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Abstract

Luxembourgish is a West Germanic language spoken by roughly
390,000 people, mainly in Luxembourg. It remains one of Europe’s
under-described and under-resourced languages, not extensively
investigated in the context of speech recognition. We explore the
self-supervised multilingual learning of Luxembourgish speech rep-
resentations to be used for the downstream speech recognition task.
This thesis project improves our previous work on Luxembourgish
wav2vec 2.0 models in a monolingual and transfer learning context.
Our experiments show that learning cross-lingual representations
are essential for low-resourced languages such as Luxembourgish.
Learning cross-lingual representations and rescoring the output
transcriptions with language modelling while using only 4 hours of
labelled speech achieves a word error rate of 15.1% and improves the
previous best result for Luxembourgish speech recognition relatively
by 33.1% and absolutely by 7.5%. Increasing the amount of labelled
speech to 14 hours yields a significant performance gain resulting in
a 9.3% word error rate.

Index Terms—Luxembourgish, multilingual speech recognition, lan-
guage modelling, self-supervised learning, wav2vec 2.0 XLSR-53,
under-resourced language





1 Introduction

Lëtzebuergesch (Luxembourgish) is a West Germanic language
spoken by roughly 390,000 people, mainly in Luxembourg. It remains
one of Europe’s under-described and under-resourced languages,
not extensively investigated in the context of speech recognition.
The linguistic situation in Luxembourg makes it challenging to en-
able speech recognition technologies. This challenge is based on two
factors. First, Luxembourgish is situated in a multilingual context,
resulting in frequent code-switching and usage of loan words from
German and French [1]. The second factor is that it is considered an [1] Adda-Decker et al., “Developments

of “Lëtzebuergesch” Resources for
Automatic Speech Processing and
Linguistic Studies”, 2008.

under-resourced language since written material in Luxembourgish
is scarce [1]. The reason for the sparse production of written Luxem-
bourgish material is caused by the preference for French and German
usage and English in professional environments [1]. Furthermore,
only in March 2017 the law was passed to advance the standardiza-
tion of the Luxembourgish language, and in July 2018, the Center for
the Luxembourgish Language - Zenter fir d’Lëtzebuerger Sprooch (ZLS)
was created to implement the measures of this law1. 1 https://portal.education.lu/zls/IWWER-

EISThe linguistic situation in Luxembourg makes it challenging to
rely on labelled resources to implement speech recognition systems
since they require a large amount of transcribed speech to achieve
high performance. Thus, self-supervised learning has become a
paradigm for determining general data representations from unla-
belled examples for downstream tasks such as speech recognition.
This paradigm has shown the feasibility of speech recognition based
on limited labelled data with the wav2vec 2.0 model from [2]. [2] Baevski et al., wav2vec 2.0: A Frame-

work for Self-Supervised Learning of Speech
Representations, 2020.

We applied this paradigm in our unpublished work to enable
speech recognition for Luxembourgish by creating the first Luxem-
bourgish base wav2vec 2.0 model [3]. Two experiments with this [3] Nguyen, Self-Supervised Learning of

Speech Representations, 2021.model were conducted. In one experiment, a monolingual wav2vec
2.0 model was trained from scratch on Luxembourgish speech. In
the other experiment, transfer learning was applied to pre-train
Luxembourgish speech representations on a wav2vec 2.0 model
pre-trained on the LibriSpeech corpus. The two pre-trained mod-
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els were fine-tuned on four hours of labelled Luxembourgish speech.
In both models, no language model (LM) rescoring was applied, and
the Greedy algorithm2 was used instead to decode the output of 2 Greedy algorithm is a heuristic that

makes a locally optimal choice at each
stage. In the Connectionist Tempo-
ral Classification context, the stages
represent each time step.

the models. These experiments with 23.05% and 22.57% test Word
Error Rates (WER), respectively, represent the baseline as a bench-
mark for this research. Luxembourgish is an under-resourced lan-
guage not extensively investigated in speech recognition, and to the
best of our knowledge, there are no publicly available transcribed
speech datasets. This challenging topic is connected to our inter-
ests in enabling voice technologies for the Luxembourgish language.
Therefore, this thesis project suggests improvements that extend our
previous work on Luxembourgish speech recognition in [3]. [3] Nguyen, Self-Supervised Learning of

Speech Representations, 2021.In this research, we investigate the following research questions:

1 Could pre-training cross-lingual representations improve wav2vec 2.0
models that have been pre-trained on Luxembourgish solely?

wav2vec 2.0 [2] has shown that self-supervised learning of speech [2] Baevski et al., wav2vec 2.0: A Frame-
work for Self-Supervised Learning of Speech
Representations, 2020.

representations effectively enables speech recognition for low-
resourced languages while providing little labelled data. The XLSR
model [4] is a multilingual speech recognition model based on [4] Conneau et al., “Unsupervised

Cross-lingual Representation Learning
for Speech Recognition”, 2020.

wav2vec 2.0. It pre-trains on cross-lingual speech representations.
Experiments have shown that cross-lingual pre-training signifi-
cantly outperforms monolingual pre-training.

2 Could language model rescoring improve the baseline Luxembourgish
speech recognition models that use the Greedy algorithm for decoding?

In the original wav2vec 2.0 [2] paper, experiments were conducted
with language model rescoring and improved the model’s perfor-
mance significantly.

To address our research questions, we first apply a more advanced
speech label pre-processing. Additionally, we investigate if multilin-
gual wav2vec 2.0 models improve the performance of monolingual
models. Finally, we use language modelling to rescore the decod-
ing of the model. For this experiment, we use a wav2vec 2.0 model
that has been pre-trained on 53 different languages from BABEL,
Common Voice and MLS [5–7]. With this model, we pre-train Luxem-

[5] Gales et al., “Speech recognition
and keyword spotting for low-resource
languages: Babel project research at
cued”, 2014.
[6] Ardila et al., “Common Voice:
A Massively-Multilingual Speech
Corpus”, 2020.
[7] Pratap et al., “MLS: A large-scale
multilingual dataset for speech re-
search”, 2020.

bourgish speech representations on top of it. After pre-training the
multilingual model, the corrected labels, combined with LM rescor-
ing, are used to fine-tune the model for the speech recognition task.

Our results demonstrate that pre-training cross-lingual speech
representations are essential for low-resourced languages such as
Luxembourgish. Learning cross-lingual representations and rescoring
the output transcriptions with language modelling yield substan-
tially better results than our monolingual model or applying transfer
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learning from LibriSpeech in [3]. When using only 4 hours of la- [3] Nguyen, Self-Supervised Learning of
Speech Representations, 2021.belled Luxembourgish speech, our multilingual XLSR-53 wav2vec

2.0 model with LM rescoring achieves a WER of 15.1% and improves
the previous best result for Luxembourgish speech recognition rel-
atively by 33.1% and absolutely by 7.5%. Increasing the transcribed
speech dataset to 14 hours, our model sets the new best WER for
Luxembourgish Speech Recognition of 9.3%. Our results achieve a
58.8% relative and 13.3% absolute improvement over the best result
replicated from [3].

This thesis introduces previous work on Luxembourgish speech
recognition and a review of the literature that sets the research con-
text in chapter 2 and 3. After, we will present our research issues and
define our hypotheses based on the literature review in chapter 4.
Having defined our research scope and hypotheses, we present our
replicable methodology for this research in chapter 6. Finally, we con-
duct our experiments and conclude with a discussion of our results
in chapter 7.





2 Previous Work on Luxembourgish Speech Recognition

Luxembourgish is an under-resourced language, and to the best of
our knowledge, no public transcribed speech corpus exists to enable
Luxembourgish speech recognition. In [1], a study was made on the [1] Adda-Decker et al., “Developments

of “Lëtzebuergesch” Resources for
Automatic Speech Processing and
Linguistic Studies”, 2008.

linguistic situation in Luxembourg. They described the existence
of publicly available Luxembourgish audio-transcription data pairs
that are useful to enable ASR systems for Luxembourgish. Based
on these findings, there have been first attempts to Luxembourgish
speech recognition in [3, 20, 23]. We will study their approaches to [3] Nguyen, Self-Supervised Learning of

Speech Representations, 2021.
[20] Veselý et al., “Lightly Super-
vised vs. Semi-supervised Training of
Acoustic Model on Luxembourgish
for Low-resource Automatic Speech
Recognition”, 2018.

[23] Adda-Decker, Lamel, and Adda,
“Speech alignment and recognition
experiments for Luxembourgish”, 2014.

Luxembourgish speech recognition in chronological order.
In [23], they proposed the study on acoustic similarities between

Luxembourgish and its contact languages such as German, French
and English. They used speech alignment and recognition to analyze
the acoustic similarities between these languages. In their experi-
ments, they created monolingual acoustic models for each contact
language, a multilingual model pooled speech data from the three
contact languages, and a native Luxembourgish acoustic model
trained on 1200 hours of speech in an unsupervised manner. Their
unsupervised acoustic model training process generates pseudo la-
bels at each training iteration using context-independent acoustic
models with a pronunciation lexicon and a language model. These
generated labels are used for pseudo-supervised acoustic model
training. With each iteration, more audio is recognized, and the
acoustic model becomes more accurate by training on more context.
One of their primary research questions investigates how unsuper-
vised monolingual Luxembourgish acoustic models perform com-
pared to supervised monolingual and multilingual models trained on
the contact languages in a force alignment setup. Additionally, they
explored how the unsupervised Luxembourgish monolingual model
performs in ASR. Their unsupervised Multilayer Perceptron (MLP)
achieved an ASR WER of 25.6%.

