
threshold are /i(:)/, /y/, /E/, /N/, /h/, and /j/. For oral cancer speech, most phonemes obtained PERs be-
tween 25% and 45%, and we therefore set a threshold of 45% in order to classify whether a phoneme
was recognized poorly. The phonemes that correspond to PERs over 45% are /i(:)/, /k/, /N/, and /j/.
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Figure 8: PER (%) results for healthy speakers and oral cancer patients.

4.2.1 Effect of surgical treatment on the PER

For the oral cancer speech data, we have compared the results of the patients who have had tongue
surgery with patients who have undergone a mandibulectomy (see Figure 9). It can be observed that,
in general, the ASR system achieved better PERs for the patients who had tongue surgery, except
for /i(:)/, /k/, and /N/. These three phonemes were also the only phonemes for the patients with a
glossectomy that have a PER over 50%. For the patients with a mandibulectomy there were several
phonemes with a PER exceeding 50%, namely /8/, /o:/, /t/, /d/, /N/, /z/, /h/, and /j/. Of these phonemes,
the /t/, /d/, and /N/ elicited the highest PERs.

When looking at the PER results per patient (see Appendix C), we can see that the worst PERs were
consistently achieved for three patients, namely patient 02, 04, and 11, which is in accordance with
the WER findings. It stands out that the velar phonemes of patient 04 were misrecognized most often,
while patient 02 had the lowest PERs for almost all of the vowels. For the three patients with the best
PERs on the other hand, we can see that the speech of patient 05 obtained the best PERs for all of the
velar phonemes.

Figure 9: PER (%) results for oral cancer patients with mandible and tongue surgery.
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4.3 Articulatory feature error analysis
The results of the articulatory feature error analysis are presented in Table 4. The articulatory features
are grouped by both PoA and MoA, and it gives the mean AFERs and standard deviations of both
speaker groups as well as overall.

Table 4: Overview of the recognition errors made on the articulatory feature level. Blue bold and
orange bold numbers indicate the best and worst ASR performance for PoA and MoA per speaker
group.

AFER (%)
Healthy Patient Overall

Mean SD Mean SD Mean SD
PoA
Vowel 6.5 1.5 33.1 15.7 21 17.8
Bilabial 3.2 1.6 30.5 19.7 18.1 20
Labiodental 5.7 2 34 20.6 21.1 20.8
Alveolar 5.9 1.6 36.2 20.7 22.4 21.6
Palatal 13 3.8 49.3 19.4 32.8 23.5
Velar 5.7 2 45.2 27.1 27.3 28.2
Glottal 15 5.3 36.6 17.4 26.8 17
MoA
Vowels 6.5 1.5 33.1 15.7 21 17.8
Plosives 5.7 2.2 41 22.8 24.9 24.5
Nasals 5.5 1.6 29.5 17 18.6 17.4
Trills 5.3 1.5 36.9 21.1 22.5 22.3
Fricatives 6.8 1.7 34.9 19.4 22.1 20.1
Approximants 7 1.4 40.8 23.5 25.4 24.3

4.3.1 Place of Articulation (PoA)

For the healthy speakers, the AFERs of most classes ranged between 0% and 10% (M=7.9, SD=4.4),
except for the glottal /h/ and palatal /j/. This means that these two articulatory feature classes seem to
have been the hardest to capture for the ASR system, followed by vowels, alveolar, labiodental and
velar consonants, and finally the bilabial consonants cause the least recognition errors. When looking
at the speech of the oral cancer patients, we observe that the classes have AFERs ranging between
30% and 50% (M=37.8, SD=6.8). The palatal /j/ has the highest error, followed by velars, the glottal
/h/, alveolars, labiodentals, vowels, and bilabials.

4.3.2 Manner of Articulation (MoA)

For MoA, we can observe that the ASR system yielded AFERs between 5% and 10% (M=6.1,
SD=0.7) for the healthy speakers, while it obtained AFERs ranging from 25% to 45% (M=36, SD=4.5)
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for the speech of oral cancer patients. Even though the AFERs of all of the articulatory feature classes
were overall very close (SD=0.7) for the healthy speakers, the analysis shows that approximants were
the hardest to capture, followed by fricatives, vowels, plosives, nasals and then the trill /r/. For the
oral cancer patients, the plosives were the most difficult to recognize, followed by approximants, the
trill /r/, fricatives, vowels, and then nasals.

4.3.3 Effect of surgical treatment on the AFER

The results of the articulatory feature error analysis for the oral cancer patients based on their surgical
treatment are shown in Figures 10 and 11. The AFER (%) is given on the y-axis and the articulatory
feature classes on the x-axis.

Place of Articulation (PoA) For the patients with a mandibulectomy, the AFERs ranged from 35%
to 55%, with an overall mean of 43.3% and a standard deviation of 5.7. The palatal /j/ and the glottal
/h/ resulted in the highest AFERs, followed by the alveolars, velars, labiodentals, vowels, and then
bilabials. For the patients with a glossectomy, the ASR system achieved AFERs ranging from 20%
to 50% (M=32.4, SD=10.3). For these oral cancer patients the palatal /j/ was the most challenging
as well, followed by the velars, labiodentals, vowels, alveolars, bilabials, and then the glottal /h/.
Furthermore, in general better AFERs were obtained for the patients who underwent tongue surgery
compared to those who underwent mandibular surgery, with the exception of the velars (see Figure
10).

Figure 10: AFER (%) results for PoA of oral cancer patients with mandibular and tongue surgery.

Manner of Articulation (MoA) The articulatory feature error analysis for MoA yielded AFERs
between 35% and 55% (M=41.6, SD=6) for the oral cancer patients with mandibular surgery, and the
phoneme class that was the most challenging to recognize was that of the plosives, followed by the
approximants, fricatives, vowels, the trill /r/, and finally the nasals. For the patients who have under-
gone a glossectomy, the ASR system achieved AFERs ranging from 20% to 40% (M=30.5, SD=5.6).
In addition, it was the trill /r/ that was the most difficult to capture, followed by the approximants,
plosives, vowels, fricatives and then the nasals as well. Here too, the achieved AFERs were generally
lower for the patients with tongue surgery, except for the trill /r/ (see Figure 11).
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Figure 11: AFER (%) results for MoA of oral cancer patients with mandible and tongue surgery.
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5 Discussion
In this chapter, the first section elaborates on the similarities between the performance of the ASR
system on healthy and oral cancer speech (Section 5.1). Then the recognition errors made for the oral
cancer speech are discussed in more detail (Section 5.2), followed by a discussion on the influence of
the surgical treatment (Section 5.3). Finally, this chapter ends with an overview of the limitations of
this study (Section 5.4).