The study in [20] focuses on lightly supervised and semi-supervised
learning to improve Deep Neural Network (DNN) acoustic models
for Luxembourgish ASR. In their work, 17.7 hours of transcribed
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Luxembourgish speech from Contact Centers (CCs) were collected
through the BISON1 project. Thus, they do not rely on a fully unsu- 1 http://bison-project.eu/

pervised approach as in [23] to implement Luxembourgish speech [23] Adda-Decker, Lamel, and Adda,
“Speech alignment and recognition
experiments for Luxembourgish”, 2014.

recognition. Their research considered augmenting the training in
two approaches to improve the acoustic models. In the first exper-
iment, they applied semi-supervised training by pseudo labelling
untranscribed audio collected from the CC target domain with a
seed acoustic model. Then, they retrained an acoustic model using
a combination of transcribed and pseudo-labelled audio. Lightly su-
pervised training was used in the second experiment by augmenting
the labelled CC training data with an out-of-domain and inexactly
transcribed speech from Luxembourgish parliament sessions. Overall
their data augmentation methodology improved their baseline ASR
system trained only on the 17.7 hours of labelled speech. Their final
WER of 34.4% is poor and does not yield an improvement over [23]
for Luxembourgish speech recognition.

In our previous unpublished work [3], we trained the first Lux- [3] Nguyen, Self-Supervised Learning of
Speech Representations, 2021.embourgish base wav2vec 2.0 models, which are domain-specific

to recognize speech from broadcast news. For this study, we col-
lected and validated 4 hours of labelled Luxembourgish speech from
RTL.lu2. In addition, we scraped 842 hours of unlabelled Luxembour- 2 RTL.lu is part of the RTL Group and

is a news website containing online
content for the Radio Télé Lëtzebuerg
(Radio TV Luxembourg), which is the
principal television channel in Luxem-
bourg broadcasting in Luxembourgish.

gish speech from the same domain. With the limited labelled dataset,
we applied the self-supervised learning framework wav2vec 2.0 from
[2] to enable speech recognition for Luxembourgish. We conducted

[2] Baevski et al., wav2vec 2.0: A Frame-
work for Self-Supervised Learning of Speech
Representations, 2020.

two wav2vec 2.0 model experiments. One monolingual model pre-
trained speech representations from scratch using the 842 hours of
unlabelled Luxembourgish speech. In the other experiment, we ap-
plied transfer learning and fine-tuned unlabelled Luxembourgish
speech on a wav2vec 2.0 model pre-trained on the LibriSpeech cor-
pus. On top of these two pre-trained models, a randomly initialized
linear layer was placed for the speech recognition task. The linear
layer of the two models was fine-tuned using the Connectionist Tem-
poral Classification (CTC) loss on 4 hours of labelled audio, which
was not correctly pre-processed. The speech labels were not clean
and contained many issues3, e.g. not spelt out numbers or abbrevi- 3 Most of the issues relate to the non-

verbalization of tokens. A detailed list
of issues will be given in the methodol-
ogy chapter 6.

ations, removal of apostrophe variations. Although without having
access to the same evaluation dataset, this research and [23] target
Luxembourgish speech recognition in a news broadcasting context.
Therefore, the results of these experiments show an improvement in
terms of overall WER over [23]. The models achieved a validation
WER of 25.1% and 23.5%, respectively, without language modelling
and using the Greedy search only when decoding the output tran-
scriptions. The WER obtained in this study improves the previous
best result for Luxembourgish speech recognition relatively by 8.2%
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and absolutely by 2.1%.





3 Literature Review

After reviewing what has been done previously for Luxembourgish
speech recognition, we perform in this chapter a literature review
and synthesize what approaches have been taken in the field to en-
able speech recognition in a low-resource setting. In the previous
study [3], we collected Luxembourgish audio resources to create [3] Nguyen, Self-Supervised Learning of

Speech Representations, 2021.a speech corpus to train wav2vec 2.0 models to recognize Luxem-
bourgish speech. Additionally, these models were not rescored by
language modelling nor trained on proper normalized speech la-
bels. Therefore, in addition to synthesizing previous approaches to
low-resource ASR, we review previous methods for creating speech
corpora for speech technologies, text normalization of speech labels
and language modelling in speech recognition models.

We compile a list of keyword sequences around this central topic.
The keywords guide the collection of literature. The following are the
keyword sequences for each subject that we used to look up literature
on SmartCat and Google Scholar:

Design of Speech Corpus: speech corpus, spoken corpus, design of
speech corpus, speech recognition corpus, low-resource language
speech corpus, Luxembourgish speech corpus

Text Normalization of Speech Transcriptions text normalization,
text pre-processing, speech transcription normalization, speech
recognition text normalization, number expansion, abbreviations
expansion

Low-resource Automatic Speech Recognition low-resource speech
recognition, low-resource automatic speech recognition

Language modelling in Speech recognition: speech recognition
language modelling, speech recognition language model rescor-
ing, automatic speech recognition language modelling, automatic
speech recognition language model rescoring
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Collection of Literature

In a first step, we use each keyword sequence on its own to collect
research from the literature related to our research topic based on
the criteria of how recent the literature is and if it is well cited com-
pared to the other results in the same query. Then for each subject
collection, we evaluate to select a subset of relevant literature that
showcases a novel approach or is aligned with a research trend.

Design of Speech Corpus

For the Design of Speech Corpus subject, we found the following re-
lated literature using our defined keywords:

[6] Ardila et al., “Common Voice: A Massively-Multilingual Speech
Corpus”, 2020.

[8] Magueresse, Carles, and Heetderks, “Low-resource languages: A
review of past work and future challenges”, 2020.

[7] Pratap et al., “MLS: A large-scale multilingual dataset for speech
research”, 2020.

[9] Panayotov et al., “Librispeech: an ASR corpus based on public
domain audio books”, 2015.

To explore the process and design principles of creating a speech
corpus for ASR, we investigate the detailed methodologies in [6, 7, 9].

Text Normalization of Speech Transcriptions

For the Text Normalization of Speech Transcriptions subject, we found
the following related literature using our defined keywords:

[10] Mansfield et al., “Neural Text Normalization with Subword
Units”, 2019.

[11] Zhang et al., “Neural models of text normalization for speech
applications”, 2019.

[12] Yolchuyeva, Németh, and Gyires-Tóth, “Text normalization with
convolutional neural networks”, 2018.

For this subject, we choose [10–12]. Their approaches are all
aligned in studying neural methods to solve text normalization and
comparing them to traditional rule-based approaches.
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Low-resource Automatic Speech Recognition

For the Low-resource Automatic Speech Recognition subject, we found
the following related literature using our defined keywords:

[13] Aldarmaki et al., “Unsupervised automatic speech recognition:
A review”, 2022.

[14] Babu et al., “XLS-R: Self-supervised cross-lingual speech repre-
sentation learning at scale”, 2021.

[2] Baevski et al., wav2vec 2.0: A Framework for Self-Supervised Learning
of Speech Representations, 2020.

[4] Conneau et al., “Unsupervised Cross-lingual Representation
Learning for Speech Recognition”, 2020.

[15] Fantaye, Yu, and Hailu, “Investigation of automatic speech
recognition systems via the multilingual deep neural network
modeling methods for a very low-resource language, Chaha”,
2020.

[16] Hsu, Chen, and Lee, “Meta learning for end-to-end low-resource
speech recognition”, 2020.

[17] Karunathilaka et al., “Low-resource sinhala speech recognition
using deep learning”, 2020.

[18] Yi et al., “Applying wav2vec2.0 to speech recognition in various
low-resource languages”, 2020.

[19] Srivastava et al., “Interspeech 2018 Low Resource Automatic
Speech Recognition Challenge for Indian Languages.”, 2018.

[21] De Wet et al., “Speech recognition for under-resourced lan-
guages: Data sharing in hidden Markov model systems”, 2017.

[22] Cui et al., “Multilingual representations for low resource speech
recognition and keyword search”, 2015.

[24] Besacier et al., “Automatic speech recognition for under-resourced
languages: A survey”, 2014.

[25] Thomas et al., “Deep neural network features and semi-supervised
training for low resource speech recognition”, 2013.

[26] Le and Besacier, “Automatic speech recognition for under-
resourced languages: application to Vietnamese language”, 2009.
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Among these results, we analyse the modern approaches from
[2, 4, 14] that enable speech recognition in a low-resource setting. [2] Baevski et al., wav2vec 2.0: A Frame-

work for Self-Supervised Learning of Speech
Representations, 2020.
[4] Conneau et al., “Unsupervised
Cross-lingual Representation Learning
for Speech Recognition”, 2020.

[14] Babu et al., “XLS-R: Self-supervised
cross-lingual speech representation
learning at scale”, 2021.

Additionally, we review [24] to see which approaches have been

[24] Besacier et al., “Automatic speech
recognition for under-resourced lan-
guages: A survey”, 2014.

taken previously before self-supervised learning became feasible for
speech recognition.

Language Modelling in Speech Recognition

For the Language Modelling in Speech Recognition subject, we found the
following related literature using our defined keywords:

[2] Baevski et al., wav2vec 2.0: A Framework for Self-Supervised Learning
of Speech Representations, 2020.

[27] Xu et al., “A pruned rnnlm lattice-rescoring algorithm for auto-
matic speech recognition”, 2018.

[28] Kumar et al., “Lattice rescoring strategies for long short term
memory language models in speech recognition”, 2017.

[29] Chan et al., “Listen, attend and spell: A neural network for large
vocabulary conversational speech recognition”, 2016.

[30] Arisoy et al., “Bidirectional recurrent neural network language
models for automatic speech recognition”, 2015.

[31] Kuhn and De Mori, “A cache-based natural language model for
speech recognition”, 1990.

We select the studies [2, 27, 28, 30] which show the trend where
the research of Language Modelling in ASR is headed using neural
architectures to improve traditional approaches.

Synthesis of literature

For each subject, we chronologically synthesize the selected literature
from the previous section. We review the approaches that have been
taken previously to enable speech recognition for low-resourced
languages. Additionally, we investigate the trend of new methods for
low-resource ASR and study their relation to earlier literature in the
field. Furthermore, our research attempts to improve Luxembourgish
speech recognition. Hence we compare the approaches applied in
the field to the previous work that researched Luxembourgish ASR
to determine its weak points. Finally, we suggest improvements from
these shortcomings and frame them as research questions based on
the theoretical foundation synthesized from the selected literature.
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Design of Speech Corpus

In [1], a study was made on the linguistic situation in Luxembourg. [1] Adda-Decker et al., “Developments
of “Lëtzebuergesch” Resources for
Automatic Speech Processing and
Linguistic Studies”, 2008.