5.1 Recognition errors in healthy and oral cancer speech
As expected, the E2E ASR system had more difficulty recognizing oral cancer speech than healthy
speech, resulting in significantly higher WER scores for oral cancer speech. This confirms the find-
ings of previous research that recognizing oral cancer speech is a challenging task for standard ASR
systems. Although we can observe that our error analyses present error rates for the oral cancer
speech that are certainly lower than the error rates found by Halpern et al. (2022), while our PERs for
the healthy speech seem slightly higher. This is a surprising finding due to the fact that our training
dataset contains a larger amount of data, including spontaneous speech.

The results of our phoneme and articulatory error analyses further reveal that the phonemes /i(:)/, /N/,
and /j/ were quite challenging to recognize for the E2E ASR system in both healthy and oral cancer
speech. The fact that these phonemes are recognized poorly for both types of speech indicates that it
is the ASR system itself that has difficulty capturing these phonemes rather than the type of speech
causing the issues. In other words, we can consider these three phonemes to be ASR-specific errors.
All three of these phonemes differ in both place and manner of articulation, which means that the
issues of the ASR system seem to be random and we can not find a pattern in the ASR-specific errors.
A plausible explanation for the high error rates of these phonemes is that these phonemes had a lower
frequency in the training data. Unfortunately, we cannot access the training data, which means we are
unable to either confirm or refute this. In addition, we can observe that among these three phonemes
the /N/ obtains the highest PER for both healthy and oral cancer speech. This means that the /N/ is the
most difficult phoneme to capture for our E2E ASR system, regardless of the type of speech.

Furthermore, when we look at the articulatory feature error analysis for PoA, the results show that
bilabials are most often correctly recognized for healthy speech as well as for oral cancer speech.
For the oral cancer patients, this could be explained by the fact that the tongue is not involved in the
articulation of these phonemes, resulting in better ASR performance for these phonemes.

5.2 Recognition errors specific to oral cancer speech
In the previous section we have given an overview of the similarities of the ASR performance on
healthy and oral cancer speech, though in this section we wish to take a closer look at the differences,
i.e. the recognition errors made for oral cancer speech specifically. The results of the phoneme error
analysis revealed that the phonemes /i(:)/, /N/, /k/, and /j/ had a PER exceeding the 45% threshold and
they are therefore considered to be poorly recognized by the ASR system. However, in Section 5.1
we have argued that the high error rates for /i(:)/, /N/, and /j/ were due to the ASR system generally not
capturing these phonemes well. This indicates that only the phoneme /k/ is relatively more challeng-
ing to recognize for oral cancer speech than it is for healthy speech. This is in line with the findings of
Borggreven et al. (2005), who reported that the /k/ was frequently misrecognized in Dutch oral cancer
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speech. In addition, de Bruijn et al. (2009) state that /k/ is one of the phonemes that functions as a
predictor of Dutch oral cancer speech.

Furthermore, this outcome is supported by the articulatory feature error analysis for the PoA, as
it shows that velars are the second most challenging for the ASR system to capture in oral cancer
speech, which was also reported by Halpern et al. (2022) for their E2E ASR system. Moreover, the
ASR performance based on PoA is quite similar for the two speaker groups, except for the fact that
velars are recognized quite well for healthy speakers and not for oral cancer patients. Therefore, the
only articulatory feature class that is recognized comparatively worse for oral cancer speech than for
healthy speech is that of the velars. These results can be explained by the fact that the oral cancer
patients all have reduced tongue motility to a certain degree, while these phonemes require an ade-
quate motility of the tongue and the velum (de Bruijn et al., 2009). In addition, since the /N/ is poorly
recognized by the ASR system in general, and /x/ and /G/ are captured relatively well, this means that
the /k/ is mainly responsible for this finding.

Even though the /j/ and /N/ were poorly recognized in healthy speech as well, the PoA analysis did
reveal that both palatals and velars were the most challenging to capture in oral cancer speech. This
also corresponds to the results reported by Halpern et al. (2022), who found that palatals and velars
obtained the highest AFERs for their E2E ASR system. The high PER of the vowel /i(:)/, how-
ever, seems to contradict our PoA analysis for oral cancer speech, since vowels achieved the second
best ASR performance. It must be kept in mind though, that the articulatory feature class of vowels
comprises a rather large number of phonemes, which causes the vowels as an entire class not to be
impacted a lot by the PER of a single phoneme. Moreover, it seems very probable that this mismatch
between the PER and AFER is due to the /i(:)/ being poorly recognized in healthy speech as well,
meaning it is an ASR-specific error.

The articulatory feature analysis for the MoA further supports the high PERs of the phonemes /j/ and
/k/, since both plosives and approximants were misrecognized most frequently in oral cancer speech.
This is in accordance with the literature, as previous research has shown that plosives are important
predictors for oral cancer speech because they are impacted the most by the surgical treatment (e.g.
Bressmann et al., 2004, 2009; Borggreven et al., 2005; de Bruijn et al., 2009). Similarly, Halpern
et al. (2022) reported that plosives and approximants are among the articulatory feature classes to be
captured with more difficulty by standard E2E ASR systems that are pre-trained on healthy speech.
However, the high PER scores of the /i(:)/ and /N/ are seemingly in contrast to the findings of the ar-
ticulatory feature analysis for MoA, as both the vowels and the nasals yielded the best AFER results.
Nevertheless, even though the vowels in our research were relatively well captured for both MoA and
PoA, previous research has also found the /i(:)/ to be affected in oral cancer speech (Whitehill et al.,
2006; de Bruijn et al., 2009). Regarding the /N/, on the other hand, it simply seems to be the case that
the PoA was more dominant than the MoA.