They described the existence of Luxembourgish audio-transcription
data pairs that are useful to enable ASR systems for Luxembour-
gish. Thus with the knowledge of this investigation, it is important
to study the design principles of creating a speech corpus for a lan-
guage that does not have any public speech corpora for reference.

The procedure of creating the LibriSpeech corpus was presented in
[9]. The LibriSpeech corpus is a good reference point for creating our [9] Panayotov et al., “Librispeech: an

ASR corpus based on public domain
audio books”, 2015.

Luxembourgish corpus since in both cases, the raw data represents
read speech where the audio and transcription are freely available
in the public domain. The LibriSpeech corpus is obtained from au-
diobooks from the LibriVox project. To produce the LibriSpeech
corpus, they pre-processed each audiobook’s text by upcasing its
text, expanding frequent abbreviations and removing punctuations.
Then, the Kaldi toolkit is used to recognize the audiobooks to gen-
erate transcriptions. In a first alignment stage, they use the Smith-
Waterman alignment algorithm [32] to identify the common subse- [32] Smith and Waterman, “Identifi-

cation of common molecular subse-
quences”, 1981.

quences of words among the generated transcription and the audio-
book text. In most cases, the largest region of similarity corresponds
to an entire chapter. Each transcription word in that region of sim-
ilarity equivalent to the reference is marked with a high confidence
metric. Each region of similarity is divided into shorter segments of
32 seconds or less, where the splits are done at silence intervals. In
a second alignment stage, every segment is filtered out where the
transcription is likely incorrect. With a subset of 32 seconds long and
accurate audio segments, each segment is chunked into smaller seg-
ments before being included in the corpus. For the data selection,
they collected speaker information to make sure that a speaker is not
represented in different corpus splits. Additionally, they labelled each
audio segment with the gender of the speaker to ensure a gender
balance within the corpus splits.

The approach in [7] to create the MLS corpus is similar to the [7] Pratap et al., “MLS: A large-scale
multilingual dataset for speech re-
search”, 2020.

methodology from [9] although in a multilingual context. The dif-
ference is that they only have one audio segmentation stage in their
data processing pipeline. They started by segmenting the audiobooks
from the LibriVox domain into 10-20 seconds segments and gener-
ated pseudo labels using their in-house trained acoustic models. For
the transcript retrieval process, they also used the Smith-Waterman
alignment algorithm to find the best matching subsequences of
words. With the alignment algorithm, for each audio segment, a
candidate target label from the audiobook source text is generated
that matches best with the pseudo label. Each candidate transcription
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is rejected when the WER is above 40% between the candidate and
pseudo label.

The two previous studies apply subsequences alignment to match
audio segments with transcriptions to create speech corpora for
speech technology research. However, this design choice scales
poorly to under-resourced languages [6]. In [6], they create open [6] Ardila et al., “Common Voice:

A Massively-Multilingual Speech
Corpus”, 2020.

source tools that scale to new and potentially under-resourced lan-
guages. The open-source tools permit community members to submit
text sentences for any language, record and validate voices in that
language. In this crowd-sourcing approach, a corpus for a new lan-
guage can be created without relying on aligning audio-transcription
pairs. In order to request the creation of a new language speech cor-
pus, text prompts have to be submitted by the community. Other
community members read these text prompts and record their ut-
terances. The read samples are verified by other contributors with
a voting system. With two up-votes, the utterance becomes valid.
While with two downvotes, it is invalid. This voting system is illus-
trated in Figure 3.1. During the corpus creation, the data is split into
80%, 10% and 10% for the train, dev and test sets, respectively. The
dataset splits were done considering keeping one speaker’s recoding
only in one of the splits.

Figure 3.1: The Common Voice voting
system to verify the validity of read
samples of submitted text prompts [6].

The trend in creating training data for speech technology research
in high-resource languages is to use alignment algorithms to segment
long audio files according to text transcriptions. However, this ap-
proach does not scale well for under-resourced languages. In many
under-resourced languages, no existing speech recognition models
are available to apply this alignment technique of matching recog-
nized transcription with the target text. Additionally, labelled data
is scarce, and we cannot allow rejecting every incorrectly transcribed
utterance that could become useful as training data. Furthermore,
there is no public implementation of the Smith-Waterman alignment
algorithm for matching audio-transcription pairs. On the other hand,
the crowd-sourcing approach in [6] is scalable for Luxembourgish.
However, it is not ideal for our research either since, at the time of
writing this thesis, the Common Voice web application UI has not
been localized yet for Luxembourgish, and only seven sentences
out of 5000 were submitted by community contributors1. Relying 1 As of 18th June 2022.

on the Luxembourgish community to create an open-source speech
corpus would take too long and is not feasible for our research. In
both approaches, to create a fair evaluation of speaker generalization,
they ensured that a speaker’s utterances would only appear in one
dataset split and that the splits are gender-balanced with the addi-
tional meta-information made accessible from the raw data source.
This is not possible for our speech data. In [3], we scraped only the [3] Nguyen, Self-Supervised Learning of

Speech Representations, 2021.
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audio-transcription pairs without any additional Personal Identifiable
Information (PII) such as names or gender information to ensure that
our automatic data scraping was compliant with the General Data
Protection Regulation (GDPR) [33]. [33] 2018 reform of EU data protection

rules, 2018

Text Normalization of Speech Transcriptions

The two resources from [7, 9] on creating speech corpora for speech [7] Pratap et al., “MLS: A large-scale
multilingual dataset for speech re-
search”, 2020.
[9] Panayotov et al., “Librispeech: an
ASR corpus based on public domain
audio books”, 2015.

technology research, presented also their methodology on normal-
izing the transcription text. For the LibriSpeech corpus, each text of
an audiobook was converted to uppercase. Special characters such
as punctuations were removed, and abbreviations were expanded.
To create the MLS corpus, they normalized the text first by removing
special characters such as punctuations. They joined words together
that were separated by end-of-line hyphenation. Characters outside
the valid Unicode characters of a language were filtered out. After
creating the true target label for an audio segment, they applied a
post text processing based on heuristics which does not represent the
ideal solution. In this processing pipeline, they replaced the numbers
in the matched text with the aligned words from the pseudo label.
They chose this solution since number-to-words conversion libraries
like num2words2 fail in situations where the conversion depends on 2 https://pypi.org/project/num2words/

the context. For example, a number 2020 can be pronounced as two
thousand and twenty, but twenty twenty would also be correct. Further-
more, they use rule-based substitutions to deal with hyphens and
apostrophes.

We notice a trend for text normalization in recent literature such as
[10–12]. They study the neural approach to solve text normalization

[10] Mansfield et al., “Neural Text
Normalization with Subword Units”,
2019.
[11] Zhang et al., “Neural models of
text normalization for speech applica-
tions”, 2019.
[12] Yolchuyeva, Németh, and Gyires-
Tóth, “Text normalization with convolu-
tional neural networks”, 2018.

and believe that these neural models relieve the burden of creating
grammars represented by Finite State Transducers (FSTs). FSTs are
finite state machines that map between two sets of strings and are
frequently used in past approaches to building grammars that handle
text normalization. [10–12] share the idea that text normalization is
the process of verbalizing Non-Standard Words (NSWs) or also called
semiotic classes following Taylor in [34]. Semiotic class instances de- [34] Taylor, Text-to-speech synthesis, 2009.

note numbers, monetary amounts, times, dates, etc. [12] proposed
a CNN model and [10, 11] presented their sequence-to-sequence
models to deal with text normalization without relying on linguistic
knowledge to define hand-written language-specific grammars. The
proposed method in [12] identifies first the class of each token in a
sentence. Then it generates the verbalization of a token according to
its class within a sentence context. Whereas, in [10, 11], they treat text
normalization as a sequence-to-sequence problem and model the sen-
tential context to compute the verbalization of a token in a sequence
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of words without relying on a POS tagger or grammar. Even though
[11] described that modelling text normalization as a machine trans- [11] Zhang et al., “Neural models of

text normalization for speech applica-
tions”, 2019.

lation problem performs very well overall, with neural translation,
sometimes inappropriate verbalizations are predicted, such as ’3 cm’
are verbalized as ’three kilometres’. Thus, it is still important to define
grammars with FSTs to supervise the neural approaches.

Using machine translation to model text normalization as a sequence-
to-sequence problem works well for high-resource languages. How-
ever, it is not feasible to apply neural approaches to model text nor-
malization for low-resourced languages since no input-label pairs
exist that represent the verbalizations of semiotic class instances.

Low-resource Automatic Speech Recognition

[24] state that in the past, a standard speech recognition system was [24] Besacier et al., “Automatic speech
recognition for under-resourced lan-
guages: A survey”, 2014.

based on statistical modelling. In general, these ASR systems used
stochastic HMM-based approaches that consisted of three main com-
ponents; acoustic model, pronunciation dictionary and language
model. These models require many labelled data for the development
of ASR systems. However, transcribed speech for under-resourced
languages is scarce. Thus, the essential task in low-resource speech
recognition research is the collection of data and creating a labelled
speech corpus for an under-resourced language. In many under-
resourced languages, speech from broadcast news and parliamentary
sessions present a good starting point. Many researchers rely on
manually transcribing the available audio recordings for supervised
learning. Obtaining audio transcriptions for an under-resourced lan-
guage is generally a complex task. Thus, other researchers apply
unsupervised or lightly-supervised learning to train acoustic mod-
els to reduce the burden of finding appropriate language experts to
transcribe the audio collection. Lexical modelling used grapheme-
based approaches where each word in the pronunciation lexicon is
decomposed into its basic acoustic units, graphemes, represented
by the acoustic model. The language model component reestimates
the probability of the output word sequence emitted by the speech
decoder. Language models in the past of stochastic HMM-based ap-
proaches were commonly based on n-grams. n-gram language mod-
els approximate the maximum likelihood of a word sequence based
on a reference text corpus. Therefore, statistical language modelling
requires extensive text training data. However, access to large text
corpora is challenging in the context of under-resourced languages.
[35] proposed a solution to text data sparseness with a word decom- [35] Pellegrini and Lamel, “Are audio

or textual training data more im-
portant for ASR in less-represented
languages?”, 2008.

position algorithm that reduces a high out-of-vocabulary rate and
improves the lack of extensive training text data required in statistical
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language modelling.
We observe a new trend in [2, 4, 14] to approach low-resource [2] Baevski et al., wav2vec 2.0: A Frame-

work for Self-Supervised Learning of Speech
Representations, 2020.
[4] Conneau et al., “Unsupervised
Cross-lingual Representation Learning
for Speech Recognition”, 2020.