Even though previous research has indicated that, besides plosives, sibilants are impacted in oral can-
cer speech as well (e.g. Borggreven et al., 2005; Laaksonen et al., 2011), we did not observe that
the ASR system had more difficulty with recognizing sibilants. In fact, the production of /s/ and /z/
was captured relatively well. It must be mentioned, however, that we were unable to report on the
postalveolar sibilants /S/ and /Z/ due to the small amount of occurrences, which could have influenced
our results. Nevertheless, Halpern et al. (2022) presented similar outcomes regarding sibilants and
they suggested that it might be due to the fact that sibilants can be considered noise, meaning that
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loss of information would make less of a difference for ASR systems than it would for other types of
sounds. In addition, previous research used human listeners to assess the oral cancer speech, whereas
this study used an ASR system, which relies on a language model.

Even though the /i(:)/ is the only vowel with a PER over 45% and vowels are captured relatively well
for oral cancer speech, we can observe that three other vowels had PERs higher than 40%, namely
the /8/, /o:/, and /u/. This seems to indicate that, with the exception of /i(:)/, the vowels that are af-
fected most in oral cancer speech are central and back vowels that are rounded and realised with a
relatively high degree of constriction by the tongue. Although research on Dutch oral cancer speech
does mention a compressed vowel space area (de Bruijn et al., 2009), it does not mention these vowels
specifically. For English oral cancer speech however, Halpern et al. (2022) also found the production
of /u/ to cause difficulty for the E2E ASR system.

In summary, the answer to our first research question is that especially the production of the phoneme
/k/ is difficult for standard E2E ASR systems to capture in Dutch oral cancer speech compared to
healthy speech. The articulatory feature error analyses for PoA and MoA confirm this finding, as both
plosives and velars are among the articulatory feature classes that are misrecognized most frequently.

5.3 Influence of the type of surgical treatment

The statistical analysis revealed that there was no significant difference between the WER results
of patients who underwent a (partial) glossectomy and the speech of the patients who underwent a
mandibulectomy. It must be mentioned, however, that this insignificance is very likely the result of
the small sample size. Nevertheless, in general the speech of oral cancer patients who had mandibu-
lar surgery did yield higher WERs than the speech of patients with a glossectomy, and this can be
explained by the fact that a mandibulectomy impacts more articulators (mandible and tongue) than a
glossectomy (tongue only) (Matsui et al., 2007). In line with this, we can observe that the two patients
with the highest WER scores had received surgery to their mandible. However, the patient with the
best WER had undergone a mandibulectomy as well, which seems to contradict our statement on the
greater impact of a mandibulectomy in comparison to a glossectomy. Nevertheless, it is possible that
this patient’s tumour was less severe and that she therefore received surgical treatment that was less
invasive than the treatment of the other patients. This in turn could have caused the speech of this
patient to be less impaired and would thus lead to a better ASR performance. In addition, this high
WER instance could be explained by other factors, as previous research has suggested that the resec-
tion site (Logemann et al., 1993; Borggreven et al., 2005) or reconstruction technique (Konstantinović
and Dimić, 1998) can influence speech intelligibility and therefore the ASR performance.

In accordance with the WER results, the phoneme error analysis revealed that better ASR perfor-
mance was achieved for patients with a glossectomy than for patients with a mandibulectomy with
the exception of the phonemes /i(:)/, /k/, and /N/. These were also the only three phonemes that had a
PER over 50% for the patients with tongue surgery. As mentioned before, we can explain the PERs of
the /i(:)/ and /N/, since these phonemes were generally poorly captured by the ASR system. Regarding
the /k/, it is interesting to notice that it is a velar and that it requires the airstream to be fully obstructed,
in contrast to the other velars /x/ and /G/. It seems to be the case that raising the tongue to the lowered
velum is the most difficult articulatory movement to make for patients with a glossectomy. Although
the /i(:)/ was poorly recognized by the ASR system in general, it also requires the tongue to be raised.
However, it is actually a front vowel rather than a back vowel, which is in contrast to the PoA of the
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/k/. Nevertheless, as mentioned in Section 5.2 our findings are in agreement with previous research
(de Bruijn et al., 2009).

For the patients with mandibular surgery, the phoneme error analysis revealed that the phonemes elic-
iting PERs over 50% are /8/, /o:/, /t/, /d/, /N/, /z/, /h/, and /j/. Of these phonemes the /t/ and /d/ were
misrecognized most frequently, which is interesting as these phonemes have the same PoA and MoA
and thus differ solely in voicing. Moreover, this is in line with the observations of Borggreven et al.
(2005) that the alveolar plosives are difficult to produce for Dutch oral cancer patients.

The findings discussed above are confirmed by the articulatory feature error analysis. The results
show that for both PoA and MoA the ASR system again had better performance for the speech of
patients with tongue surgery compared to the speech of the patients with mandibular surgery. The
speech of the patients with tongue surgery did yield higher AFERs for velars, which is in line with
the PER results. Moreover, for both patient groups the palatal /j/ achieved the worst ASR perfor-
mance for PoA. It could, however, be the result of the low number of occurrences and/or the fact that
the whole articulatory feature class is represented by a single phoneme. For MoA, only the trill /r/
elicited a higher AFER score for the patients with tongue surgery than for patients who underwent a
mandibulectomy, although the AFERs of the two groups only differ slightly. In addition, the trill is
the articulatory feature class that scored the highest AFER for the patients with tongue surgery. This
is not surprising, since the production of this phoneme is completely dependent on the (tip of the)
tongue, which is (partly) removed after a glossectomy. It must be mentioned, however, that the /r/
did not obtain a particularly high PER compared to other phonemes and that the high AFER score is
probably caused by the fact that the entire class is represented by a single phoneme. For the patients
with mandibular surgery, on the other hand, the plosives were the most difficult to capture, which cor-
responds to previous literature (e.g. Bressmann et al., 2004, 2009; Halpern et al., 2022). In addition,
approximants were the second hardest articulatory feature class to be captured for both patient groups.

The articulatory feature error analysis for MoA further revealed that the nasals yielded the best AFER
scores in both patient groups, which contradicts the fact that the /N/ is among the phonemes to yield
the highest PER score for both groups. As mentioned in Section 5.2, a plausible explanation for this
outcome is that for this particular phoneme the PoA is more dominant than the MoA, and thus results
in the velar /N/ being the only nasal to be captured relatively poorly by the ASR system.