[14] Babu et al., “XLS-R: Self-supervised
cross-lingual speech representation
learning at scale”, 2021.

speech recognition. They are based on self-supervised learning
of speech representations and fine-tuning on only a few minutes
of labelled speech, and this paradigm outperforms previous semi-
supervised methods. Additionally, [4, 14] pre-train a single wav2vec
2.0 model from [2] with speech representations from multiple lan-
guages and showcase that pre-training cross-lingual speech repre-
sentations outperform significantly monolingual acoustic models.
Therefore, [4, 14] released their pre-trained multilingual acoustic
model checkpoints to advance research in low-resource speech recog-
nition. [4] released their XLSR-53 model pre-trained on 53 languages
from the BABEL, CommonVoice and MLS, representing 56 thousand
hours of speech audio. [14] released their XLS-R model pre-trained
on 436 thousand hours of speech from 128 different languages.

Language Modelling in Speech Recognition

As previously mentioned, the language model component of a
speech recognition system reestimates the probability of the out-
put word sequence emitted by the speech decoder. Language models
in the past of stochastic HMM-based approaches were commonly
based on n-grams [24]. n-gram language models approximate the [24] Besacier et al., “Automatic speech

recognition for under-resourced lan-
guages: A survey”, 2014.

maximum likelihood of a word sequence based on a reference text
corpus.

However, we observe a trend in recent studies from [27, 28, 30] [27] Xu et al., “A pruned rnnlm lattice-
rescoring algorithm for automatic
speech recognition”, 2018.

[28] Kumar et al., “Lattice rescoring
strategies for long short term memory
language models in speech recogni-
tion”, 2017.
[30] Arisoy et al., “Bidirectional recur-
rent neural network language models
for automatic speech recognition”, 2015.

where Recurrent Neural Network Language Models (RNNLMs) are
used to reestimate decoded speech recognition outputs. RNNLMs
have been shown to outperform traditional n-gram models since
RNNs model longer distance contextual information from past in-
puts than n-gram models [30]. In [30], they proposed bidirectional
RNNs and Long Short Term Memory (LSTM) neural networks for
language modelling in speech recognition. They proposed the bidi-
rectional architecture since previous unidirectional RNNLMs only
predict outputs from past inputs while bidirectional recurrent LMs
also condition on future inputs. They found that bidirectional RNNs
are significantly outperforming unidirectional RNNs while bidirec-
tional LSTMs do not present any improvements. Although RNNLMs
outperform traditional n-gram LMs on speech recognition tasks, the
RNN approaches are more computationally expensive than their
n-gram counterpart for decoding. In [27, 28], they evaluate and pro-
pose lattice-rescoring algorithms to take advantage of RNNLMs in
speech recognition systems efficiently. Lattice-rescoring generates
a word-lattice from a first decoding forward pass, and an RNNLM
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rescores the lattice. n-gram approximation is often applied to reduce
the search space when rescoring the lattice.

In the official wav2vec 2.0 paper [2], they applied a Transfomer- [2] Baevski et al., wav2vec 2.0: A Frame-
work for Self-Supervised Learning of Speech
Representations, 2020.

based LM to reestimate the speech decoding. Table 9 of Appendix C
in their paper shows that Transfomer-based LM yields better results
than n-gram language modelling for rescoring. However, the perfor-
mance gain is less significant for the difference between n-gram and
Transfomer-based language modelling than the difference between
n-gram LM and no language model rescoring [36]. Based on Table 9 [36] Platen, Boosting Wav2Vec2 with

n-grams in HF Transformers, 2022.of Appendix C in [2], [36] elaborates that rescoring wav2vec 2.0 fine-
tuned on only 10 minutes of labelled data with an n-gram reduces
the WER relatively by around 80% while the Transfomer-based LM
only generates a relative 23% WER improvement over the n-gram
rescoring. For a large wav2vec 2.0 checkpoint that was pre-trained
on a high amount of speech data, a Transfomer-based LM improves
the WER relatively by only 8% in comparison to n-gram language
modelling. In contrast, n-gram rescoring produces a relative WER
reduction of 21% compared to not using LM resoring at all. Addi-
tionally, [36] explains that Transfomer-based LM rescoring is very
computationally expensive since it requires a complete forward pass
to estimate the likelihood of the following word. Compared to mod-
ern Transfomer-based language models, n-gram LMs are very fast
and computationally expensive as queries in a look-up table. There-
fore the usage of n-gram LM is favoured over Transformer-based LM
since n-gram has notably a little computational cost.

We notice a similar trend in [27, 28, 30] that even though language [27] Xu et al., “A pruned rnnlm lattice-
rescoring algorithm for automatic
speech recognition”, 2018.

[28] Kumar et al., “Lattice rescoring
strategies for long short term memory
language models in speech recogni-
tion”, 2017.
[30] Arisoy et al., “Bidirectional recur-
rent neural network language models
for automatic speech recognition”, 2015.

modelling based on neural network architectures are outperforming
their n-gram counterpart, neural-based LMs are still very computa-
tionally expensive. Further, to successfully train a neural-based LM
that performs well, we need to provide it with large text resources,
which is hard to obtain for under-resourced languages.

Summary of Key Findings and Definition of Research Scope

In this summary, we raise the critical findings of the literature review
and define the research scope of our thesis project.

In recent studies, alignment algorithms such as the Smith-Waterman
common subsequences identification algorithm are often used to seg-
ment long audio files according to text transcriptions to create train-
ing data for speech technology research in high-resource languages.
However, this approach does not scale well for under-resourced lan-
guages. In many under-resourced languages, no speech recognition
models are available to generate audio transcription and align it
with the target text. Additionally, labelled data is scarce in an under-
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resourced context, and we cannot allow rejecting every incorrectly
transcribed utterance that could become useful as training data. The
lack of an open-source segmentation library for this algorithm makes
it even harder to consider this segmentation approach for creating
a speech corpus for an under-resourced language such as Luxem-
bourgish, for which we already have an acoustic model. On the other
hand, the crowd-sourcing approach in [6] is scalable for Luxem- [6] Ardila et al., “Common Voice:

A Massively-Multilingual Speech
Corpus”, 2020.

bourgish. This approach is not ideal for our research either since the
Common Voice web application UI has not been localized yet for
Luxembourgish, and not enough text prompts have been submitted
yet to record Luxembourgish utterances. Relying on a community-
backed speech corpus would take too long and is not feasible for our
research. In both approaches, they ensured that a speaker’s utter-
ances would only appear in one dataset split and that the splits were
gender-balanced to create a fair evaluation of speaker generaliza-
tion. This is impossible for our speech data since we do not have any
meta-information about the speakers to ensure speaker generaliza-
tion. Considering that we are not building a general ASR system but
only recognizing Luxembourgish speech from broadcast news, we
could limit our scope not to enforce speaker generalization. As an ap-
proach to design our speech corpus, we could take a combination of
the audio-text alignment procedure from [7, 9] and the crowdsourced [7] Pratap et al., “MLS: A large-scale

multilingual dataset for speech re-
search”, 2020.
[9] Panayotov et al., “Librispeech: an
ASR corpus based on public domain
audio books”, 2015.

data validation from [6]. However, with labelled Luxembourgish
speech being scarce, we cannot filter out almost correct transcribed
audio segments, which could become useful training data. There-
fore, for this study, we implement the idea of the human in the data
processing pipeline from [6]. We design a tool where a user can vali-
date aligned audio-transcription pairs and correct the transcription if
necessary.

[10–12] share the idea that text normalization is the process of ver-

[10] Mansfield et al., “Neural Text
Normalization with Subword Units”,
2019.
[11] Zhang et al., “Neural models of
text normalization for speech applica-
tions”, 2019.
[12] Yolchuyeva, Németh, and Gyires-
Tóth, “Text normalization with convolu-
tional neural networks”, 2018.

balizing NSWs. NSWs denote numbers, monetary amounts, times,
dates, etc. In past approaches, Finite State Transducers (FSTs) are
used to build grammars that handle text normalization. We notice
a trend for text normalization in recent literature [10–12]. They all
study the neural approach to solve text normalization and believe
that these neural models relieve the burden of relying on linguis-
tic knowledge to define hand-written language-specific grammars
represented by FSTs. In neural approaches, text normalization is
modelled as a sequence-to-sequence problem which works well for
high-resourced languages. However, for our speech corpus, it is not
feasible to apply neural approaches to model text normalization for
Luxembourgish text since there exist no Luxembourgish input-label
pairs that represent the verbalizations of semiotic class instances.
Therefore, we rely on our Luxembourgish linguistic knowledge to
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craft language-specific grammar in our text processing procedure.
For training acoustic models, self-supervised learning of speech

representation is still widely used in recent high and low-resource
speech recognition research. Thus, we continue to experiment with
this approach. We investigate the learning of cross-lingual speech
representations to verify the claim of [4, 14] that learning of cross- [4] Conneau et al., “Unsupervised

Cross-lingual Representation Learning
for Speech Recognition”, 2020.

[14] Babu et al., “XLS-R: Self-supervised
cross-lingual speech representation
learning at scale”, 2021.

lingual speech representations significantly outperform monolingual
wav2vec 2.0 models pre-trained only on a single language.

We rely on n-gram LMs to reestimate our speech decodings since
we noticed a common trend in [27, 28, 30, 36] that even though lan-

[27] Xu et al., “A pruned rnnlm lattice-
rescoring algorithm for automatic
speech recognition”, 2018.

[28] Kumar et al., “Lattice rescoring
strategies for long short term memory
language models in speech recogni-
tion”, 2017.
[30] Arisoy et al., “Bidirectional recur-
rent neural network language models
for automatic speech recognition”, 2015.

[36] Platen, Boosting Wav2Vec2 with
n-grams in HF Transformers, 2022.

guage modelling based on neural network architectures are out-
performing their n-gram counterpart, neural-based LMs are still
very computationally expensive. Additionally, to successfully train
a neural-based LM that performs well, we need to provide it with
large text resources, which is hard to obtain for the Luxembourgish
language. Furthermore, n-gram LM rescoring is well integrated into
the Hugging Face wav2vec 2.0 implementation presented in [36].

The research goals of this thesis aim to improve our previous work
on Luxembourgish ASR. In our previous work, we trained a monolin-
gual model in one experiment and used transfer learning in another
to enable speech recognition for Luxembourgish. These models were
neither rescored by language modelling nor trained on properly nor-
malized speech labels. Therefore, we suggest improvements based
on the findings of the literature review to the shortcomings of the
previous study. We apply a distinct methodology using multilingual
wav2vec 2.0 XLSR models that pre-train cross-lingual speech repre-
sentations to improve speech recognition performance. Additionally,
we increase the size of our speech corpus and implement a more
advanced pre-processing pipeline to normalize our collected Luxem-
bourgish speech labels. Further, we use a language model to rescore
the decoding of our ASR models. We define the following research
questions to frame this thesis within the current state of the art based
on the findings from the literature review:

1 Could pre-training cross-lingual representations improve wav2vec 2.0
models that have been pre-trained on Luxembourgish solely?

wav2vec 2.0 [2] has shown that self-supervised learning of speech [2] Baevski et al., wav2vec 2.0: A Frame-
work for Self-Supervised Learning of Speech
Representations, 2020.

representations effectively enables speech recognition for low-
resourced languages while utilizing little labelled data. The XLSR
model [4] is a multilingual speech recognition model based on
wav2vec 2.0. It pre-trains on cross-lingual speech representations.
Experiments have shown that cross-lingual pre-training signifi-
cantly outperforms monolingual pre-training.
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2 Could language model rescoring improve the baseline Luxembourgish
speech recognition models that use the Greedy algorithm for decoding?

In the original wav2vec 2.0 [2] paper, experiments were conducted [2] Baevski et al., wav2vec 2.0: A Frame-
work for Self-Supervised Learning of Speech
Representations, 2020.

with language model rescoring and improved the model’s perfor-
mance significantly.





4 Research Questions and Hypotheses

After reviewing the literature, we define our research ques-
tions and hypotheses for this thesis to suggest improvements over
our previous work on self-supervised Luxembourgish ASR from
[3]. The research questions and hypotheses are framed within the [3] Nguyen, Self-Supervised Learning of

Speech Representations, 2021.research scope defined by our findings in the literature review.
The first research question explores if pre-training cross-lingual

representations could improve wav2vec 2.0 models that have been
pre-trained on Luxembourgish solely. [2] has shown that self-supervised [2] Baevski et al., wav2vec 2.0: A Frame-

work for Self-Supervised Learning of Speech
Representations, 2020.

learning of speech representations effectively enables speech recogni-
tion for low-resourced languages while providing little labelled data.
The wav2vec 2.0 XLSR model [4] is a multilingual speech recogni- [4] Conneau et al., “Unsupervised

Cross-lingual Representation Learning
for Speech Recognition”, 2020.

tion model that pre-trains on cross-lingual speech representations.
Experiments have shown that cross-lingual pre-training significantly
outperforms monolingual pre-training. Therefore, we hypothesize,
following [4] that pre-training cross-lingual representations will im-
prove monolingual wav2vec 2.0 models that have been trained solely
on Luxembourgish. If this hypothesis is invalidated, that would sug-
gest that Luxembourgish wav2vec 2.0 models do not benefit from
cross-lingual pre-training. This will call into question the claim from
[4] that pre-training cross-lingual representations improve the ASR
performance for low-resourced languages.

The second research question investigates if LM rescoring could
improve the baseline Luxembourgish speech recognition models
that use the Greedy algorithm for decoding. Experiments were con-
ducted with LM rescoring in the original wav2vec 2.0 [2] paper and
significantly improved the model’s performance. Following [24], we [24] Besacier et al., “Automatic speech

recognition for under-resourced lan-
guages: A survey”, 2014.

hypothesize that using LMs for rescoring will further improve the
Luxembourgish wav2vec 2.0 models. If this hypothesis is invalidated,
that would suggest that Luxembourgish speech recognition models
do not benefit from language model rescoring. This will call into
question the claim from [24] that incorporating a language model
to rescore the speech decoder improves the recognition accuracy by
emitting the best recognition hypothesis.





5 Background

We investigate the models and methodologies in [2] and [4] that [2] Baevski et al., wav2vec 2.0: A Frame-
work for Self-Supervised Learning of Speech
Representations, 2020.
[4] Conneau et al., “Unsupervised
Cross-lingual Representation Learning
for Speech Recognition”, 2020.

proposed the novel self-supervised speech recognition framework
wav2vec 2.0 and wav2vec 2.0 XLSR-53 respectively.

Self-supervised learning

Self-supervised learning is considered a subset of unsupervised
learning. In contrast to supervised learning, this paradigm does
not rely on labelled data. It produces pseudo labels for the supervi-
sion task and learns general representations used for downstream
tasks such as speech recognition. The self-supervised paradigm is
commonly used in Generative Adversarial Networks (GANs) and
contrastive learning [39]. We will focus on the latter use case, applied [39] Yolyan, Review on Self-Supervised

Contrastive Learning, 2021.in wav2vec 2.0 to group similar learned representations.

wav2vec 2.0

The wav2vec 2.0 framework was proposed by [2] and is based on
self-supervised learning. This framework is situated between super-
vised and unsupervised learning and is used to train a model in two
steps. First, the wav2vec 2.0 model pre-trains quantized speech rep-
resentations to initialize the network weights of the acoustic model.
In the second, the model is fine-tuned with limited supervision. An
illustration of this model is given in Figure 5.1.

First, we will describe all the modules of the wav2vec 2.0 model
and define the objective that is learned during the pre-training step:

1. Feature encoder. The first component of the model is the feature
encoder which represents a multi-layer temporal convolutional
encoder:

f : X 7→ Z (5.1)
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Figure 5.1: An Illustration of the
wav2vec 2.0 framework. This frame-
work learns jointly contextualized
and discrete quantized speech repre-
sentations to solve a contrastive task
[2].

where X is a raw audio input and Z is the output containing
latent speech representations {z1, . . . , zT} for T time-steps. The
output of the feature encoder is normalized before being activated
by a Gaussian Error Linear Unit (GELU).

2. Context network. The normalized output of the feature encoder
is used as input in the Transformer context network to produce
contextualized representations C = {c1, . . . , cT}:

g : Z 7→ C (5.2)

3. Quantization module. To enable self-supervised learning, the
quantization module creates a finite set of speech representations
qt from the feature encoder outputs z using product quantization:

h : Z 7→ Q (5.3)

Product quantization is used to generate targets for the self-
supervised objective.

4. Pre-training. The model is pre-trained by masking parts of time
steps from the feature encoder, and the objective is to identify the
target quantized speech representation from a set of distractors.
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5. Masking. Before using the feature encoder outputs as inputs
in the context network, a part of the outputs are masked by a
common trained feature vector. The inputs for the quantization
module are not masked.

6. Objective. The objective during pre-training is to learn speech
representations by optimizing a contrastive task Lm in addition
with a codebook diversity loss Ld to equally use the codebook
entries:

L = Lm + αLd (5.4)

The contrastive loss is defined as follows:

Lm = − log
exp(sim(ct, qt)/κ)

∑q̃∼Qt
exp(sim(ct, q)/κ)

(5.5)

where sim(c, q) represents the cosine similarity between the con-
text and the quantized speech representations. ct is the output
from the context network, qt is the target quantized speech repre-
sentation and q are the quantized candidate representations.

The diversity loss Ld maximizes for each codebook p̄g the entropy
of the mean softmax distribution over its entries:

Ld =
1

GV

G

∑
g=1

−H( p̄g) (5.6)

where G and V represent the codebooks and codebook entries.

Then in the second step, the pre-trained model is fine-tuned for
tasks such as speech recognition. A fully connected layer is intro-
duced over the context network. This layer classifies the trained
quantized speech representations into C classes which are specific
to a language’s character vocabulary. The Connectionist Temporal
Classification (CTC) loss is used to optimize the models.

wav2vec 2.0 XLSR-53

The wav2vec 2.0 XLSR model was proposed by [4] and is based on [4] Conneau et al., “Unsupervised
Cross-lingual Representation Learning
for Speech Recognition”, 2020.

the wav2vec 2.0 framework that pre-trains cross-lingual speech rep-
resentations by pooling speech signals from multiple languages.
wav2vec 2.0 XLSR-53 is a model checkpoint based on this methodol-
ogy pre-trained on 53 languages from LibriSpeech, MLS, and BABEL.
It was released by [4] to catalyze low-resource speech recognition
research.