Furthermore, the observations made in Section 4.2.1 regarding patients 04 and 05 seem to confirm
that velars are particularly challenging to capture for the ASR system when the oral cancer patient
underwent a glossectomy. This is due to the fact that patient 04, who underwent a glossectomy, had
the highest PER for all of the velars, while the speech of patient 05, who had mandibular surgery,
obtained the lowest PERs for the velar phonemes. Additionally, the finding that patient 02 had the
lowest PER scores for almost all vowels follows logically from the fact that he had a mandibulectomy.
To elaborate, the jaw plays an important role in the production of vowels, especially in influencing the
height of vowels (Mooshammer et al., 2007), which indicates that it is more challenging to produce
certain vowels for oral cancer patients with mandibular surgery in comparison to oral cancer patients
with tongue surgery.

To summarize, in answer to our second research question we can argue that there seems to be a slight
influence of the type of surgical treatment on the ASR performance. The speech of patients who have
undergone a mandibulectomy yielded higher recognition error rates than the speech of patients with
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tongue surgery, although our statistical analysis revealed that the difference between the two patient
groups failed to reach significance. In addition, while the speech of the glossectomy patients mostly
obtained recognition errors for velars and the trill /r/, the speech of the patients with a mandibulectomy
yielded the highest recognition error rates for the palatal /j/ and the glottal /h/ for PoA and plosives
for MoA.

5.4 Limitations and future recommendations
It is important to acknowledge that this study has several limitations. First of all, even though ASR
of oral cancer speech is considered to be a low-resource recognition task, the amount of data used
in this study was still very limited. Several phonemes had to be excluded from the analysis, as the
number of occurrences was too low and we were unable to provide a full analysis of all the phonemes
in the Dutch language. Therefore, it is recommended for future research on Dutch oral cancer speech
to use stimuli that consist of enough occurrences of every phoneme that exists in Dutch to be able
to perform reliable (error) analyses. Furthermore, the results regarding the influence of the type of
surgery should be interpreted with caution, since both groups contained speech data of only three
patients. The small amount of data prevents us from observing the outliers, which makes it difficult to
draw valid conclusions and challenging to avoid overgeneralization. Thus, we encourage researchers
to gather more data for both patient groups in order to gain a deeper understanding of what types of
errors oral cancer patients make after receiving different types of surgical treatments.

Secondly, it must be mentioned that the oral cancer speech dataset does not accurately represent Dutch
oral cancer speakers, due to the fact that all of the participants come from the northern regions of the
Netherlands. Naturally, the way people speak in the North does not correspond to the way people
speak in the South, and we therefore suggest to include speakers from all of the regions in the Nether-
lands in future experiments.

Thirdly, our dataset only contains read speech rather than spontaneous speech. When people are
reading out loud they pay more attention to how they speak, causing read speech to be significantly
different from spontaneous speech in both acoustic and linguistic terms (Nakamura et al., 2008).
Since the very purpose of ASR systems developed for oral cancer speech is to ease communication in
the daily life of the patients, read speech does not give an accurate representation of how oral cancer
patients would interact with ASR systems. In addition, this study did not take into account the impact
of phonological processes such as assimilation. Processes like assimilation occur very frequently in
spontaneous speech, and it is therefore very important to keep these processes in mind. Therefore, we
would recommend future researchers to either use spontaneous speech only or to augment the dataset
with spontaneous speech.

Lastly, we believe it would be interesting for future research to investigate the influence of the training
data on the ASR performance for oral cancer speech. Thus, we suggest to conduct experiments in
which the training data is augmented with oral cancer speech or consists solely of oral cancer speech
by adapting retraining methods similar to the ones employed by Halpern et al. (2022).
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6 Conclusion

Over the last couple of years, the use of automatic speech recognition in daily life has gained popular-
ity, as it makes people’s lives more convenient. However, current ASR systems are typically trained
on standard healthy speech, resulting in poor ASR performance for people with impaired speech, such
as oral cancer patients. Since ASR systems could greatly improve the quality of life of oral cancer
patients, it is therefore necessary to develop ASR systems specifically for oral cancer speech. In order
to further the development of such ASR systems, we investigated the type of recognition errors made
for Dutch oral cancer speech.

This study set out to gain insights into the recognition errors of a standard E2E ASR system that was
pre-trained on healthy speech when it recognized oral cancer speech in Dutch. In addition, we inves-
tigated whether the type of surgical treatment that the oral cancer patients received would influence
the ASR performance. In order to answer our research questions, we used a Dutch speech database
containing both healthy and oral cancer speech and ran it through an ESPnet-based model that was
pre-trained on healthy Dutch speech. Then we performed an extensive error analysis on the word,
phoneme, and articulatory feature level.

In answer to our first research question, we found that particularly the production of the phoneme /k/
was challenging to capture for the standard ASR system. This is in line with previous research stating
that the /k/ is an important predictor of Dutch oral cancer speech (de Bruijn et al., 2009). In addition,
our error analyses for place and manner of articulation were in agreement with this finding as well,
as we found that plosives and velars elicited the highest and second highest recognition error rates
in oral cancer speech. Similar results regarding the plosives were reported in several studies (e.g.
Borggreven et al., 2005; Bressmann et al., 2004; de Bruijn et al., 2009), though velars have only been
specifically mentioned by Halpern et al. (2022). Furthermore, we did not find the sibilants to be com-
paratively more challenging to capture in oral cancer speech than in healthy speech, which seemingly
contradicts existing literature on oral cancer speech (e.g. Laaksonen et al., 2011; Borggreven et al.,
2005), although Halpern et al. (2022) did not find results like this for English oral cancer either. It
must be kept in mind, however, that the sibilants /S/ and /Z/ were excluded from our analysis, which
could have influenced our results. With regard to the vowels, we expected to find /a/ and /u/ to be
relatively poorly recognized for oral cancer speech based on the findings of Halpern et al. (2022).
However, the /a/ was captured comparatively well and although the /u/ was among the vowels to yield
the highest PER, it did not exceed the threshold we set for oral cancer speech. We did find the /i(:)/
to be particularly poorly recognized, although this was the case in healthy speech as well and we
therefore consider it to be an ASR-specific error.

Regarding our second research question, we found that the speech of patients who underwent a
mandibulectomy elicited higher recognition error rates than the speech of patients who had a (par-
tial) glossectomy. This is in accordance with our hypothesis, and can be explained by the fact that
mandibular surgery impacts more articulators than tongue surgery (Matsui et al., 2007). More specif-
ically, the phoneme error analysis revealed that the ASR system had the most difficulty with the
production of the phonemes /t/ and /d/ in the speech of patients with mandibular surgery, which is in
agreement with the findings of Borggreven et al. (2005), who found that alveolar plosives are chal-
lenging to produce for Dutch oral cancer patients. In addition, our articulatory feature error analysis
revealed that plosives yielded the highest error rates for speech of patients with a mandibulectomy.
For the patients with tongue surgery, it was the production of the phoneme /k/ that caused the most
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difficulty for the ASR system, which is confirmed by the fact that velars obtained the highest error
rates for patients with a glossectomy.

In conclusion, the outcomes of our study are generally in accordance with the existing literature on
the characteristics of oral cancer speech (e.g. Borggreven et al., 2005; Halpern et al., 2022). However,
the amount of data in our study was very limited and caution should be taken regarding the generality
of our results. Therefore, future research on the recognition errors of standard ASR systems for Dutch
oral cancer speech is crucial for the development of ASR systems that can accurately recognize the
speech of Dutch oral cancer patients. Our research was the first step.
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A Data agreement

Data agreement regarding data sharing with students, research 

assistants and interns 
 

The following agreement concerns data collected within project ‘Articulation and coordination of 

speech after treatment for oral cancer’, which is a tripartite collaboration between the University 

Medical Center Groningen (prof. dr. M.J.H. Witjes), the Netherlands Cancer Institute (prof. dr. 

M.W.M. den Brekel & dr. R.J.J.H. van Son), and the University of Groningen (prof. dr. Martijn 

Wieling).  

 

The agreement is between the student, research assistant or intern (hereinafter ‘student’):  

…………………………………………………………………… 

 

and the project representative (hereinafter ‘representative’):  

…………………………………………………………………… 

 

The goal of the agreement is to protect project data that will be shared with the student for the 

following purpose:  

…………………………………………………………………………………………………………

…………………………………………………………………………………………………………

………………………………………………………………………………… 

 

By signing the agreement, the student acknowledges that they are aware of the following: 

- The data (hereinafter ‘data’) includes the acoustic recordings of oral cancer patients and 

healthy control speakers, and the minimal demographic and medical information (hereinafter 

‘metadata’) required for the purpose of the research. All data shared is confidential and should 

be treated as such. Data will remain anonymous at all times. 

- Metadata will be shared only if that is necessary for the purposes of the student’s work with 

the data. If demographic and medical information is needed, only the necessary subparts will 

be shared. 

- Data can be used by the student for the above-described purposes until the end of the student’s 

project. The representative is responsible for revoking access to the data after the end of the 

student’s project.  

- Data can be accessed only through the university workplace, either through the UWP 

(Windows) or LWP (Linux) servers. The representative makes sure that the data can be 

accessed by the students. 

- Data should remain on the university servers and should not be downloaded or transferred to 

a different machine. That includes, but is not limited to, uploading the data on cloud storage, 

external hard drive, or personal computers. 

- Data should not be shown or demonstrated during presentations (including course purposes), 

unless explicit permission is obtained from the representative beforehand. 

- If any of the above terms are violated, use of data is no longer allowed, and the representative 

will revoke access to the data. The representative can revoke access to the data at any time 

without any justification. 

 

The agreement was signed on ………………………………… in ………………………., in two 

exemplars. The representative and the student each received a signed copy. 

 

Student’s signature: ………………………………………………………………………… 

 

Representative’s signature: ………………………………………………………………… 
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B Sentences read by participants

LIT1: Papa en Marloes

1. Papa en Marloes staan op het station.

2. Ze wachten op de trein.

3. Ze wachten op de trein.

4. Er stond een hele lange rij, dus dat duurde wel even.

5. Nu wachten ze tot de trein eraan komt.

6. Het is al vijf over drie, dus het duurt nog vier minuten.

7. Er staan nog veel meer mensen te wachten.

8. Marloes kijkt naar links, in de verte ziet ze de trein al aankomen.

LIT2: Man uit Finland

1. Er was eens een man uit Finland.

2. Hij had veel geld gespaard.

3. Dat was voor de auto van zijn dromen.

4. Hij nam de trein om de auto te gaan kopen.

5. Maar de man was bang voor dieven.

6. Hij bewaarde het geld in zijn onderbroek.

7. Hij droomde al van de eerste rit in de nieuwe wagen.

8. Plots moest hij naar het toilet.

9. De man dacht niet meer aan het geld.

10. Het zakje met geld viel recht in de pot.

11. En de man spoelde door.

12. Daar ging zijn fraaie plan!

13. Gelukkig was de politie in de buurt.

14. Die vond het zakje terug op het spoor.
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LIT3: Noordenwind en de zon
1. De noordenwind en de zon waren erover aan het redetwisten wie de sterkste was van hen beiden.

2. Juist op dat moment kwam er een reiziger aan, die gehuld was in een warme mantel.

3. Ze waren het erover eens dat degene die er als eerste in slaagde de reiziger zijn mantel uit te
doen, als sterker moest worden beschouwd dan de ander.

4. De noordenwind begon toen uit alle macht te blazen.

5. Maar hoe harder hij blies, des te dichter trok de reiziger zijn mantel om zich heen.

6. Ten lange leste gaf de noordenwind het op.

7. Daarna begon de zon krachtig te stralen, en hierop trok de reiziger onmiddellijk zijn mantel uit.

8. De noordenwind moest dus wel bekennen dat de zon van hen beiden de sterkste was.

LIT4: Els gaat naar de markt
1. Het is zaterdag.

2. Els heeft vrij.

3. Ze loopt door de stad.

4. Het is prachtig weer, de lucht is blauw.

5. Op straat ziet ze Bart op de fiets.

6. Hij wacht voor het rode licht.

7. Als Bart haar ziet, zwaait hij.

8. Els loopt weer verder.

9. Bij de bakker koopt ze brood, bij de slager koopt ze vlees.

10. Als het vijf uur is gaat ze terug, zodat ze op tijd weer thuis is.

LIT5: Meneer van Dam
1. Vanmorgen ging meneer van Dam naar de groenteman.