6 Methodology

After introducing the background notions, we define
our methodology to address our research questions. The different
methodologies we apply make the distinction between the deliv-
erables of this thesis and the outcomes from the previous work in
[3]. In our previous work, we trained a monolingual model in one [3] Nguyen, Self-Supervised Learning of

Speech Representations, 2021.experiment and used transfer learning in another to enable speech
recognition for Luxembourgish. These models were not fine-tuned on
thoroughly normalized speech labels nor rescored by language mod-
elling. In this study, we implement a more advanced pre-processing
pipeline to normalize Luxembourgish speech labels. With the nor-
malized transcriptions, we use force alignment from the aeneas
library to segment transcribed audio files into utterances. Further-
more, we apply multilingual wav2vec 2.0 XLSR models that pre-train
cross-lingual speech representations to improve our previous results.
Finally, we will use an n-gram LM to rescore the decoding of our
ASR models.

Data Collection

For this thesis, we use labelled radio broadcast audio from the Ra-
dio Telé Lëtzebuerg1 (RTL.lu) domain. Access to this data was given 1 https://www.rtl.lu/

by the digital director of the media company to support the devel-
opment of speech technologies for Luxembourgish. We reuse the
audio-transcription pairs scraped during the study in [3]. This data
consists of the Apropos, Commentaire and Carte Blanche radio shows.
These radio shows invite guest speakers of the day to discuss the lat-
est topics. These shows can be found under the Opinion - (Meenung)
category on RTL.lu2. In our previous work, we created a scraping bot 2 https://www.rtl.lu/meenung

that gathers webpages from each radio emission category on RTL.lu
that contained an audio file with its text transcription. Due to the
GDPR [33], proper due diligence concerning data collection must [33], 2018 reform of EU data protection

rules, 2018.be conducted. Therefore, only audio-transcription data pairs were
collected without Personal Identifiable Information (PII), such as the

https://www.rtl.lu/
https://www.rtl.lu/
https://www.rtl.lu/meenung
https://www.rtl.lu/meenung
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speaker’s name and gender. The raw labelled audio collected from
the radio emissions amounts to 61 hours of labelled data. Each emis-
sion duration varies between 2 and 3 minutes. As unlabelled data, we
collected in our previous work 842 hours of unlabelled speech from
the same domain, although not strictly from the same radio emis-
sions but could also originate from other sources such as interviews
or television news broadcasts.

Text Normalization

In past approaches, Finite State Transducers (FSTs) were used to
build grammars that handle text normalization. The trend for text
normalization in recent literature is neural approaches instead of
relying on linguistic knowledge to define hand-written language-
specific grammars represented by FSTs [10–12]. Using neural ap- [10] Mansfield et al., “Neural Text

Normalization with Subword Units”,
2019.
[11] Zhang et al., “Neural models of
text normalization for speech applica-
tions”, 2019.
[12] Yolchuyeva, Németh, and Gyires-
Tóth, “Text normalization with convolu-
tional neural networks”, 2018.

proaches to model text normalization as a sequence-to-sequence
problem works well for high-resource languages. However, this is
not feasible for the Luxembourgish language since no Luxembour-
gish input-label pairs exist that represent the verbalizations of NSWs.
Therefore, we rely on our Luxembourgish linguistic knowledge to
define language-specific grammar in our text processing procedure.

Before creating language-specific grammar for our text processing
pipeline, we have to analyze the text transcriptions. The transcrip-
tion that comes with the audio from the radio emissions is useable
for building ASR systems. However, in some cases, they are not
very clean. After analyzing a sample of transcriptions of the audio
files, we observe that most issues are related to the non-verbalizing
of NSWs. The main issues are the verbalizations of numbers and
standard abbreviations. Other issues are related to handling special
characters or variations of the apostrophe.

In order to handle the expansion of types of numbers such as
years, floating, ordinal, and cardinal numbers, we implemented the
support for the Luxembourgish language in the number to words
conversion library num2words3. We based our implementation on the 3 https://github.com/letzspeak/

num2wordsGerman number system and introduced specific rules from Luxem-
bourgish, such as the n-rule. The n-rule defines that the ending letter
n of a word is not dropped if the next word begins with a consonant
c ∈ {d, h, n, t, z} or with a vowel v ∈ {i, u, e, o, a}.

In our text processing pipeline, we defined grammars as FSTs that
map matched strings to desired strings. We implemented our FST
grammars using regular expressions in Python to match string pat-
terns and replaced them with the correct values. Our pre-processing
pipeline is based on heuristics and may not represent a general and
optimal solution to normalize the transcriptions. The pipeline starts

https://github.com/letzspeak/num2words
https://github.com/letzspeak/num2words
https://github.com/letzspeak/num2words
https://github.com/letzspeak/num2words


methodology 47

by removing arbitrary URLs and verbalizing the dot in common Lux-
embourgish domain names.

As a second step in the pipeline, we standardize number expres-
sions to prepare the text data in a consistent format for efficient
number-to-word conversion. For example, some transcriptions format
large numbers with commas that are placed at every third decimal
place, while other transcription texts apply the inverse format that is
used in many non-English speaking countries where we use periods
to separate three decimal places and use commas as a separator be-
tween a number and its fractional part. We decided to remove all the
number formatting to enable the automatic number expansion with
the num2words library. In this step, we also have to handle numbers
with postfixes p ∈ {′ten′,′ sten′,′ te′}. These postfixes mean that a
number ending in them should be an ordinal number where the post-
fix needs to be substituted with a dot as defined in the Luxembour-
gish number system. As the last operation in this step, we introduced
a space character between a number and a unit that follows it.

After this step, we have a standardized number formatting that
can be processed by other grammar that uses num2words for conver-
sion. Before expanding the different number types in the text data,
we take care of the expansion of standard abbreviations. We defined
a dictionary of common Luxembourgish abbreviations as a look-
up table. This dictionary is used to substitute each occurrence of its
abbreviation entry with the expanded form in the text.

After handling the abbreviation expansion, we treat the different
number types in a fourth step, where we expand the different types
of numbers in the following order: years < ordinal numbers <

f loating numbers < cardinal numbers. This way, it is easier to express
the regular expressions for the subsequent substitution. For example,
ordinal numbers and floating numbers are formatted with a dot in
Luxembourgish and expanding first the ordinal numbers ensures that
we do not match floating numbers as ordinal numbers.

Finally, in the last step, we verbalize special characters c ∈ {%,+, &}.
Then, we remove non-printable characters or characters that are not
valid in Luxembourgish. The last operation in this step is to nor-
malize whitespace characters. We strip sequences of whitespace
characters and substitute them with a single one.

Audio Segmentation of labelled and unlabelled data

After normalizing the transcription texts, we end up with a collec-
tion of Luxembourgish audio-transcription pairs that are not noisy
as training data. As a next step, we present our approach to segment
the transcribed audio into smaller utterances that can be used to
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fine-tune the acoustic model. In recent studies, [7, 9], alignment algo-
rithms such as the Smith-Waterman common subsequences identifi-
cation algorithm are often used to segment long audio files according
to text transcriptions to create training data for speech technologies.
However, this approach does not scale well for under-resourced lan-
guages. In many under-resourced languages, no speech recognition
models are available to generate audio transcription and align it with
the target text.

Our approach uses force alignment to match speaker utterances
from an audio file to their candidate labels extracted from the audio
transcription. Force alignment has the same task as the alignment
approach using common subsequences identification. Contrary to
the alignment algorithm from [7, 9] that uses reference and candidate [7] Pratap et al., “MLS: A large-scale

multilingual dataset for speech re-
search”, 2020.
[9] Panayotov et al., “Librispeech: an
ASR corpus based on public domain
audio books”, 2015.

text pairs, force alignment, used from the aeneas4 library, generates

4 https://www.readbeyond.it/aeneas/

segmented utterances by chunking the transcription text into text
fragments first. Then each text fragment is synthesized with a Text-
to-Speech (TTS) engine. To align the synthesized text fragment with
the reference signal, we extract MFCCs from both signals and apply
the Sakoe-Chiba Band DTW algorithm. This procedure generates
sync maps in JSON format, and they represent timestamps of the
segment boundaries. However, force alignment in aeneas does not
estimate the confidence level within a region of similarity as in the
approaches of [7, 9]. Without a confidence metric evaluating the
correctness of a segment label, we need language experts to validate
the labelled utterances. Therefore, for this study, we implement the
idea of the human in the loop similar to the data processing pipeline
from [6]. [6] Ardila et al., “Common Voice:

A Massively-Multilingual Speech
Corpus”, 2020.

We design a tool where a user can validate aligned audio-transcription
pairs and correct the transcription if necessary. Visualizations of this
validation tool is shown in Figure 6.1 and 6.2. This validation tool
is implemented using the React5 library to create a web application. 5 https://reactjs.org/

We designed the interface as user-friendly as possible to improve the
user experience while validating the transcribed alignments. Figure
6.1 illustrates the index page of the web application. It summarizes
in the top UI component the main statistics about the current valida-
tion, such as the total number of radio emissions in the corpus, total
duration of the audio collection and validated hours of audio. Addi-
tionally, it lists each radio emission on this page. When a user clicks
on an audio item, the application redirects the user to the detail view
of the audio item.

A detailed view of a segmented audio item is pictured in Figure
6.2. The detail view has many UI elements. First, it visualizes the
waveform of the current audio to the user and highlights the cur-
rently selected segment area within the waveform. Underneath the

https://www.readbeyond.it/aeneas/
https://www.readbeyond.it/aeneas/
https://reactjs.org/
https://reactjs.org/
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Figure 6.1: Index page of the audio
segments validation tool.

waveform component, we list different information about the audio
to the user. The information box displays the audio file duration and
the source from where it was collected. Besides this information, we
show the user the total number of segments. Additionally, a progress
bar tells the user how many segments are already validated. The
third visual component is the editor area, where the user can correct
the current transcription, start and end timestamps. In this editor
area, we provide the user with the functionalities to play back or vali-
date the current segment. Furthermore, the user can create and delete
segments.

The final validation tool was hosted and distributed to the team at
the Zenter fir d’Lëtzebuerger Spooch to have language experts vali-
date the transcribed audio segments. The colleagues decided to stan-
dardize the orthography of the speech labels only to use the spelling
of the main variation of a word. Reaching our goal of validating 12

hours of audio segments, we continued to increase our validation un-
til 14 hours of labelled speech. Following our efforts to validate and
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Figure 6.2: Detail page of the audio
segments validation tool.

correct the labelled audio segments, we used the pydub6 library to 6 https://pypi.org/project/pydub/

divide the large audio files using the validated sync maps containing
the segment timestamps. The segmentation process yielded 6874 cor-
rectly transcribed utterances with an average duration of 7 seconds.
The duration distribution of the audio segments is shown in Figure
6.3.

Figure 6.3: Box plot of duration distri-
bution of 14 hours of labelled samples.

To divide the 842 hours of unlabelled audio files into 15 to 20 sec-
onds long segments, we used the same procedure from [7]. In this

[7] Pratap et al., “MLS: A large-scale
multilingual dataset for speech re-
search”, 2020.

procedure, we split the long audio files on silence intervals between
15 and 20 seconds. If no silence period was found during this inter-
val, then we split the audio segment on the 20

th second mark and set
the new segment starting point at this split. We repeat this procedure
until we reach the end of the audio file.

https://pypi.org/project/pydub/
https://pypi.org/project/pydub/


methodology 51

Speech Corpus Creation

After successfully segmenting the collection of large audio files into
smaller utterances, we need to split the utterances into different sets
for training, validating and testing our speech recognition model.
The training set is used to fine-tune the acoustic model for the down-
stream speech recognition task, while the validation set measures
how well the model generalizes on unseen data and optimizes the
model during the training step. The testing set evaluates the model’s
actual performance after training. To create the speech corpus, we
shuffle the utterances first and allocate 95% to the training set. The
rest 5% is evenly split between the validation and testing sets.

Furthermore, for our experiments, we created four training data
configurations to study the effect of the amount of labelled data on
the performance of wav2vec 2.0. These configurations represent train-
ing sets of different sizes that are 4, 8, 11 and 14 hours, respectively.
The validation and testing sets are kept the same for each configura-
tion. For the scope of this study, we are not ensuring speaker gener-
alization. Thus, we shuffle the speech samples before splitting them
into the different sets without ensuring that each speaker’s utterances
appear only in one data split. After splitting the samples into three
sets, we persist the splits as TSV7 files. To fine-tune a pre-trained 7 Tab Separated Values

wav2vec 2.0 model in Hugging Face, we format our training data as a
Hugging Face dataset object8. We use the dataset creation script9 and 8 https://huggingface.co/docs/

datasets/index
9 https://github.com/huggingface/

datasets/blob/master/templates/new_

dataset_script.py

specify it to read the created TSV files in order to load the labelled
speech samples for each data split. This script acts as a data loading
script when called during fine-tuning or evaluating the model.

Replication of Baseline Results

Before fine-tuning our multilingual wav2vec 2.0 XLSR-53 models, we
need to replicate the results from our previous study to set a baseline
to compare our new models. In [3], we trained the first Luxembour- [3] Nguyen, Self-Supervised Learning of

Speech Representations, 2021.gish wav2vec 2.0 models. One model was pre-trained from scratch
only on the 842 hours of unlabelled speech. In another experiment,
we trained the same unlabelled speech on a wav2vec 2.0 model pre-
trained on 960 hours of English speech from the LibriSpeech corpus.
Both models were introduced with a linear layer to fine-tune them
on 4 hours of Luxembourgish speech from broadcast news using the
CTC loss. The two models achieved a validation WER of 25.1% and
23.5%, respectively. In the previous work, the models were trained
using Meta AI’s fairseq library [40]. For the replication, we convert the [40] Ott et al., “fairseq: A Fast, Exten-

sible Toolkit for Sequence Modeling”,
2019.

fairseq wav2vec 2.0 models to the Hugging Face model implemen-
tation for the ease of model loading and inference enabled by their

https://huggingface.co/docs/datasets/index
https://huggingface.co/docs/datasets/index
https://huggingface.co/docs/datasets/index
https://huggingface.co/docs/datasets/index
https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py
https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py
https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py
https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py
https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py
https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py
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abstraction interfaces. Then with our validation and testing datasets
combined with the Hugging Face evaluation Python script10, we eval- 10 https://github.com/huggingface/

transformers/blob/main/

examples/research_projects/

robust-speech-event/eval.py

uate the converted checkpoints from our previous work on speech
utterances from the same domain. The evaluation of the models
shows a similar validation WER of 23.95% and 23.39%, respectively,
although with a lower WER as obtained in the previous study. Table
6.1 shows the validation and testing evaluation results. This replica-
tion represents our baseline to benchmark our multilingual models
with LM rescoring against it.

Model
Unlabelled

data
Language

Model
WER CER

dev test dev test

Baseline:

4h labelled
Base wav2vec 2.0 LB-842 None 23.95 23.09 7.97 7.63

Base wav2vec 2.0 LS-960 + LB-842 None 23.39 22.57 8.15 7.60

Table 6.1: CER and WER replication
of our previous wav2vec 2.0 models
on the Luxembourgish dev/test sets.
The models were pre-trained using
the audio from the Luxembourgish
dataset (LB-842) as unlabelled data. The
model was pre-trained on audio from
LibriSpeech (LS-960) in the transfer
learning setup.

Multilingual Speech recognition with wav2vec 2.0 XLSR

In the previous study, we pre-trained Luxembourgish speech repre-
sentation from scratch. Additionally, we explored transfer learning
from English latent representations in a second experiment. Self-
supervised learning of speech representation is still widely used in
recent high and low-resource speech recognition research. Thus, we
continue to experiment with this paradigm. We investigate the self-
supervised learning of cross-lingual speech representations to verify
the claim of [4, 14] that learning of cross-lingual speech represen- [4] Conneau et al., “Unsupervised

Cross-lingual Representation Learning
for Speech Recognition”, 2020.

[14] Babu et al., “XLS-R: Self-supervised
cross-lingual speech representation
learning at scale”, 2021.

tations significantly outperform monolingual wav2vec 2.0 models
pre-trained only on a single language. We evaluate a wav2vec 2.0
XLSR-53 fine-tuned with unlabelled Luxembourgish speech to prove
the claim. For this evaluation, we have access to this model check-
point trained on the HPC facilities at the University of Luxembourg
[41] while I still had access during my undergraduate studies. This [41] Varrette et al., “Management of

an Academic HPC Cluster: The UL
Experience”, 2014.

model is based on the wav2vec 2.0 XLSR model that was pre-trained
on 53 languages from LibriSpeech, MLS, and BABEL. It was released
by [4] to catalyze low-resource speech recognition research. The
wav2vec 2.0 XLSR-53 was fine-tuned on 842 hours of unlabelled
speech from the RTL.lu domain. Pre-training Luxembourgish speech
representations in addition to the 53 languages took three days on
four Nvidia V100 GPUs with 32 GB VRAM each. The pre-training vi-
sualization is shown in Figure 6.4. We convert this checkpoint to load
the model weights in the Hugging Face wav2vec 2.0 implementation.

https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/eval.py
https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/eval.py
https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/eval.py
https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/eval.py
https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/eval.py
https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/eval.py
https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/eval.py
https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/eval.py
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To fine-tune the multilingual wav2vec 2.0 model, we use the existing
fine-tuning Python script11 from the Hugging Face Robust Speech 11 https://github.com/huggingface/

transformers/blob/main/

examples/research_projects/

robust-speech-event/run_speech_

recognition_ctc_streaming.py

Challenge.

Figure 6.4: Accuracy visualization while
pre-training Luxembourgish Speech
Representations on top of wav2vec 2.0
XLSR-53 checkpoint.

We fine-tuned the pre-trained acoustic model on different labelled
data setups of 4, 8, 11, and 14 hours. All our fine-tuning experiments
were executed on a mobile Nvidia 1070 GPU with 8 GB of VRAM,
and the duration lasted between 12 hours to 1.5 days. The training
and validation loss of the 14 hours fine-tuning experiment is visu-
alized in Figure 6.5. In Figure 6.6, we visualize the validation WER
during our fine-tuning experiment with 14 hours of labelled speech.

Figure 6.5: Training and validation
loss visualization while fine-tuning
multilingual wav2vec 2.0 XLSR-53

checkpoint with 14 hours of labelled
speech.

https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_streaming.py
https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_streaming.py
https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_streaming.py
https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_streaming.py
https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_streaming.py
https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_streaming.py
https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_streaming.py
https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_streaming.py
https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_streaming.py
https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_streaming.py
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Figure 6.6: Validation WER visualiza-
tion when fine-tuning on 14 hours of
labelled speech.Language Model Rescoring using n-grams

We rely on n-gram LMs to reestimate our speech decodings. Even
though language modelling based on neural network architectures
are outperforming their n-gram counterpart, neural-based LMs are
still very computationally expensive [27, 28, 30, 36]. Additionally, we

[27] Xu et al., “A pruned rnnlm lattice-
rescoring algorithm for automatic
speech recognition”, 2018.

[28] Kumar et al., “Lattice rescoring
strategies for long short term memory
language models in speech recogni-
tion”, 2017.
[30] Arisoy et al., “Bidirectional recur-
rent neural network language models
for automatic speech recognition”, 2015.

[36] Platen, Boosting Wav2Vec2 with
n-grams in HF Transformers, 2022.

decided for n-gram language modelling since it is well integrated
into the Hugging Face wav2vec 2.0 implementation. The methodol-
ogy for augmenting wav2vec 2.0 models with LM rescoring is based
on their blog article from [36]. First, we need to obtain large text re-
sources since n-gram LMs estimate word sequence likelihoods from
a reference text corpus. For this task, we obtained access to two text
corpora. ZLS provided access to the parliamentary debate transcrip-
tions from 2020 to 2022, representing 4 million tokens. The second
corpus was given to us by RTL.lu and represents 16 million tokens
from their news articles domain. In total, the text corpus corresponds
to 20 million tokens. Our experiments explore which corpus domain
performs better when rescoring the model outputs. To build the LM,
we use the raw text in most cases and apply only the removal of spe-
cial characters from the text corpus and standardize variations of the
apostrophe. We used the KenLM12 library to create a 5-gram model 12 https://github.com/kpu/kenlm

based on our text corpus with the installed binaries. A 5-gram is an
n-gram that estimates the likelihood of 5-word sequences. Then we
followed the rest of the specific code snippets from [36] to incorpo-
rate the LM into the decoder of our fine-tuned wav2vec 2.0 model.
These code snippets handle the missing start of sentence tokens in
the 5-gram models and combine the KenLM 5-gram model into the

https://github.com/kpu/kenlm
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Hugging Face wav2vec 2.0 implementation.