2. Namelijk om een mand mandarijnen te kopen.

3. Aan zijn arm nam hij een mand mee om de mandarijnen in te doen.

4. Na een minuut of tien stond meneer van Dam in de winkel.

5. En hij nam een mand mandarijnen mee en ook maar meteen negen bananen en een mooie
ananas.

6. Met zijn mand aan zijn arm ging hij toen snel naar huis.
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LIT6: Jorinde en Joringel
1. Er was eens een oud kasteel midden in een diep en donker bos.

2. Daarin woonde een oude heks helemaal alleen.

3. Overdag veranderde ze zich in een kat of een uil, maar ‘s avonds werd ze weer een mens.

4. Ze kon dieren en vogels naar zich toe lokken.

5. Die dieren slachtte, kookte en braadde ze dan.

6. Wanneer iemand binnen honderd meter van het kasteel kwam, moest hij stilstaan en kon zich
niet meer verroeren.

7. Dit duurde totdat de heks hem met een spreuk verloste.

8. Wanneer er echter een onschuldig meisje te dicht bij haar kasteel kwam, veranderde de heks
haar in een vogel en sloot haar op in een kooitje.

9. Dat kooitje bracht ze dan naar een zaal van haar kasteel.

10. Ze had wel zevenduizend kooien met zulke bijzondere vogels in haar kasteel.

11. Nu was er eens een meisje dat Jorinde heette.

12. Ze was mooier dan alle andere meisjes en was verloofd met de knappe Joringel.

13. Ze zouden over een paar dagen gaan trouwen en ze hadden veel plezier met elkaar.

14. Om eens rustig samen te kunnen praten, gingen ze in het bos wandelen.

15. ‘Pas op’, zei Joringel, ‘dat je niet te dicht bij het kasteel komt’.

16. Het was een mooie avond.

17. Het heldere zonlicht scheen tussen de boomstammen door in het donkere groen van het bos.

18. De tortelduif zong klagelijk in de oude beuk.

19. Jorinde huilde een beetje.

20. Ze ging in de zon zitten en klaagde.

21. Joringel klaagde ook.

22. Ze waren verdrietig, alsof ze moesten sterven.

23. Ze keken om zich heen en waren verdwaald.

24. Ze wisten niet meer hoe ze thuis moesten komen.

25. De zon stond nog maar half boven de berg en voor de helft was ze al onder.

26. Joringel keek door de struiken en zag vlakbij de oude muur van het kasteel.



APPENDICES 49

27. Hij schrok en werd doodsbang.

28. Jorinde zong:

29. Mijn vogeltje met het rode ringetje

30. Zingt lijden, lijden, lijden:

31. Het zingt voor het duifje, zingt voor zijn dood,

32. Zingt lijden, lij, twiet, twiet, twiet.

33. Joringel keek naar Jorinde.

34. Jorinde was in een nachtegaal veranderd die twiet, twiet zong.

35. Een uil met gloeiende ogen vloog drie keer om hen heen en schreeuwde drie keer oehoe, oehoe,
oehoe.

36. Joringel kon zich niet meer bewegen.

37. Hij stond erbij als van steen, kon niet huilen, niet praten, geen hand of voet bewegen.

38. Nu was de zon ondergegaan.

39. De uil vloog in een struik en direct kwam er een kromme, oude vrouw tevoorschijn.

40. Ze was geel en mager.

41. Ze had grote rode ogen en een kromme neus die met de punt tot aan haar kin kwam.

42. Ze mompelde wat, ving de nachtegaal en droeg die in haar hand weg.

43. Joringel kon niets zeggen, niet van z’n plaats komen.

44. De nachtegaal was weg.

45. Eindelijk kwam de oude vrouw terug en zei met een doffe stem:

46. ‘Gegroet Zachiël’

47. Maak los, op het juiste moment, wanneer het maantje in het kooitje schijnt.

48. Toen was Joringel verlost.

49. Hij viel voor de oude vrouw op de knieën en smeekte haar om hem Jorinde terug te geven.

50. Maar ze zei dat hij Jorinde nooit meer terug zou krijgen en ging weg.

51. Hij riep, hij huilde, hij jammerde, maar het was allemaal voor niets.

52. ‘Oh, wat moet er van mij worden?’ Joringel ging weg en kwam uiteindelijk in een vreemd dorp.

53. Daar hoedde hij lange tijd de schapen.

54. Vaak liep hij rond het kasteel, maar hij kwam nooit te dichtbij.
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55. Een keer droomde hij ‘s nachts dat hij een bloedrode bloem vond met in het midden een
prachtige grote parel.

56. Hij plukte de bloem en ging ermee naar het kasteel.

57. Alles wat hij met de bloem aanraakte werd van de betovering bevrijd.

58. Ook droomde hij dat hij daardoor zijn Jorinde teruggekregen had.

59. ‘s Morgens, nadat hij wakker werd, begon hij door berg en dal naar zo’n bloem te zoeken.

60. Hij zocht tot aan de negende dag.

61. Toen vond hij de bloem in de vroege ochtend.

62. In het midden lag een grote dauwdruppel, zo groot als de mooiste parel.

63. Joringel liep dag en nacht en droeg de bloem naar het kasteel.

64. Toen hij dichtbij het kasteel gekomen was, verstijfde hij niet, maar hij liep door tot aan de deur.

65. Joringel werd heel blij, raakte de deur aan met de bloem en de deur sprong open.

66. Joringel ging naar binnen, liep over de binnenplaats en luisterde goed of hij de vele vogels kon
horen.

67. Toen hoorde hij ze fluiten.

68. Hij liep in de richting van het gefluit en vond de zaal.

69. Daar was de heks bezig de vogels in hun zevenduizend kooien te voeren.

70. Toen ze Joringel zag werd ze kwaad, heel erg kwaad.

71. Ze schold, tierde en spuwde gif en gal naar hem.

72. Maar ze kon niet bij hem in de buurt komen.

73. Joringel lette niet op haar en bekeek de kooien met de vogels.

74. Er waren vele honderden nachtegalen, hoe moest hij nou Jorinde terugvinden?

75. Toen hij zo rondkeek, merkte hij, dat de oude vrouw stiekem een vogelkooitje wegpakte en
daarmee naar de deur liep.

76. Snel sprong hij erheen en raakte het kooitje en de oude vrouw aan met de bloem.

77. Nu kon de heks niet meer toveren, en Jorinde stond weer voor hem.

78. Ze vloog hem om de hals en was zo mooi als vroeger.

79. Daarna veranderde hij ook alle andere vogels weer in meisjes en ging met zijn Jorinde naar
huis.

80. En ze leefden nog lang en gelukkig met elkaar.
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NEWS1
1. Het concert mocht doorgaan, maar zonder licht of decor!