7 Results and Discussion

We first evaluate our first experiment where we pre-trained a
wav2vec 2.0 XLSR-53 on 842 hours of unlabelled Luxembourgish
speech and fine-tuned the model with 4 hours of labelled speech.
This experiment is equivalent to our baseline models, using the same
amount of labelled data to fine-tune the models.

Model
Unlabelled

data
Language

Model
WER CER

dev test dev test

Baseline:

4h labelled
Base wav2vec 2.0 LB-842 None 23.95 23.09 7.97 7.63

5-gram 20.10 18.67 7.41 6.76

Base wav2vec 2.0 LS-960 + LB-842 None 23.39 22.57 8.15 7.60

5-gram 18.40 17.75 7.15 6.74

This work:

4h labelled
XLSR-53 wav2vec 2.0 LB-842 None 19.44 18.77 7.16 6.43

5-gram 16.11 15.10 6.63 5.79

8h labelled

XLSR-53 wav2vec 2.0 LB-842 None 13.86 12.87 3.11 2.91

5-gram 10.94 10.32 2.48 2.39

11h labelled

XLSR-53 wav2vec 2.0 LB-842 None 12.68 11.53 2.76 2.55

5-gram 9.98 10.09 2.27 2.22

14h labelled

XLSR-53 wav2vec 2.0 LB-842 None 11.68 10.71 2.64 2.31

5-gram 9.50 9.30 2.17 2.08

Table 7.1: Results of our Luxembour-
gish wav2vec 2.0 fine-tuning experi-
ments. CER and WER on the Luxem-
bourgish dev/test sets when training on
the labelled data setups of 4h, 8h, 11h
and 14h. The models were pre-trained
using the audio from the Luxembour-
gish dataset (LB-842) as unlabelled
data. In the transfer learning setup,
the model was pre-trained on audio
from LibriSpeech (LS-960). The best
WERs and CERs on dev and test sets
are highlighted in bold.

The evaluation of this model on the test set shows that learning
cross-lingual representations are essential for low-resourced lan-
guages such as Luxembourgish. Learning cross-lingual representa-
tions and rescoring the output transcriptions with language mod-
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elling while using the same amount of labelled speech achieves a
WER of 15.1% and improves the previous best result for Luxembour-
gish speech recognition from [3] relatively by 33.1% and absolutely [3] Nguyen, Self-Supervised Learning of

Speech Representations, 2021.by 7.5%. Increasing the amount of labelled speech yields a signif-
icant performance gain. Our best multilingual wav2vec 2.0 model
fine-tuned on 14 hours of speech reaches a 9.3% WER. The detailed
results of our fine-tuning experiments with different training data
sizes are reported in Table 7.1.

We visualize the findings of our fine-tuning experiments in Figure
7.1 which showcases better the data from Table 7.1. The larger the
transcribed dataset increases, the more the WER trend of the speech
decoding decreases. We observe the same trend when decoding with
language modelling. Overall the 5-gram LM decreases the WER
between one and two per cent.

Figure 7.1: Word Error Rate respective
to labelled dataset size. With and
without Language Modelling (LM).

Additionally, in our language modelling experiments, we study
the impact of the text corpus size on recognition performance. In
language modelling, the perplexity metric measures how well an LM
predicts a sequence of words. A low perplexity metric indicates a
good model. The perplexity of an LM is related to the sparseness of
a reference text corpus used to train the model. To reduce the per-
plexity, we generally increase the corpus size or apply word decom-
position algorithms to reduce the out-of-vocabulary rate. Therefore,
we investigate the impact of two 5-gram LMs on speech recognition
decoding. The first LM is trained on 4 million tokens from the par-
liament transcription corpus. The second model is trained on the
combination of the parliament and RTL.lu text resources, totalling 20

million tokens. In Figure 7.2, we plot the WERs for each LM decoder
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used in our different-sized acoustic models.

Figure 7.2: Word Error Rate respective
to language model size.

In the first configuration, where the acoustic model was fine-tuned
on only 4 hours of labelled speech, the increase in text data did not
improve the WER considerably. However, when the size of the la-
belled dataset increases, the larger text corpus significantly decreases
the WER for the acoustic models fine-tuned with 8 and 11 hours, re-
spectively. This observation could imply that using more text data for
language modelling is less effective in low resource than in high re-
source acoustic models. Additionally, we can interpret that using text
resources from the same domain as the audio training data benefits
the improvement of the speech decoding performance.

To analyze the errors emitted by the speech decoder, we inspect
the model inference on the test dataset and compare it to the ground
truth labels. We can summarize the common decoding errors into the
following categories:

1. Words composed of multiple words are decoded as separate
words. E.g. schlësselroll is decoded by the model as schlëssel roll

2. The speaker pronounces loan words from contact languages how
they would sound in Luxembourgish. E.g. caféepicerie which is a
loan word from French, is decoded by the model as kaffi episserie.

3. The speaker pronounces a correct variation of a word that is not
used in the ground truth. E.g. interessi is pronounced instead of
interesse.

4. The n-rule is often misused while speaking. The letter n at the end
of words is not dropped when speaking even though it is dropped
in the written form.
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5. On some occasions, the article d’ is missing in the output tran-
scription.

6. The speaker pronounces silent vowels and consonants.

7. The model decodes the wrong vowel. E.g. d’schwemm instead of
d’schwämm.

We addressed our research questions with our methodology to
verify our hypotheses. Our results show that pre-training cross-
lingual speech representations combined with LM rescoring improve
the Luxembourgish speech recognition performance.

The first research question explores if pre-training cross-lingual
representations could improve wav2vec 2.0 models that have been
pre-trained on Luxembourgish solely. The wav2vec 2.0 XLSR model
[4] is a multilingual speech recognition model that pre-trains on [4] Conneau et al., “Unsupervised

Cross-lingual Representation Learning
for Speech Recognition”, 2020.

cross-lingual speech representations. Experiments have shown that
cross-lingual pre-training significantly outperforms monolingual pre-
training. Therefore, we hypothesized, following [4] that pre-training
cross-lingual representations will improve monolingual wav2vec
2.0 models that have been trained solely on Luxembourgish. Our
experimental results show that Luxembourgish acoustic models
benefit from cross-lingual pre-training and improve our baseline
models’ recognition performance. This validates our hypothesis and
the claim from [4] that pre-training cross-lingual representations
improve the ASR performance for low-resourced languages.

The second research question investigates if LM rescoring could
improve the baseline Luxembourgish speech recognition models
that use the Greedy algorithm for decoding. Experiments were con-
ducted with LM rescoring in the original wav2vec 2.0 [2] paper and [2] Baevski et al., wav2vec 2.0: A Frame-

work for Self-Supervised Learning of Speech
Representations, 2020.

significantly improved the model’s performance. Following [24], we

[24] Besacier et al., “Automatic speech
recognition for under-resourced lan-
guages: A survey”, 2014.

hypothesized that using LMs for rescoring will further improve the
Luxembourgish wav2vec 2.0 models. Our LM rescoring experiments
show that Luxembourgish speech recognition models benefit from
language modelling, and by increasing the text corpus, the speech
recognition performance improves significantly. Our experiments
validate our hypothesis and the claim from [24] that incorporating an
LM to rescore the speech decoder improves the recognition accuracy
by emitting the best recognition hypothesis.



8 Conclusion

We presented our improvements over our previous work on Lux-
embourgish wav2vec 2.0 models trained in a monolingual and trans-
fer learning setting. We investigated the self-supervised multilingual
learning of Luxembourgish speech representations to be used for
the downstream speech recognition task. An extensive literature re-
view was performed to frame our research questions and hypotheses
within the field. We introduced a reproducible methodology to ad-
dress our research questions and verify our hypotheses. Our method-
ology describes our procedure to pre-process our collected speech
labels. Then we segmented the transcribed audio into utterances by
applying force alignment combined with validation from language
experts. Finally, we fine-tuned a wav2vec 2.0 XLSR-53 checkpoint
pre-trained on 842 hours of unlabelled Luxembourgish speech.

Our experiments validate our hypotheses that learning cross-
lingual representations and LM rescoring are essential for low-
resourced languages such as Luxembourgish. Learning cross-lingual
representations and rescoring the output transcriptions with lan-
guage modelling while using only 4 hours of labelled speech achieves
a word error rate of 15.1% and improves the previous best result for
Luxembourgish speech recognition relatively by 33.1% and absolutely
by 7.5%. Increasing the amount of labelled speech to 14 hours yields
a significant performance gain resulting in a 9.3% word error rate.

We expect performance improvements by collecting more Luxem-
bourgish text resources for the language modelling. In addition, to
collecting more text data, we can now use our ASR model to aug-
ment the transcribed speech corpus by applying the Smith-Waterman
alignment algorithm. This approach inexpensively increases the Lux-
embourgish speech corpus since there are publicly available speech-
transcription pairs, and we do not need to rely on language experts
to supervise audio segmentation and correct speech labels.

With wav2vec 2.0 enabling speech recognition for Luxembour-
gish with little labelled data and our collaboration with the Zenter
fir d’Lëtzebuerger Sprooch and RTL.lu, we expect to implement this
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solution in production to make Luxembourgish speech recognition
accessible to end-users and improve the digital inclusion in Luxem-
bourg. We hope to catalyze research in natural language processing
for Luxembourgish by generating more text resources from broadcast
news with our speech recognition system.
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