2. Lachgas is gevaarlijk.

3. Voor beide surfers stuurden de hulpdiensten ziekenwagens en reddingsboten uit.

4. Een e-boek is altijd goedkoper dan hetzelfde boek op papier.

5. Op dinsdag 10 oktober voetbalt België in Brussel tegen Cyprus.

6. Sindsdien vond de tocht al 15 keer plaats.

7. Op zondag 8 september is het feest.

8. Kenners noemen Messi de beste voetballer ter wereld.

9. Samba is de meest bekende muzieksoort uit Brazilië.

10. Die vond plaats op woensdag 30 oktober.

11. Ik ben Hank, steward voor de passagiers in de tweede klasse.

12. De pikante hamburger uit Bristol kost 30 euro.

13. PepsiCo is het bedrijf achter frisdrank Pepsi.

14. Bangkok is de hoofdstad van Thailand in Azië.

15. De Nederlandse burgers kiezen op 12 september een nieuwe regering.

NEWS2
1. Door haar bekendheid kreeg Moeder Teresa miljoenen euro’s van schenkers.

2. Alle Cyprioten zouden een hoge taks betalen op hun spaargeld.

3. Facebook onthoudt welke websites de gebruikers nog bezoeken.

4. De cursisten spraken op vrijdag 7 september met de politici.

5. Hij bezat de Europese titel sinds de zomer van 2014.

6. Dat is de belangrijkste rechtbank van het land.

7. Sterke lopers onder de veldrijders zagen hun kans.

8. De officiële resultaten zijn waarschijnlijk morgen, donderdag, bekend.

9. Arbeiders sloopten stukken van de tempel met bulldozers.

10. De Warmathon hoopt duizenden mensen op straat te krijgen.

11. De ziekenfondsen betalen sinds 2016 het remgeld terug voor kinderen.
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12. De meeste pastoors zijn niet tevreden over aartsbisschop Léonard.

13. Vele tienduizenden mensen bekijken hun filmpjes op de website YouTube.

14. Met Pasen was minder dan één op vijf hotelkamers bezet.

15. De chefs bij Noma koken met producten uit de streek.

NEWS3
1. Dat vindt plaats op 25 september in Kopenhagen in Denemarken.

2. De pakjes brengt hij pas op 6 december.

3. Er zijn wedstrijden voor de best verklede bezoekers.

4. Op 6 december komt Sinterklaas langs.

5. Behalve in Brazilië, daar spreken mensen Portugees.

6. Voor de quizploeg probeert hij alles te onthouden.

7. De capsule in Boston zat er sinds 1914.

8. Eén straat heeft bijzondere parkeermeters.

9. Je hebt ook de sociale netwerken op internet, zoals Facebook.

10. Uiteindelijk bleken de toeschouwers toch in ‘veilige’ zones te staan.

11. Twee bedrijven uit Italië maken samen pasta.

12. Enkel president Obama kan de pijplijn nog tegenhouden.

13. In Groot-Brittannië vond het wereldkampioenschap darts plaats.

14. Na het wereldkampioenschap in Brazilië wilden ze snel naar huis.

15. Dit betekent net hetzelfde als keuze 2.

NEWS4
1. Die bleek 18 keer sterker dan eerst gedacht.

2. Haar tegenstanders blijven steken op 24 zetels.

3. Toen vond in Brazilië het wereldkampioenschap voetbal plaats.

4. De bibliotheek heeft 20 jaar lang cd’s gekocht.

5. Moeder Teresa wordt op 4 september heilig verklaard.

6. Australië lijdt onder de zwaarste bosbranden sinds jaren.

7. Hij was 35 jaar sportjournalist op de radio.
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8. In België is dat verboden op tijdelijke plaatsen.

9. Je kan dat tijdelijk gratis beluisteren op iTunes.

10. Dat zei de Amerikaanse president Obama op tv.

11. Tijdens het bezoek was er protest tegen Obama.

12. Dat jaar kwamen de eerste 600 bezoekers naar het park.

13. Elektronische maaltijdcheques kosten veel minder dan papieren cheques.

14. In 2013 stopt hij ook als president van China.

15. Dat was de zesde rally voor het Belgisch kampioenschap.

NEWS5
1. Op dit moment zijn er 800 strips beschikbaar.

2. Zondag kwamen de Europese ministers van Financiën samen in Luxemburg.

3. Belgische organisaties gebruikten 6 miljoen voor noodhulp.

4. Tanken langs de snelweg blijft heel duur.

5. Het decor drijft op het Bodenmeer.

6. Dat is dé auto in Oost-Duitsland.

7. De Turkse president Erdogan sprak het land toe.

8. De onderzoekers zetten nu aardbeiplantjes op duizend vensterbanken.

9. De spelers hadden achteraf kritiek op trainer Weiler.

10. Ook België heeft redders en dokters ter plaatse.

11. De eerste voorstelling vindt plaats op zondag 20 september.

12. De Britse zangeres Adele is met succes geopereerd.

13. De rechtbank bestaat sinds 2002.

14. Zodra de index 2 procent stijgt, helpt de overheid.

15. Bijvoorbeeld de presidenten van Rusland, China en Syrië.

16. Het gaat bijvoorbeeld om kwetsende opmerkingen op Facebook.
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C PER results per participant

Table 5: Overview of the recognition errors made on the phoneme level for the consonants in per-
centages. Blue bold and orange bold numbers indicate the best and worst ASR performance per
phoneme for both speaker groups. Numbers with blue and orange backgrounds represent the best
and worst ASR performance per speaker. The final column gives the differences between the mean
PERs of the oral cancer patients (Mpt) and the mean PERs of the healthy speakers (Mhc).

Healthy Patient Mpt -
Mhc01 07 08 09 12 M SD 02 03 04 05 06 11 M SD

Plosive
/p/ 2.4 5.4 3.6 3.6 3 3.6 1.1 57.5 18.6 50.9 18.6 13.8 42.5 33.7 18.9 30.1
/b/ 0.6 2.5 1.9 8.9 0.6 2.9 3.5 62.7 18.4 39.2 5.7 10.1 37.3 28.9 21.6 26
/t/ 4.7 6.1 7.6 9.1 3.9 6.3 2.1 69 26.9 33.7 23.3 16.2 77.5 41.1 25.7 34.8
/d/ 6.2 8.5 6 12.4 5.5 7.7 2.9 62.1 25.3 47.6 20.5 14.7 78.2 41.4 25.4 33.7
/k/ 2 3.6 4.8 7 0.4 3.6 2.5 85.5 27.4 97.2 11.3 49.2 44.4 52.5 33.1 48.9
Nasal
/m/ 2.6 2.2 2.2 5.7 2.6 3.1 1.5 57 20.2 41.7 10.1 9.2 38.2 29.4 19.3 26.3
/n/ 4.9 6.4 6 7.3 2.8 5.5 1.7 46.1 16.4 36.7 13.8 8.7 40.7 27.1 15.9 21.6
/N/ 21.2 15.2 19.7 10.6 6.1 14.6 6.3 89.4 48.5 90.9 13.6 50 57.6 58.3 29 43.7
Trill
/r/ 3.2 5.7 6.6 6.6 4.4 5.3 1.5 61.5 31.4 61.3 11 19 37.2 36.9 21.1 31.6
Fricative
/f/ 6.7 2.2 13.3 13.3 2.2 7.5 5.6 46.7 22.2 55.6 26.7 24.4 71.1 41.1 19.9 33.6
/v/ 3.8 5 3.8 6.9 3.8 4.7 1.4 58.5 22.6 52.8 10.7 10.7 42.8 33 21.2 28.3
/s/ 2.6 3.9 4.7 5.7 2.6 3.9 1.4 63.8 15.5 31.5 10.3 15 57.1 32.2 23.1 28.3
/z/ 7.3 5 9.5 8.9 7.8 7.7 1.7 70.9 20.7 41.3 21.8 20.1 58.7 38.9 21.9 31.2
/x/ 3 4.5 3 5.3 1.5 3.5 1.5 46.6 13.5 51.1 12 12 43.6 29.8 19.1 26.3
/G/ 6.7 8.3 9.2 7.5 5 7.3 1.6 61.7 23.3 69.2 5 13.3 68.3 40.1 29.5 32.8
/h/ 14.9 18.9 19.9 14.9 6.5 15 5.3 41.8 17.4 36.3 56.2 14.9 52.7 36.6 17.4 21.6
Approximant
/V/ 6.1 3.8 6.1 9.9 5.3 6.2 2.3 58.8 24.4 47.3 6.9 10.7 48.1 32.7 21.7 26.5
/l/ 6.4 5.8 5.5 8 4.2 6 1.4 64.3 26 68.5 11.6 19.6 64.3 42.4 26 36.4
/j/ 7.6 12.1 18.2 13.6 13.6 13 3.8 53 25.8 71.2 28.8 47 69.7 49.3 19.4 36.3
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Table 6: Overview of the recognition errors made on the phoneme level for the vowels in percentages.
Blue bold and orange bold numbers indicate the best and worst ASR performance per phoneme for
both speaker groups. Numbers with blue and orange backgrounds represent the best and worst
ASR performance per speaker. The final column gives the differences between the mean PERs of the
oral cancer patients (Mpt) and the mean PERs of the healthy speakers (Mhc).

Healthy Patient Mpt -
Mhc01 07 08 09 12 M SD 02 03 04 05 06 11 M SD

Front
/i(:)/ 6.8 12.3 11 13.7 9.6 10.7 2.7 71.2 29.5 85.6 21.2 43.2 55.5 51 24.6 40.3
/y/ 9.5 14.3 14.3 14.3 19 14.3 3.4 66.7 19 38.1 9.5 19 57.1 34.9 23.1 20.6
/I(:)/ 3.9 4.6 4.1 4.1 4.1 4.2 0.3 40 17.6 35.9 18.1 21.4 26.3 26.6 9.5 22.4
/e(:)/ 5 7.1 3.5 4.3 1.4 4.3 2.1 58.9 19.1 45.4 12.8 29.1 53.9 36.5 19 32.2
/E/ 7.9 10.8 13.6 13.3 7.9 10.7 2.8 62 28.7 40.9 14.7 24.4 44.4 35.9 16.8 25.2
Central
/a(:)/ 4.6 6 6 7.9 6.5 6.2 1.2 43.5 16.2 30.1 9.7 17.1 35.2 25.3 13 19.1
/@/ 7.6 6.9 6.1 9.4 4.3 6.9 1.9 51.5 18 39.1 15.8 17.1 45.8 31.2 16.1 24.3
/8/ 4.5 6.8 2.3 13.6 4.5 6.3 4.4 77.3 31.8 59.1 25 20.5 52.3 44.3 22.2 38
Back
/u/ 2.4 7.1 9.5 7.1 9.5 7.1 2.9 77.4 29.8 59.5 14.3 21.4 53.6 42.7 24.6 35.6
/o:/ 3.5 3.5 11 14.5 11.6 8.8 5 68.6 33.7 61 20.9 16.3 60.5 43.5 22.7 34.7
/O(:)/ 3.3 3.7 5.1 6.5 2.3 4.2 1.6 55.3 37.7 54 31.2 10.7 45.6 39.1 16.7 34.9
/A/ 3.9 5.5 3.2 8.1 2.3 4.6 2.3 48.1 30.6 40.3 13.9 8.4 40.3 30.3 15.9 25.7
Diphthongs
/EI/ 3.9 2.6 5.2 11.8 3.3 5.4 3.7 42.5 9.2 39.9 9.8 14.4 54.9 28.5 19.7 23.1
/2U/ 12.9 3.2 3.2 12.9 3.2 7.1 5.3 32.3 16.1 29 16.1 12.9 54.8 26.9 15.8 19.8
/œy/ 11.4 0 6.8 0 0 3.6 5.2 50 15.9 36.4 4.5 4.5 38.6 25 19.3 21.4


